
HAL Id: hal-01170616
https://minesparis-psl.hal.science/hal-01170616

Submitted on 1 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling mesoporous alumina microstructure with 3D
random models of platelets

Haisheng Wang, Andrea Pietrasanta, Dominique Jeulin, François Willot,
Matthieu Faessel, Loïc Sorbier, Maxime Moreaud

To cite this version:
Haisheng Wang, Andrea Pietrasanta, Dominique Jeulin, François Willot, Matthieu Faessel, et al..
Modelling mesoporous alumina microstructure with 3D random models of platelets. Journal of Mi-
croscopy, 2015, 260 (3), pp.287-301. �10.1111/jmi.12295�. �hal-01170616�

https://minesparis-psl.hal.science/hal-01170616
https://hal.archives-ouvertes.fr


Modelling mesoporous alumina microstructure with 3D
random models of platelets

Haisheng Wang1, Andrea Pietrasanta1, Dominique Jeulin1, François Willot∗1,
Matthieu Faessel1, Loïc Sorbier2 and Maxime Moreaud2

1MINES ParisTech, PSL Research university, CMM - Centre for mathematical
morphology, 35, rue St Honoré, F-77300 Fontainebleau, France

2IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360
Solaize, France

Abstract

This work focuses on a mesoporous material made of nanometric alumina “platelets”
of unknown shape. We develop a 3D random microstructure to model the porous ma-
terial, based on 2D Transmission Electron Microscopy (TEM) images, without prior
knowledge on the spatial distribution of alumina inside the material. The TEM im-
ages, acquired on samples with thickness 300 nm, a scale much larger than the platelets’s
size, are too blurry and noisy to allow one to distinguish platelets or platelets aggregates
individually. In a first step, the TEM images correlation function and integral range are
estimated. The presence of long-range fluctuations, due to the TEM inhomogeneous de-
tection, is detected and corrected by filtering. The corrected correlation function is used
as a morphological descriptor for the model. After testing a Boolean model of platelets,
a two-scales model of microstructure is introduced to replicate the statistical dispersion
of platelets observed on TEM images. Accordingly a set of two-scales Boolean models
with varying physically-admissible platelets shapes is proposed. Upon optimization, the
model takes into account the dispersion of platelets in the microstructure as observed
on TEM images. Comparing it to X-ray diffraction and nitrogen porosimetry data, the
model is found to be in good agreement with the material in terms of specific surface
area.

Keywords: Mesoporous alumina; transmission electron microscopy; image analysis;
random models; specific surface;
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1 Introduction
Mesoporous alumina is a class of porous material made-up by an assemblage of alu-
mina (Al2O3) grains at the nanometric scale and is widely used in industry as catalyst
supports (Misra, 1987). The support of a catalyst provides reaction interface to the
catalysts and reagents by porosity. The catalytic performances and more generally
transport properties of mesoporous materials are strongly influenced by the morphol-
ogy of the porous phase, including the porosity, specific surface area and connectiv-
ity properties (Levitz, 1993; Wernert et al., 2010). This influence of the morphology
of the support is experimentally observed for activity (Khodakov et al., 2002; Rana
et al., 2011), selectivity (Khodakov et al., 2002) or deactivation (Prieto et al., 2014) for
important industrial process such as methanol synthesis (Prieto et al., 2014), Fischer-
Tropsch synthesis (Khodakov et al., 2002) or hydrotreating of heavy oil fractions (Rana
et al., 2011). The preparation method and synthesis conditions, especially tempera-
ture and type of solvent influence the morphology of the alumina porous structure at
the nanoscale (Chiche et al., 2008; Trimm & Stanislaus, 1986). A fine description of
the microstructure is required to predict and optimize the adsorption and catalytic
performance of these materials.

Different characterization techniques allow one to extract information about the
inner microstructure or on the spatial dispersion of grains at the nanoscale. These
techniques include nitrogen porosimetry, X-ray diffraction (XRD), transmission elec-
tron microscopy (TEM) and tomography (Kim et al., 2003; Roiban, 2010). Nitrogen
porosimetry provides information about the porosity at the macro-scale. XRD methods
provide information of the mean structuring crystallites and on morphological charac-
teristics such as size and shape, less on pore connectivity or structure at higher length-
scale (Chiche et al., 2008). TEM methods produce transmission 2D images on a thin
slice of material, from which 3D reconstruction is difficult. Electron tomographic tech-
niques may provide 3D images of the pore space at the nanoscale but at the expense of
long acquisition and reconstruction time and at poor representativeness (volume sides
limited to a few hundreds of nanometers).

Morphological modelling is a key procedure in the design, development and op-
timization of catalyst supports. On the one hand, simple models are created using
deterministic microstructures such as periodic arrays (Mu et al., 2008). On the other
hand, more elaborate modelling relies on stochastic microstructures to mimic real ma-
terials (Adler, 1994; Diaz et al., 2004; Kočí et al., 2006). With the reconstructed mi-
crostructures, simulations of adsorption (Štěpanék et al., 2007) have been performed,
as well as heat conduction (Kohout et al., 2004) and reaction-diffusion processes (Kočí
et al., 2007).

