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2. A heuristic approach to the water networks pumping scheduling issue 

The goal of the pumping scheduling issue is to manage a set of pumps in a water network in order to 
minimize the associated total energy costs. As depicted in Fig. 1, the electricity consumption of a pump 
can easily be well divided into two parts: 
• a fixed charge for the pump ignition; and 
• an additional charge linear with the pumped flow. 
Hence, the total energy cost associated with a set of pumping stations (i,j), each of which is equipped with 
a set of pumps n(i,j), over the time-horizon [tstart,tend] reads: 
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where: 

• ( )
Pump

tn,,ji,q  is the flow associated with the pump (i,j),n during the time interval t, in m3/h; 

• ( )
Pump

tn,,ji,s  is the state (on/off) of the pump (i,j),n during the time interval t; 

• ( ) ( ) QQPower n,ji, ∂∂ /  is the slope of the power function associated with the pump (i,j),n, in kWh/m3; 

• ( ) ( )0=QPower n,ji,  is the power associated with turning on the pump (i,j),n, in kWh; 

• Elec
tC  is the electricity tariff, in Euro per kWh, during time interval t; 

• ( ) n,ji,H is the efficiency of the pump’s motor (i,j),n, which we take to be constant for each pump; and 

• tΔ  is the length of a time-step. 

In order to satisfy the required water demand, several constraints have to be implemented. Firstly, the 
pressure in the network depends both on the topology and the flows. Indeed, for each pipe, the downward 
pressure is equal to the sum of the upward pressure, a hydrostatic component resulting from the height 
difference between the two points and a dynamic component due to pressure losses. It thus follows: 

( ) [ ] ( ) ( )
Hydro

ji,
Pipe

tji
Loss

ji,ti,tj,endstart P+qP+ppt,ttPipe,ji, ΔΔ≥∈∀∈∀ )(: ),,(  (2) 

where: 

• ti,p  is the pressure at node i of the network during the time interval t; 

• ( )
Loss

ji,PΔ  is a quadratic function of ( )
Pipe

t,ji,q that estimates the pressure losses, where ( )
Pipe

t,ji,q  is the flow in 

the Pipe (i,j) during interval step t, in m3/h; 

• ( ) ij
Hydro

ji, HH=P −Δ  is the hydrostatic component of the pressure and iH  is the altitude of node i. 

Secondly, inflows match outflows for each node in the network: 

[ ] ( ) ( )
( )

( )
∈∈ ∈

∈∀∈∀
Nodek

Pipe
t,ki,

Nodej Pumpij,n

Pump
tn,,ij,

Pipe
t,ij,endstart q=q+qt,ttNode,i :  (3) 



 Gratien Bonvin et al.  /  Energy Procedia   75  ( 2015 )  2846 – 2851 2849

Thirdly, because of the finite size of water towers and supply security constraints, we have to be 
careful that the stored volume of water constantly remains between a lower and upper threshold Min

iV
and Max

iV for a given water tower i. Thus, we have to monitor the water volume vi,t stored within the 
water tower i at time t, given by the equality 

[ ] ( ) ti
Pipe

t,ij,ti,t+ti,endstart WDqt+v=vt,tt,WaterToweri ,: −Δ∈∀∈∀ Δ  (4) 

where ti,WD  is the water demand at water tower i during the interval step t, in m3. 

Fourthly, we have to ensure that the pump is running ( ( ) 1=tn,,ji,s ) when the pumped flow is non-zero: 

( ) [ ] ( )
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n,ji,

Pump
tn,,ji,

tn,,ji,endstart Q

q
st,ttPump,n,ji, ≥∈∀∈∀ :  (5) 

where ( )
Max

n,ji,Q  is an upper threshold on the flows allowed by the pump (i,j),n. We choose to take the 

value of the flow when the discharge pressure is equal to the hydrostatic pressure. 

Finally, as depicted in Fig. 1a, when we consider pumps with fixed-speed drives, for each discharge 
pressure, we are allowed to pump only one given flow. Thus, we can write that, 

( ) [ ] ( )( )tn,,ji,tj,
Pump

tnjinendstart sMpqPt,ttPump,n,ji, −−≥∈∀∈∀ 1)(: ,),,(  (6) 

where Pn is the head characteristic of the pump n, well-approximated by a quadratic function of ( )
Pump

tn,ji,q ,

and M is an upper threshold on pj,t. 

Our modeling leads to a mixed-integer quadratic constrained program, encoded using Python language 
and the Gurobi solver [7]. While the time of resolution is acceptable for small networks, it is too long for 
the real-time instrumentation of a large network, typically a pumping station with 6 pumps and 20 water 
towers. With the aim of reducing the time of resolution, the full paper will present a heuristic based on a 
continuation method. 

3. Results 

This study raises several remarks (see Fig. 2): 
• We tend to pump during the night, when electricity is cheaper. 
• Looking at Figs. 1 and 2, the solution results in pump operating points that are close to the highest 

efficiency points (around 43 m3/h). 
• For Water Tower 2, we fill it separately during the first day because the pressure drops are significant 

at section Junction I2 - Water Tower 2 due to a small pipe diameter. The aim is to obtain a discharge 
pressure close to the hydrostatic pressure and thus to pump most efficiently during off-peak hours. 
With this strategy, only one pump is less efficient (Pump 2 between 0:00 am and 2:00 am). On the 
second day, pumping occurs with a constant and smooth flow into water tower 2 in order to avoid 
significant pressure losses. 

• If we install variable speed drives, the total electricity charges will not be significantly reduced. 
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(top) Evolution of the stored water vo
Fig. 2. For a two-day horizon: 

olume for each water tower; (bottom)  Pumping scheduling for each pump
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4. Conclusion 

We demonstrate our ability to manage a set of pumps in order to reduce the associated total electricity 
bill. We observe that, in some cases, variable speed drives do not significantly reduce energy costs if 
pumping is efficiently scheduled. 

Next stage is now to address more complex water distribution networks to validate the relevance of our 
tool. 
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