
HAL Id: hal-01154799
https://minesparis-psl.hal.science/hal-01154799

Preprint submitted on 23 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A syntactic soundness proof for free-variable tableaux
with on-the-fly Skolemization

Richard Bonichon, Olivier Hermant

To cite this version:
Richard Bonichon, Olivier Hermant. A syntactic soundness proof for free-variable tableaux with
on-the-fly Skolemization. 2015. �hal-01154799�

https://minesparis-psl.hal.science/hal-01154799
https://hal.archives-ouvertes.fr

A syntactic soundness proof for free-variable
tableaux with on-the-fly Skolemization

Richard Bonichon1 and Olivier Hermant2

1 Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
richard@dimap.ufrn.br

2 MINES ParisTech, PSL Research University, France
olivier.hermant@mines-paristech.fr

Abstract. We prove the syntactic soundness of classical tableaux with
free variables and on-the-fly Skolemization. Soundness proofs are usually
built from semantic arguments, and this is to our knowledge, the first
proof that appeals to syntactic means. We actually prove the soundness
property with respect to cut-free sequent calculus. This requires great
care because of the additional liberty in freshness checking allowed by
the use of Skolem terms. In contrast to semantic soundness, we gain the
possibility to state a cut elimination theorem for sequent calculus, under
the proviso that completeness of the method holds. We believe that such
techniques can be applied to tableaux in other logics as well.

1 Introduction

Tableaux methods form a successful sub-family of automated theorem proving,
encompassing classical as well as modal logics. Their origin comes from Beth’s
semantic considerations [3]. With Smullyan’s updated tree-based formalism [16],
as well as Fitting’s subsequent treatment [11], there is a first separation between
syntactic and semantic concerns. Both present a purely syntactic operational
behavior of tableaux rules, justified by semantic soundness and completeness
proofs. Proving these two properties by semantic arguments has stayed the norm
and for good reasons: model-theoretic proofs are reasonably short, relatively
elegant and straightforward. In comparison, syntactic proofs can be messy, as
all translation details must be shown.

There might be another reason. Translating ground tableaux proofs à la
Smullyan to ground sequent calculus proofs is indeed trivial. If we allow free
variables and Skolemization, we still have a straightforward translation to Anton-
sen and Waaler’s free-variable sequent calculus [17]. Thus, the relation between
classical tableaux and sequent calculi has been relegated to folklore knowledge.

Nonetheless, translating free variable tableaux with Skolemization to ground
sequent calculus is not as simple a task: most of the trouble comes from the
freshness conditions imposed on existential witnesses in sequents. Despite our
efforts, we were not able to find any result on that matter.

However, why would one want syntactic soundness over semantic soundness
? At the proof-theoretical level, it provides a double-check of soundness. In prac-
tice, it does not add any power to tableaux heuristics. However, it presents some
benefits, especially in the context of proof production and proof theory.

Since it is not hard to encode ground sequent calculus rules into any proof
assistant such as Coq, Isabelle or Dedukti [4], if we are able to reconstruct a
ground sequent derivation from a free-variable Skolemized tableaux procedure,
we will get (almost) free external verification tools. On the tableaux side, a
syntactic soundness proof highlights where and how non-elementary speedups
are achieved from the use of efficient δ-rules. Lastly, our long-term goal is to
derive cut elimination theorems from tableaux completeness proofs, in extensions
of first-order logic, and this requires syntactic, cut-free, soundness proofs.

2 Free-Variable Tableaux

The language is usual first-order logic with predicate and function symbols. Sets
and multisets of formulas are denoted by capital greek letters (Γ , ∆), while
formulas are denoted by upper case letters A,B,C,D. We use the lower case
letters f, g to denote function symbols and a, b, c, d for constants. Variables are
denoted as x, y, z. We also use indexes or quotes when we need more symbols.

We present tableaux as a refutation calculus with attached constraints via
a global constraint store. This global store represents the necessary unification
steps to be performed and satisfied in order to close the tableau. A constrained
tableau is a pair T ·C where T is a tableau and C a set of unification constraints.

A branch can be closed when it carries two opposite unifiable formulas.
Unifiable here means that the global store does not become inconsistent when
adding the new unification constraints. A tableau is itself said closed when all its
branches can be closed at once. In this case, all closing constraints are unifiable.