To compensate for the lack of available information, assumptions are required to
reconstruct the microstructure in 3D from 2D images. Said otherwise, a 3D microstruc-
ture model which results in the observed TEM images, but also respect physical as-
sumptions (on e.g. crystallography for the grains shape) is sought for. This modelling
problem is solved by means of numerical or (semi-)analytical optimization (Couka et al.,
2015; Jean et al., 2010; Jeulin, 2012). Stochastic random media with parameters es-
timated by optimization are simulated accordingly. Ideally, the models incorporate
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all morphological information provided by characterization techniques (Moreaud et al.,
2012).

In this work, information is first extracted on a mesoporous alumina sample using
nitrogen adsorption porosimetry and TEM images (Sec. 2). The textural fluctuations at
different scales and dispersion phenomena are studied by means of the representative
volume element method, and the correlation function (Secs. 3). Secondly, one-scale
and multiscale random models of mesoporous alumina are developed and compared
(Secs. 4 and 5). They take into account the shape and the spatial dispersion of grains.
The models are optimized to reproduce the correlation function observed on TEM
images, while using alumina of varying physically-admissible grain sizes. Finally, some
properties of the simulated models are compared with available nitrogen porosimetry
data (Sec. 6).

2 Experimental characterization
The mesoporous alumina sample is obtained from a thermal treatment of a commercial
boehmite powder (350m2/g, provided by Axens, Salindres, France). The commercial
powder is dispersed in water to obtain a 10wt% solution. The suspension is stirred for
2 hours and put in an autoclave. The autoclave is sealed and heated at 150℃ for 7
hours. The suspension is filtered and dried at 120℃ overnight. The powder is shaped
in trilobed extrudates, the extrudates are dried at 80℃ overnight and calcined under
dry air (650℃, 4h) then wet air (700℃, 2h, 6wt% water). The obtained calcined
extrudates are translucent, indicating no scattering by light, that is to say, negligible
density fluctuation at the scale of visible light wavelength (few hundred nanometers).

Specific surface area SBET (in m2/g) is measured by nitrogen adsorption with the
Brunauer–Emmett–Teller (BET) method (Brunauer et al., 1938). Extrudates are pre-
treated at 350℃ for 3h under vacuum (10−4 Pa) before measurement. Relative uncer-
tainty of the obtained specific surface area is estimated to be 5%. Structural density ds
(in g/cm3) is measured by He Pycnometry. The sample is pretreated at 250℃ for 3h.
Expected relative uncertainty is about 0.5%. Grain density dg (in g/cm3) is measured
by mercury intrusion after a pretreatment (250℃ for 2h). The grain density is obtained
at a 0.2MPa intrusion pressure where mercury fills only inter-grain porosity but not
intra-grain porosity. Expected relative uncertainty is 2.5% (Tab. 1).

The porosity ε (void volume fraction) is obtained from :

ε = 1− dg
ds

Specific surface area SV in m−1 is obtained by :

SV = 106
SBET
dg

Relative uncertainties for ε and SV are then respectively 3.6% and 5.6%. More details
are shown in table 1.
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Value Absolute uncertainty
dg (g/cm

3) 1.04 0.026
ds (g/cm

3) 3.33 0.017
SBET (m

2/g) 240 12
ε 0.688 0.025
SV (nm

−1) 0.231 0.0129

Table 1: Textural properties and their uncertainties obtained from the porosimetry measure-
ments.

The shape and size of alumina crystals at the nanometric scale, however, remains
unknown. In this work, a morphological model for the platelets of a similar mate-
rial (Chiche et al., 2008), consisting of prisms is used with irregular octagonal ba-
sis (Fig. 1). The basis is made up of three sides with lengths D1, D2 and D3. The
angles, equal to 127.8◦ and 270 − 127.8 = 142.2◦, are fixed by crystallography. With
the prism’s height D4, the platelets shape is parametrized by (Di)1≤i≤4. X-ray diffrac-
tion data for the oxide nanoparticles (Chiche et al., 2008) indicate D1 = 3.4 nm,
D2 = 1.4 nm, D3 = 0.4nm and D4 = 3.7 nm (Fig. 1). These values do not necessarily
correspond to the material we consider, so that we let (Di)1≤i≤4 vary.

Nevertheless, for consistency with XRD measurements, we fix the ratios D2/D1 =
0.41 and D3/D1 = 0.12, as obtained in (Chiche et al., 2008). With these constraints,
the platelets shape are fully parametrized by the two variables D1 and D4. The work
of Chiche (Chiche et al., 2008) indicates that materials synthesized in solvent of dif-
ferent pH values have different particle morphologies, in other words, varying shape of
octagonal basis and varying width. For the sample we use in this work, the pH value
is already known.

D
4 
= 3.7 nm

Figure 1: Alumina platelet shape, following (Chiche et al., 2008).

For TEM imaging, an extrudate has been put in an oven at 80℃ overnight and em-
bedded in araldite resin (EMbed 812, provided by Electron Microscopy Sciences, Hat-
field, PA, USA). The included sample has been trimmed to obtain a trapezoidal surface
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and then cut in thin slices using an ultramicrotome (Reicherd). Slices thickness has
been targeted to 300nm. Only slices with homogeneous color (homogeneous thickness)
were withdrawn to a lacey carbon grid. Images were taken with a TEM (JEM-2100F,
provided by JEOL, Peabody, MA, USA) operating at 200 kV , in bright field mode, us-
ing a CCD camera (UltraScan, provided by Gatan, Pleasanton, CA, USA). This camera
has a four quadrant CCD captor and 2048 by 2048 pixels maximum resolution. Before
taking the images, the gain and dark noise of the camera was calibrated respectively
in a hole and in absence of electron beam. Images were taken at full resolution (2048
by 2048 pixels), with a 2 s exposure time at an indicated magnification of 15000. This
magnification yields a field of view of 1130 by 1130nm2 and a pixel size of 0.552nm.

Twelve images were taken for different slices and different non overlapping zones
were neither the edge of the slices, nor cutting artifacts, nor lacey carbon were apparent.
One of them is represented in Fig. (2). Electrons are directed along the thickness of
the samples and smallest dimension, normal to the surface layer, hereafter denoted by
e3. We also introduce Cartesian axis e1 and e2 normal to e3 and parallel to the surface
of the sample. Referring to the coordinates x1, x2 and x3 in the Cartesian basis, 2D
TEM images of porous media are modeled by the Lambert-Beer law (Reimer & Kohl,
2008, p.36):

Y (x1, x2) = a+ b exp

[
−c
∫ f

0
dx3 χS(x1, x2, x3)

]
, (1)

where Y (x1, x2) is the greylevel TEM image at location (x1, x2), f = 300 nm is the
sample thickness, a and b are constants related to the offset and gain of the camera,
c is the density function of the solid phase and χS is the characteristic function of
the solid phase in 3D, i.e. χS(x, y, z) = 1 if and only if point (x, y, z) is in the solid
(alumina) phase. Monte-Carlo simulations of 200 keV electrons trajectories across
alumina embedded in resin selected by a 120 µm objective diaphragm gives a value
c = 2.40 10−3 ± 2.05 10−6 nm−1. Furthermore, the integral is bounded by f and the
sample has a high porosity ε, therefore the Eq. (1) is approximated by:

Y (x1, x2) ≈ (a+ b)− bc
∫ f

0
dx3 χS(x1, x2, x3). (2)

The approximation is used for the simulation of TEM images from digital 3D mi-
crostructures afterwards. The histogram PY of a 32-bit TEM image is represented in
Fig. (3). Most of the values Y (x1, x2) lie in-between y1 = 405 and y2 = 660. To visu-
alize the TEM images, we threshold all values larger than y2 or smaller than y1, and
normalize the result in the range [0; 255]. This amounts to replace Y with:

Ỹ =
255

y2 − y1
(max {min [Y (x1, x2), y2] , y1} − y1) . (3)

Local alignments and textured patterns are somehow visible in Fig. (2), but overall,
information in the TEM images is hidden (and lost) by the attenuation of the electron
beam along the samples’s thickness. Values in the field’s histogram (Fig. 3) does not
allow one to segment the image into several zones of interest.

For electron tomography, few calcined extrudates were crushed in a mortar and the
obtained powder was dispersed in ethanol. A drop of the suspension was put on a
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Figure 2: TEM image Ỹ (see text) of mesoporous alumina (1130nm × 1130nm).

holey carbon grid that was dried. Tilt series projections were acquired on the JEOL
JEM-2100F fitted with the Gatan Ultrascan CCD camera, in bright field mode at
200 kV . 143 projections with an indicated magnification of 40000 times (0.21nm pixel
size) were acquired at full camera resolution (2048 by 2048 pixels). The 143 tilt angles
range between −71° to 71° with a Saxton spacing scheme. No fiducial marker was put
on the grid to avoid the artifacts induced in their vicinity. Prior to reconstruction,
images were binned twice to obtain a 1024 by 1024 pixels tilt series. The 3D volume
was reconstructed with the robust method based on inverse problem approach to align
marker-free projections and reconstruct 3D volume (Tran et al., 2014). A 3D view of
the tomographic model is represented in Fig. (4).

3 TEM image statistics
In this section, two quantitative morphological types of information are extracted, the
correlation (or covariance) function, which will be used in the morphological modelling,
and the variance of the fields’s local means, (Secs. 4 and 5).

3.1 Correlation function
Referring to two 2D vectors x = (x1;x2) and h = (h1;h2), the empirical correlation
function of Y is the 2D function estimated from the space average denoted by 〈.〉:

C(h) =
〈Y (x+ h)Y (x)〉 − 〈Y (x+ h)〉〈Y (x)〉

〈Y 2(x)〉 − 〈Y (x)〉2
, (4)

so that C(0) = 1 and C(∞) = 0 for a stationary field. Note that the correlation
function does not depend on the values of a, b and c in (1) and that C(h) in general
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Figure 3: Histogram of the greylevels of the raw data in the range [0; 2140]. The vertical
dotted lines are Y (x) = y1,2. Top-right encrusted graph: histogram of Ỹ (Eq. 3) in the range
[0; 255].

depends on the norm and orientation of h. The function C(h) in (4) is computed
using Fourier transforms (FFTs), which amounts to periodize the image. The profiles
C(he1,2) along e1 and e2, for h > 0, are represented in Fig. (5) for two TEM images.
For the first sample, the two functions are sensibly different for intermediate values of
h . 6 nm, underlying the image anisotropy. This anisotropy effect is smaller in other
samples (Fig. 5b). Anisotropy effects are more easily apparent on the 2D representation
C(h1, h2) of the correlation function at long distance h � 1 (Fig. 6) shown in color
scale. The figure is cropped with top-left corner’s coordinate (10 nm, 10 nm), to avoid
the high contrast when h is small. Highest values are in red and lowest values in blue.
Such results are not consistent with an isotropic distribution of platelets.