This means that closing a first-order tableau can be seen as providing a unifier
that simultaneously satisfies all the global constraints and the closing constraints
of the open branches, or, equivalently, that does not induce any new constraint
on the latter branches. The constraint store keeps the minimal requirements for
such a unifier: they come from the early closure of some branches, discussed
before. Of course, if this is done carelessly, we can come to a dead-end.

We see constraints as a degree of liberty for tableaux. Ultimately, we just can
decide not to generate constraints at all, until a global unifier can be found. The
soundness proof of Section 4 promotes this point of view: it assumes a unifier
and no constraints.

The rules, presented in Figure 1 where the constraints are omitted if they
are unchanged, are an extension of usual non-destructive free-variable tableaux
calculi. Non-destructivity is not strictly needed neither for soundness nor for
completeness, but it eases some developments.

Tableaux rules are usually divided into 4 sets: 2 sets decompose logical con-
nectives (α, β), two act on quantifiers (δ, γ). We need only add the closure rule
(�). If ∧,∨,⇒,¬,∀,∃ are allowed, we have the following groups:

α A ∧B,¬(A ∨B),¬(A⇒ B),¬¬A
β A ∨B,A⇒ B,¬(A ∧B)
δ ∃x A,¬(∀x A)
γ ∀x A,¬(∃x A)

The decomposition of formulas happens as follows: the tableaux method
matches the active formula with one of the above categories, then applies the
corresponding rule to it. Negated formulas are actually handled in two steps: the
negation is pushed to the direct subformulas, transforming the active connective
by De Morgan laws, then the decomposition of the connective is applied.

In pure automated deduction mode, it is enough to keep only the current set
of open branches, since the rules apply only on them. This is no more the case if
we are interested in exporting the proof in other formats [5]. Moreover, keeping
track of previous steps can help us during proof search.

For proof-theoretic purposes, it is convenient to record all the steps of the
proof and to consider a tableau derivation as a tree rooted at the original multiset
of formulas; tableau branches are nodes, internal if they already have been ap-
plied some rule and external (leaves) otherwise; the leaves that are not closed, are
open, and they constitute the tableau properly speaking. Tableau rules primarily
operate on those leaves, extending one of them at a time: rules are recorded as
labels of inner nodes. Trees themselves enjoy a notion of branch, that we replace,
to prevent confusion, with tableaux branches, by the word path.

Due to the non-destructive nature of the rules, the formulas on a path are
collected at the leaves. Paths, as well as leaves/branches, will be identified as
usual with trees, with sequences of 0 and 1. b.0 is the left child of a path b, (or
the unique child if there is no branching), and b.1 is its right child.

α(A,B)

A,B
α

β(A,B)

A | B
β

γ(x,A)

A(x := X)
γ

X fresh free variable

δ(x,A)

A[x:=sko(args)]
δ

A,¬A · C
� · (C ∪ {A ≈E A})

closure (�) Constraints (C) are omitted in α,
β, γ, δ.

Fig. 1: Tableau expansion and closure rules.

α-rules and β-rules correspond to the standard ones as found in Smullyan’s
textbook [16]. They all include negated formulas, as ¬ is a primitive connective,
and not an operator transforming formulas into negation normal forms.

Free variables are used in γ-rules as placeholders waiting some satisfying term
instantiation, usually given by closure. This has a direct effect on the treatment
of existential quantifiers as we now must use Skolemization to get a suitable
sound witness.

The δ-rule shown is generic and produces a fresh Skolem symbol on-the-fly.
This function symbol, here named sko, receives the free variables in A as argu-

ments (args). The term is therefore guaranteed to be fresh. We use a standard
inner Skolemization [14]: the arguments of the Skolem symbol are the free vari-
ables actually occurring in the Skolemized formula A. Inner Skolemization is
more efficient than outer Skolemization in the sense that it uses only relevant
(i.e. fewer) elements as arguments. Such on-the-fly Skolemization can also be

replaced by a pre-inner-Skolemization of formulas (this is the δ+
+

rule of [2]),
which would be even more efficient on some problems. We chose not to do so
because we intend to extend this work to Deduction modulo [9], which does not
behaves well with pre-Skolemization, unless we switch to polarized Deduction
modulo [8].

Finally, we also have chosen inner Skolemization over other forms of strong
quantifier treatments [6, 12][7] because it adds less noise (through technical dif-
ficulties) to the syntactic soundness proof of Section 4.