3.2 Integral Range
We follow (Jeulin, 2011; Kanit et al., 2003; Matheron, 1971) and define the variance
D2(S) of the means 〈Y 〉S of the function Y over a compact subset of area (Lebesgue
measure) S by:

D2(S) = E
{
〈Y 〉2S

}
− (E {〈Y 〉S})2 , (5)

In the above, E{·} is the expectation operator (estimated here by averaging). When the
area approaches a point (or a pixel in 2D discrete image), we obtain the point variance
D2

1:
D2

1 = 〈Y 2〉 − 〈Y 〉2. (6)

The following asymptotic expansion holds (Lantuejoul, 1991; Matheron, 1971):

D2(S) ∼ D2
1A2

S
, (7)

where:
A2 =

∫
I
dhC(h), (8)
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Figure 4: 3D view of the tomographic reconstruction of a small portion of mesoporous
alumina. The image resolution is 0.66 nm3 per voxel and the image size is 328nm× 290nm×
257 nm.

as long as A2, the integral range over the support of the image I, is finite. The integral
range gives the typical surface area of the microstructure. In practice, use of the corre-
lation function C(h) in (8) can hardly be used to estimate A2, due to fluctuations in the
function C(h) when |h| is large. Instead, the expansion (7) is generaly used (Altendorf
et al., 2014), provided that numerical data follows the theoretical law (7). Hereafter, we
check if this law is verified. The variances D2(S) are estimated at increasing values of
S. This is done by dividing the TEM image into non-overlapping squares of equal area
S, and measuring the variance of the mean over the subdomains (Eq. 5). The results
are given in Fig. (7), in log-log scale for 5 images. An extra point representing D2(S)
for S = 2048×2048 pixels is computed using all 12 images. The data follows the scaling
law D2(S) ∼ S−0.5, with an exponent less than 1, i.e. a much slower decrease than that
in (7). Similar conclusions hold for the other 7 TEM images of the same sample. This
is not consistent with the asymptotic result of Eq. (7), which is valid for any ergodic
stationary random function with a finite integral range. The slowly-decreasing scaling
law of the variance is explained by a drift in the image, as detailed below.

3.3 Image drift
To visualize variations in the images over large scales, we divide it into a set of non-
overlapping square subdomains of size 140 nm × 140 nm. The means over each square
are represented in Fig. (8), for two random images. A drift appears on the two images,
roughly oriented along the diagonal from the top-left to the bottom-right. This non-
uniform averaged field can be interpreted as the result of a non-uniform detection of
the camera or a non-constant thickness of the slices. Indeed, the four quadrants of the

8



0 10 20 30 40 50 60 h(nm)

0.0

0.2

0.4

0.6

0.8

1.0

C(h      )

3 6
0.0

0.2

0.4

C(h  )

C(h  )

e

e

e1,2

2

1

0 10 20 30 40 50 60 h(nm)
0.0

0.2

0.4

0.6

0.8

1.0

C(h      )

3 6
0

0.2

0.4

C(h  )

C(h  )

e

e

e

1,2

2

1

(a) (b)

Figure 5: Correlation function profiles along the horizontal and vertical axis, for two TEM
images (a and b).
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Figure 6: 2D correlation function C(h1, h2) of the TEM image.

camera can be guessed from Fig. (8). This indicates that the correction of the gain of
the camera performed before recording the images is not accurate enough to correct for
the camera detection discrepancies. This is confirmed by the display of moving averages
on more images of the sample, as shown in Fig. (9).

To remove the drift, a moving average is subtracted to each image, computed as the
mean of a disk of radius ` centered on each pixel. Accordingly Y is replaced by

Y ′(x) = Y (x)− 1

π`2

∫
|x−x′|<`
dx′ Y (x− x′), (9)

where x = (x1, x2) is a point in the image. The value of ` is now chosen so that the
integral range A′2 of the convoluted field becomes finite. Equivalently, ` is chosen so
that the variance D2

Y ′(S) of the means over subdomains of size S decreases with a
scaling law ∼ 1/S, as in Eq. (7). We emphasize that this variance is computed on
the corrected image Y ′, rather than on the moving average itself. We find numerically
that D2

Y ′(S) ∼ 1/Sα with α < 1 (resp. α > 1) when ` < 110 nm (resp. ` > 110
nm) and D2

Y ′(S) ∼ 1/S when ` ≈ 110 nm (Fig. 10). Accordingly we set ` = 110
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Figure 7: Variance D2(S) of the means over areas of surface S in the image Y , computed
using (5). Stars of different colors are used to distinguish between the 5 TEM images. Solid
lines: numerical fit of the data D2(S) ∼ S−0.5 (red), using all 5 samples, and, for comparison,
scaling law D2(S) ∼ 1/S (blue) predicted by (7).

nm and replace Y with Y ′ in the rest of this study. The resulting moving average is
represented in Fig. (9). Additionally the integral range of the 12 images is estimated,
giving A′2 ≈ 30 nm2.

After removing the drift, the long-range anisotropy observed in the correlation func-
tion almost disappears. Short-range anisotropy in the correlation function is also much
smaller after drift-removing. In the following, it is approximated by an isotropic cor-
relation function, denoted by CTEM (h), averaging over all directions and over the 12
TEM images.

4 One-scale Boolean model
To model the microstructure, we first consider a Boolean model of randomly-oriented
platelets. We take first the octagonal prism presented in Sec. 2 as the shape of platelets.
Microstructures are generated in two steps (Jeulin, 2000; Matheron, 1967):

• First, a realization of a Poisson random point process is generated with a pre-
scribed point density, determined by the microstructure overall porosity, and the
volume of the platelet.

• Second, an octagonal prism is translated at each Poisson point. The prism main
axis orientation is uniform on the sphere.

This model should be considered as a one-scale model in the sense that it is based on a
homogeneous Poisson point process. The Boolean model depends on the shape of the
prisms and on the porosity. The latter pore volume fraction is set to 69%, according to
porosimetry data.

Realizations of the model are generated in a window consisting of 400× 400× 546
voxels with resolution 0.55 nm per voxel. The upper surface of the microstructure
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Figure 8: Local means computed over a set of non-overlapping square subdomains in two
TEM images.

Figure 9: Moving average of 8 TEM images of the sample, using Eq. (9) with disk radius
110nm

(e1; e2) is discretized on a 400 × 400 voxels grid, and the thickness along e3 by 546
voxels. The microstructures have the same thickness as the sample material (300nm).
A 2D section of the 3D model is shown in Fig. (11). Transmission images in 2D
are readily computed by performing an integral along the vertical axis (e3) on the
generated microstructure (Eq. 2). From the simulated transmission images, we obtain
the corresponding 2D correlation function CM (h), who is confirmed to be isotropic.
Its 1-D profile is hereafter denoted by CM (h). Since the correlation is normalized, the
choice of the parameters a, b and c does not influence the estimation of correlation
function. A comparison with the correlation functions of the TEM images CTEM (h) is
represented in Fig. (12).
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The parameters of the one-scale Boolean model are estimated by minimizing some
distance between the correlation functions measured on TEM and on simulated images:

inf
M

{
N∑
h=0

wh [CTEM (h)− CM (h)]2
}
, (10)

where h is given in pixels units, wh are weights given by:

wh =
ah∑N
i=0 ai

, ah =
1

1 + 0.2h
, (11)

and N = 29 defines a (finite) domain of comparison of the two correlation functions.
The decreasing weights with h are used to give more importance to the correlation
function for small values of h, which is more reliable than when h is large.

Previous findings (Chiche et al., 2008) indicate that the basis of the primary grain
is octagonal. Under this assumption, the length D1 and width D4 of the octagonal
grains vary independently, while the shape of the basis is fixed. Accordingly, the prism
is parametrized by two variables. To examine the effects of both parameters on the
correlation function, we fix one and let the other vary (Fig. 13). The slope at the origin
(h = 0) of the correlation is driven by the platelet’s shape: the thicker the platelet is
(D4 increases), the smaller the slope of correlation will be. For an isotropic random
set, it is related to the specific surface area SV (Matheron, 1967):

dCM (h)

dh

∣∣∣∣
h=0

=
1

4
SV , (12)

For a Boolean model with primary grain A′, SV = −q log(q)SA′
VA′

where q is the vol-
ume fraction of void, SA′ and VA′ are respectively the average surface area and average
volume of primary grains. This can be used as an additional constraint to the opti-
mization problem. Under this constraint, the width D4 is fixed by the length D1 or
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Figure 11: 2D section of a Boolean model of octagonal prisms. Solid phase in white.
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Figure 12: correlation of TEM images and of a computer-generated one-scale Boolean model.

13



vice-versa. Therefore Boolean models following the additional constraint are generated
and the resulting correlation functions are compared in Fig. (14). As expected, with the
additional constraint, the models reproduce the correct slope at the origin for the cor-
relation function, irrespective of the shape. However, the long-range of the correlation
function is not reproduced except for very thin and highly elongated platelets (in red,
in Fig. 14). These platelets shapes, with sizes smaller than 1 nm, are hardly physical
and must be rejected. Accordingly, models with larger correlation ranges must be used
to approach the TEM images correlation function. Hereafter, a two-scales model is
considered.
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Figure 13: Effect of the grain shape on the correlation function of the one-scale model: with
D1 = 3.4 nm and D4 varying from 0.55 nm to 14.3 nm (a); with D4 = 3.7 nm and D1 varying
from 1.1 nm to 8.8nm (b). The correlation function of the TEM images is shown in blue.
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Figure 14: Correlation function of one-scale Boolean models of octagonal prisms with fixed
surface density SV and increasing platelet width D4 (a). Length D1 with respect to width
D4 under the constraint in Eq. (12) (b).