All in all, inner Skolemization is a good tradeoff between efficiency and sim-
plicity. It allows us to expose the techniques that allow us to show syntactic
soundness, with the right degree of difficulty.

Let us prove Smullyan’s drinker problem, ∃x(D(x) ⇒ ∀yD(y)), where D
is a unary predicate. As usual with tableaux, we actually refute the negation
¬(∃x(D(x)⇒ ∀yD(y))). The full derivation is shown in Figure 2.

¬(∃x(D(x)⇒ ∀yD(y)))
γ

¬(∃x(D(x)⇒ ∀yD(y))),¬(D(X)⇒ ∀yD(y))
α

¬(∃x(D(x)⇒ ∀yD(y))),¬(D(X)⇒ ∀yD(y)), D(X),¬∀yD(y)
δ¬(∃x(D(x)⇒ ∀yD(y))),¬(D(X)⇒ ∀yD(y)), D(X),¬∀yD(y),¬D(c)
�

� {X ≈ c}

Fig. 2: A proof of the drinker principle

3 Sequent Calculus

This section presents the sequent calculus which will be used for the syntactic
soundness proof for tableaux. This version is as close as possible to tableaux and
equivalent to more usual sequent calculi. The important difference with tableaux
is that, as most sequent calculi3, we do not allow free variables nor Skolemization,
which will be the major concern of Section 4).

GS34 (for Gentzen-Schütte) is a one-sided variant of Gentzen’s original LK
sequent calculus. Contraction is implicit, built into each inference rule, both to
stick to tableaux rules, and as a convenience for the proofs we will develop. In
contrast, the weakening rule is explicit. The cut rule is absent, as we intend to go

3 one exception is Waaler and Antonsen’s free-variable sequent calculus[17]
4 We follow Troelstra and Schwichtenberg’s classification and naming [15]

without it in the soundness proof. To underline the similarities with tableaux, we
split the presentation of the rules along the α, β, γ, δ (Figure 3) classification for
tableaux, except that we explicitly mention every case, which is more customary
in sequent calculi.

α group

∆,¬¬A,A ` ¬¬
∆,¬¬A `

∆,¬¬A,A ` ¬¬
∆,¬¬A `

∆,¬(A⇒ B), A,¬B `
¬ ⇒

∆,¬(A⇒ B) `

∆,A ∧B,A,B `
∧

∆,A ∧B `

∆,¬(A ∨B),¬A,¬B `
¬∨

∆,¬(A ∨B) `

axiom rule

ax
∆,A,¬A `

β group

∆,A⇒ B,¬A `
∆,A⇒ B,B `

⇒
∆,A⇒ B `

∆,¬(A ∧B),¬A,`
∆,¬(A ∧B),¬B,`

¬∧
∆,¬(A ∧B) `

∆,A ∨B,A `
∆,A ∨B,B `

∨
∆,A ∨B `

structural group

∆ ` w
∆,A `

δ group

∆,∃x A(x), A(c) `
∃

∆,∃x A(x) `

∆,¬∀x A(x),¬A(c) `
¬∀

∆,¬∀x A(x) `

where c is a fresh constant

γ group

∆,¬∃x A(x),¬A(t) `
¬∃

∆,¬∃x A(x) `

∆,∀x A(x), A(t) `
∀

∆,∀x A(x) `

where t is any term

Fig. 3: GS3

4 Soundness Proof

This section shows the following property:

Theorem 1 (Soundness of tableaux w.r.t. GS3). Let Γ be a set of formulas.
If there is a closed tableau rooted at Γ , with unifier σ, then the sequent σΓ `
has a GS3 proof.

We require a closed tableau proof, that is to say an entire tree (see Section 2)
where all branches are closed and the constraints from the last generated con-
straint store (the last rule is closure) are satisfiable at once by some unifier σ.
It also satisfies any intermediate constraint from this tableau proof as they all
appear in the final store.

The unifier σ can assign any term, including a free variable, to a given free
variable. To make it ground, we extend it to σ′ = κ ◦ σ, where κ maps the free
variables from the range of σ to fresh constants. The unifier σ′ subsumes σ

Given a closed tableau proof T rooted at Γ , with ground unifier σ, we call
abusively the pair (T , σ) a closed tableau, which is ground and without con-
straint. We refer to tableaux without unifier as strict/valid tableaux.

4.1 Origin of the Problem

The näıve translation, that maps inductively each rule of T to the similar rule
of GS3, does not work. Let us translate this way the tableau of Figure 2.

The unifier is σ = {X := c}, and the corresponding GS3 pseudo-proof is the
tableau proof simply turned upside down and instantiated, as shown in Figure 4
where bookkeeping contractions have been eluded.

ax
¬(∃x(D(x)⇒ ∀yD(y))),¬(D(c)⇒ ∀yD(y)), D(c),¬∀yD(y),¬D(c) `

¬∀¬(∃x(D(x)⇒ ∀yD(y))),¬(D(c)⇒ ∀yD(y)), D(c),¬∀yD(y) `
¬ ⇒

¬(∃x(D(x)⇒ ∀yD(y))),¬(D(c)⇒ ∀yD(y)) `
¬∃¬(∃x(D(x)⇒ ∀yD(y))) `

Fig. 4: Pseudo sequent derivation for the tableau of Figure 2

The problem in the derivation of Figure 4 is that the ¬∀ rule (the counterpart
of the δ rule) requires a fresh constant, and it cannot be c, as it was previously
introduced by the first ¬∃ rule. In the tableau proof of Figure 2, freshness is
innocently masked by the unknown value of X.

The remedy, to show the drinker principle in GS3, is well-known: contract
the goal formula, and use once to get a fresh constant c with the ¬∀ rule, and
in a second time to generate the same constant c with the ¬∃ rule.

This is a one-shot particular solution, and we provide below a general jpro-
cedure to treat the problem: given any tableau proof, with a relaxed notion of
freshness, we force the sequent rules to apply in the right order.

4.2 Insight into the translation

Lax freshness is sound for two reasons. First, free variable tableaux are seman-
tically sound. Second, we syntactically know it is sound through the unifier σ.
The unifiability of the constraints ensure that there is eventually no loop. We
are in a way guaranteed that there is a right order for the instantiations.

Practice is more subtle. Indeed, any (still näıve) attempt to order all quan-
tifiers of the tableau by a combination of subterm order and precedence in for-
mula5, topologically sort them to unravel the tableau and get the right order for
rules, fails. There is a theoretical argument: free-variable tableaux with on-the-
fly Skolemization can be non-elementarily shorter [13, 1, 6] than sequent proofs,
namely because of the relaxed notion of freshness, post-checked at unification
time. This appears clearly in Figure 4: the two precedence constraints on the ¬∀
and ¬∃ rules are conflicting.

5 quantifier QX would have priority over QY if it is higher in the same formula or if
the instance (by σ) of the metavariable/term introduced by QY contains the Skolem
term introduced by QX .

The proofs of the drinker principle gives us a hint: duplication. This removes
the above theoretical barrier, as the sequent proof now grows much bigger than
the tableau proof. This also means we will make the translated sequent grow
from the root to its axioms, ensuring at every step soundness (the – open –
sequent proof is GS3-valid) and progress (one tableau rule has been considered).

Let us translate the example to have a preview of what we will do. For the
sake of readability, and in analogy with the next sections, we let Γ be the root
formula ¬(∃x(D(x) ⇒ ∀yD(y))). Translating the first three rules is easy (see
Figure 5a). Next, we face the problem discussed above and solve it in four steps:

1. Save the current incomplete proof-tree.
2. Clean the targeted open leaves: remove all formulas but Γ and the δ formula

of interest.
3. Apply the now legal δ rule, and clean more (Figure 5b).
4. Graft the saved proof-tree 1 to the targeted open leaves (Figure 5c). In fact,

make the grafts of step 3 grow following the saved proof-tree. Keep the
Skolem formula as an additional side formula on the relevant branches (in
our example: on the single grafted branch).

After those steps, we are able to translate further the tableau, in our case, the
sole axiom rule.

Grafting a proof-tree with more than one open leaf multiplies the number of
leaves of the tree. Translating a single tableau rule into several sequent rules is
unavoidable, and both height and width grow. So, in general, a single tableau
branch (resp. rule) corresponds to several sequent branches (resp. rules). The
general mechanism is discussed in the next sections.

4.3 Initial Definitions and Lemmas

We have already mentioned that the GS3 proof is not built by structural induc-
tion. We thus need some additional definitions.

Definition 1 (Initial part). Let T be a closed strict tableau rooted at Γ . An
open tableau T0 is said to be an initial part of T iff it is rooted at Γ and:

– either T0 is a leaf:
• if the root of T is also a leaf (closed by hypothesis), T0 is a closed leaf;
• if the root of T is an internal node, T0 is an open leaf.