5 Two-scales Boolean model
As previously seen, the one-scale model of random platelets can not reproduce the
correlation function of the TEM images in the range larger than the size of the platelets.
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(a) (b)

Figure 15: TEM image of crushed powder of mesoporous alumina. Local alignments are
encircled in red.

Indeed, crushed powder of mesoporous alumina exhibits local alignments (Fig. 15).
The aggregation of alumina platelets is well known (Euzen et al, 2002) and originates
from the behavior of the boehmite precursor in solution (Fukusawa & Tsujii, 1988).
This aggregation is expected to be highly anisotropic due to the anisotropy of both
platelet shape and the degree of hydroxylation of platelet faces (Digne et al., 2004).
The alignments suggest the existence of at least one larger scale, which correspond to
the size of aggregates of platelets. The size of these aggregates is in-between 2 to 3
times the size of platelets, according to (15). Thus, the local dispersion of the platelets
should be taken into account.

Accordingly a simple two-scales Boolean model, more general than the previous
one-scale model, is defined as follows:

• First, a Boolean model of spheres is used to generate a field of orientations: to
each sphere is associated a random principal direction uniformly distributed on
the unit sphere.

• Then, two Poisson point processes with two densities are generated inside and
outside the spheres.

• Third, a platelet with fixed shape is located at each Poisson point. When the
point is outside the spheres, the platelet orientation is uniformly random, as in
the previous one-scale model. When the point is inside a sphere, the platelet
orientation is given by that of the sphere. If a point is located in two or more
spheres, one of the corresponding orientations is chosen at random.

This type of model is a variant of a Cox Boolean model (Jeulin, 2012). The two-
scales Boolean model has 5 parameters: the shape parameters D1 and D4 (Fig. 1) and
3 other variables that control the spatial dispersion of platelets. The latter are the
volume fraction of spheres at the larger scale pS , the radius of the spheres rS and the
volume fraction of platelets inside spheres pA. The volume fraction of platelets outside
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the spheres p′S is prescribed by the overall porosity, fixed to 69%, by:

p′S(1− pS) + pApS = 1− 0.69.

An example of realization of a two-scales model is shown in Fig. (16). The volume of
the microstructure is 400× 400× 546 voxels at resolution 0.55 nm per voxel. The size
of the 2D section is 400 × 400 pixels. The shape and size of the platelet is chosen the
same as the prism shown in Fig. (1). The volume fraction of spheres pS is 0.5, with
sphere radius fixed at 8 nm. The volume fraction of aligned platelets inside the spheres
pA is 0.5. In the generated microstructure, there are 5713 spheric aggregates, 165629
platelets aligned in the aggregates and 30364 randomly oriented platelets outside the
aggregates. Local alignments are distinguished and encircled in red. We checked that
the microstructure is macroscopicaly isotropic with respect to the correlation function.
Hereafter, we let the 5 paremetersD1,4, pS,A and rS vary. We optimize them to approach
the TEM images’ correlation function.

Figure 16: 2D section of a realization of the two-scales Boolean model with locally-aligned
platelets (some of them encircled in red).

5.1 Correlation function
The effect of each parameter on the correlation function has firstly been examined
numerically. Simulations are performed by fixing two of the three parameters, and
letting the third parameter vary (Fig. 17). As expected, the slope at the origin of the
correlation is not sensitive to the parameters governing large scale effects pS and rS
(Figs. 17a and 17b). Their values however greatly affect the correlation range from
1.1 nm to 5.5 nm. On the contrary, the slope at the origin of the correlation is sensitive
to the volume fractions of platelets inside the grains pA (Fig. 17c), in particular for high
values of pA larger than 50%. In this regime, platelets often intersect, which greatly
reduces their specific surface area. In the optimization process detailed below, the two
parameters pS and rS are adjusted to control the correlation range, the other one being
chosen to adjust the slope at the origin.
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Figure 17: Effects of the spatial dispersion parameters pS, rS and pA on the correlation
function.

5.2 Identification of the two-scales Boolean model
Hereafter, the parameters of the two-scales Boolean model are estimated by optimiza-
tion, to approach the correlation function of the TEM images. The same criterion is
used as in the one-scale Boolean model (Eq. 10). First, a standard conjugate gradient
descent method was tested. The method was ineffective, due to the high variability
in the estimate of the gradient, especially for such two-scales model. The more robust
Nelder-Mead method, which does not require the computation of a gradient (Nelder &
Mead, 1965), was also used. In most of our numerical simulations, the algorithm would
very slowly converge. Furthermore, the microstructure was found to be sub-optimal.
This is presumably an effect of variability.

Finally, a random “point cloud”simulations based on a Monte Carlo method (Ham-
mersley & Handscomb, 1964) was tested. To initialize the point cloud method, the
shape parameters D1 and D4 are fixed, as in the optimized one-scale model. The cloud
zone for the other parameters (pA, pS and rS) is initially a large domain (0.1 < pA < 0.9,
0.1 < pS < 0.9 and 2.6 nm < rs < 21 nm). In this domain, the specific surface area is
not sensitive to pA and controlled by the values of dA and dB initially chosen. After
random simulations, the zone of interest is reduced to a region where the objective
function is lower. The process is repeated until convergence to a single point. The
method, which tends to explore larger regions in the parameters space, was found to
significantly reduce variability compared to the Nelder-Mead method, and also provided
the best local minima. After 3 iterations, the algorithm would provide good-enough
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microstructures and was stopped.
The cloud optimization was repeated with varying shape parameters D1 and D4,

following the specific surface area constraint (Eq. 12). A series of optimal two-scale
models with respect to D1 (or equivalently, D4) is obtained. The correlation functions
of two such models are represented in Fig. (18) and compared with that of the TEM
images. For each set of parameters, the two correlation functions are in excellent
agreement. We pick one of the two optimal models, corresponding to D1 = 3.3 nm, and
used in Fig. (18). This model is compared to the TEM image in Fig. (19). Image (19b)
is simulated using (2) and a normalization similar to (3). For the sake of comparison,
all values are comprised beteen 0 and 255. Note that the parameters a, b and c entering
(2) are irrelevant due to (3).
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Figure 18: Correlation functions of two optimized two-scales models with different shape
parameters for the grains: comparison with the correlation function of TEM images.

(a) (b)

Figure 19: Comparison between (a) the TEM image and (b) the simulated transmission
image using one of the optimal two-scales models with D1 = 3.3 nm (see Fig. 18). Image
(b) is generated from Eq. (2) and a normalization similar to (3).
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6 Porosimetry data and specific surface area
In this section, the specific surface area of the optimized models and obtained from
available porosimetry data are compared. Nitrogen porosimetry on the sample gives a
specific surface area of 0.232 nm−1. For an arbitrary random set A, the specific surface
area SV of A is given by the slope at the origin of the correlation Q(h), as reminded in
equation 12. For two-scales models B written as:

B = (A0 ∩A1) ∪ (Ac0 ∩A2) , (13)

where Ai (i = 0, 1, 2) are independent random set with volume fraction pi and specific
surface area S(i)

V , and Ac0 is the complementary of A0, the specific surface area SBV of
the random set B is given by (Jeulin, 2014):

SBV = S
(0)
V (p1 + p2 − 2p1p2) + p0S

(1)
V + (1− p0)S(2)

V . (14)

The first term in the right-hand side represents the specific surface of the set B cut by
that of A0. The next terms are the specific surface in the interior and exterior of A0.
This equation is exact for platelets that are cut off at the boundary of primary grains.
It can be applied to the two-scales Boolean model as follows:

S
(0)
V = − 3

rS
(1− pS) log(1− pS), S

(1)
V = −Sp

Vp
(1− pA) log(1− pA),

S
(2)
V = −Sp

Vp
(1− p′S) log(1− p′S),

where Sp

Vp
is the surface/volume ratio of the platelets, determined by D1 and D4 by sim-

ple geometric considerations. The resulting estimation for SBV is only an approximation,
since Eq. (13) is not exact for the Cox Boolean model. However, the approximation is
correct if a large scale-separation rS � D1 and rS � D4 is assumed (Jeulin, 2012). In
the present two-scales model, rS/D1 and rS/D4 are at least equal to 2.

In a first step, a particular optimized two-scales microstructure with D1 = 3.3 nm
and D4 = 1.1nm (corresponding to Fig. 18) is considered. The porosimetry results
depend on the size of the molecules used for adsorption experiments (Thommes et al.,
2000; Wernert et al., 2010). The estimated specific surface areas are higher (resp.
lower) when small (resp. large) molecules are used. This effect is especially important
in nanomaterials. To roughly model the nitrogen adsorption, morphological closings
(dilation followed by erosion) by a cube, a 3D cross and a rhombicuboctahedron of
increasing sizes are first performed. The rhombicuboctahedron better approximates
the shape of molecules on a digitized image, and offers a good compromise between
performance and exactness. Its size corresponds to the radius of an equivalent sphere.
Second, closed pores that are not accessible to nitrogen are removed. 3D views of one
optimized two-scales microstructure after closing are represented in Fig. (20). Results
for the estimates of the specific surface areas are given in Tab. (2). We denote by
Scov
V the estimate of the slope of the tangent line to the correlation function at h = 0

(Eq. 12). For comparison purposes, we also give estimates obtained by the method
of weighted local configurations proposed in (Ziegel & Kiderlen, 2010) and analytical
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estimates from Eq. (14), denoted SZV and SBV respectively. The method in (Ziegel &
Kiderlen, 2010) makes use of 5 weights which depend on two parameters s and r. We
follow (Ziegel & Kiderlen, 2010) and set s = 1.7452 and r = 1. These two values are
given for cylinders. They give nearly optimal estimates with the platelets used in the
present work.

The estimates Scov
V , SZV are measured on the original microstructure (M), its closing

by a cube (M ′) and by a 3D cross (M ′′) of size 1 pixel (0.55 nm). We also remove closed
pores by a hole filling operation on the three microstructures and estimate their specific
surface area SZ′

V , using the method of Ziegel.
Numerical results for the specific surface are of the same order than experimental

ones (about 0.232 nm−1). Closing also significantly influences the specific surface area.
Furthermore, numerical results indicate that the latter is affected by the shape of the
structuring element. There are very few closed pores in the microstructure, as indicated
by the values of SZ′

V , very close to SZV .

δ = 0 δ = 1 δ = 2

Figure 20: 3D views of the closings of an optimized two-scales Boolean model with increas-
ing structuring element size (left to right). Porosity in blue and platelets in white. The
structuring element is a rhombicuboctahedron of size δ (in voxels).

SBV (nm−1) Scov
V (nm−1) SZV (nm−1) SZ

′
V (nm−1)

M 0.8104 0.6611 0.5533 0.5527
M ′ 0.4225 0.4299 0.4277
M ′′ 0.5796 0.4878 0.4871

Table 2: Specific surface areas of the two-scales optimized Boolean model M , and of its
closingM ′ andM ′′, computed using the analytical estimate (Eq. 14), the correlation function
and the method of weighted local configurations in (Ziegel & Kiderlen, 2010). The analytical
estimate (Eq. 14) is relevant for model M only.
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Figure 21: Porous volume of the tomography image after closing with rhombicuboctahedron
of 30 voxels and erosion by 3 voxels (2D section). Alumina grains are in dark, while in grey
is the porosity.

6.1 Comparison with the tomographic model
Hereafter, the two-scales models of platelets are compared to the tomographic model
in terms of porosimetry. The porous volume of the tomographic model is extracted by
using a series of morphological operations proposed by Moreaud et al (Moreaud et al.,
2008). First, a closing operation by a sufficient size (here we take 30 voxels) together
with a hole filling operation is performed to remove all pores in its interior. Next, a
geodesic erosion is performed on the 3D image in order to maintain the surface irregu-
larity (Fig. 21). The global volume and the external surface contour of the tomographic
model are emerged after the erosion.

Then, closings of increasing sizes are performed with rhombicuboctahedra on both
the tomographic model and the two-scales microstructure models, to simulate the nitro-
gen adsorption. The structuring element roughly mimics the role of nitrogen molecules.
Isolated pores are removed using hole filling operations to extract the accessible poros-
ity. Specific surface area measurement results are given in Fig. (22), in red for the area
of accessible specific surface in the two-scales model, and in blue for the area of acces-
sible specific surface in the tomographic model. These values have been corrected by
subtracting the exterior surface area of the specimen. Finally, the nitrogen porosime-
try data (0.231 nm−1) is indicated by the dotted black horizontal lines. The nitrogen
molecules whose shapes are anisotropic are indicated by vertical black dotted lines.

As shown in Fig. (22), the specific surface area in the two-scales microstructure
agrees with porosimetry data when the size of the structuring element is about 1.2 nm.
This value is quite higher than the nitrogen size, of about 0.3 and 0.4 nm. For a
structuring element of this size, the estimated specific surface area is about 2 to 3 times
higher for the two-scales model compared to porosimetry data and to the tomographic
model. However, the difference between model and porosimetry data is much less of the
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indicated by the two vertical black dotted lines.

same order than usually observed when comparing image analysis results to molecular
porosimetry.

Some differences between the two-scales optimized Boolean model and tomographic
image are also observed. The decrease of the surface density with respect to the size of
the structuring element is much steeper in the two-scales model than in the tomographic
image. The difference between accessible and overall properties is also more important
in the two-scales model, for large structuring elements.

Finally, the accessible porosity globally follows the same trend as the specific surface
area when the size of the structuring element increases (Fig. 23). Also, our results are
nearly insensitive to the shape of the platelets in the two-scales model. Nearly identical
results have been obtained when considering other two-scales optimized models with
varying shape parameters (not shown).

7 Conclusion
In this work, a two-scales Boolean microstructure was proposed to model mesoporous
alumina. The model is based on transmission images where correlation lengths are quite
larger than that of the observed platelets in the material. The model takes into account
the spatial dispersion of platelets in the material, making extensive use of the correlation
function. The latter is quite insensitive to the exact platelet shape, which could not be
accurately determined from the available noisy transmission images. Nevertheless, the
model supports a range of physically-admissible platelets shapes, as deduced from X-
ray diffraction measurements. The estimation of the five parameters of the model was
carried out by optimization, using a random point cloud process, which was found to
be more robust than the Nelder-Mead and conjugate gradient methods. Furthermore,
the optimization was constrained by decoupling the effect of the shape parameters for
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the platelets, which control the slope of the correlation at the origin, and the other 3
parameters which affect the dispersion at larger scales.

The model was compared with a 3D tomographic reconstruction of a small-size part
of the material. Microstructural properties, in terms of specific surface area, were com-
pared with measurements on tomographic images and with data provided by nitrogen
porosimetry and density. These measurements differ quantitatively, but are of the same
order. Part of this difference is explained by the amount of porosity accessible to nitro-
gen particles in porosimetry experiments. Further experimental and modelling works
are needed to clarify the observed discrepancies.

Results obtained in this work indicate that hierarchical or multiscale models are
presumably necessary to reproduce quantitatively the transport and sorption properties
of mesoporous alumina, particularly the nitrogen isotherms. Future study will focus on
the influences of different morphologies of microstructure on the transport properties,
i.e. nitrogen isotherms of mesoporous alumina. This approach can be applied to further
nanoporous materials.
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