– or the rule applied at the root of T0 is exactly the same as the rule applied
at the root of T and the sub-tableau(x) of T0 are initial parts of the corre-
sponding sub-tableau(x) of T .

We use the same terminology for GS3 proof-trees.

Alternatively, if we consider a sequence of tableaux used to derive tableau T
from its root Γ , then T0 is an initial part of it if, and only if, there exists at least
one such sequence where T0 appears.

Γ,¬(D(c)⇒ ∀yD(y)), D(c),¬∀yD(y) `
¬ ⇒

Γ,¬(D(c)⇒ ∀yD(y)) `
¬∃

Γ `
(a) First 3 steps of the translation of Figure 2

Γ,¬D(c) `
w

Γ,¬∀yD(y),¬D(c) `
¬∀

Γ,¬∀yD(y) `
w

Γ,¬(D(c)⇒ ∀yD(y)), D(c),¬∀yD(y) `
¬ ⇒

Γ,¬(D(c)⇒ ∀yD(y)) `
¬∃

Γ `
(b) Cleaning and applying the δ-rule

Γ,¬D(c),¬(D(c)⇒ ∀yD(y)), D(c),¬∀yD(y) `
¬ ⇒

Γ,¬D(c),¬(D(c)⇒ ∀yD(y)) `
¬∃

Γ,¬D(c) `
w

Γ,¬∀yD(y), D(c) `
¬∀

Γ,¬∀yD(y) `
w

Γ,¬(D(c)⇒ ∀yD(y)), D(c),¬∀yD(y) `
¬ ⇒

Γ,¬(D(c)⇒ ∀yD(y)) `
¬∃

Γ `
(c) Graft and grow

Fig. 5: Solving the drinker problem

An initial part T0 of T shares the same root, nodes, sequents, branches,
constraints, paths and rules as T up to the leaves of T0. T0 can also be thought
of a labeling of the nodes of T as “seen” and “unseen”. For instance, the tableau
of Figure 5a is an initial part of the tableau of Figure 2.

The following lemma shows that subsequent definitions are well-formed:

Lemma 1. Let T0 be an initial part of a closed strict tableau T , b an open leaf
of T0, and r the rule applied to the corresponding branch b on T . The extension
of T0 by the application of r on b is also an initial part of T .

Our goal is to incrementally build a GS3 proof-tree by following the rules
of T , given a closed (strict) tableau T with a ground unifier σ. In a sense, we
replay the steps that were used to build T , get an initial part T0, and maintain
the invariant that the GS3 proof-tree maps to T0. Note again that a single open-
branch of T0 serves to extend several branches of the GS3 proof-tree at the same
time. We first define the mapping:

Definition 2 (Partial Link). Let π0 be an open GS3 proof-tree rooted at Γ
and let also s1, · · · , sn be its open leaves, containing respectively the sequents
Γs1 `, · · · , Γsn `.

Let T0 be an open strict tableau with open leaves b1, · · · , bm, that respectively
containing the set of formulas ∆b1 , · · · , ∆bm . Let σ be a unifier for T0.

π0 is partially linked to (T0, σ) if, and only if, there exists a partial mapping
µ : {s1, · · · , sn} 7→ {b1, · · · , bm}, such that σ∆µ(s) ⊆ Γs, when µ(s) is defined.

We say that the leaf s (of π0) is linked to the leaf µ(s) (of T0), and that the
formulas of Γs\σ∆µ(s) are the side formulas of s.

This notion is readily extended to describe a partial link to a GS3 proof-tree.
In this case, there is no need for an unifier.

Notice that, when µ(si) = µ(sj), nothing prevents the side formulas of si
and sj to be different. Γs is only required to contain the instances by σ of the
formulas of ∆µ(s).

Notice also that µ is not required to be injective or surjective. Non-injectivity
accounts for the fact that a single tableau branch is reflected at more than one
place on a GS3 proof-tree. Non-surjectivity of the mapping amounts for the
fact that some branches of the original proof may not be reflected in π, in
particular when π is bilinked (Definition 4 below). One can check that, in the
proof of Theorem 3, the link to θ is not surjective, but the link to π is maintained
surjective.

We need the two following refinements over partial links:

Definition 3 (Link). Let Γ be a set of formula. Let π0 be a proof-tree linked
to a tableau (T0, σ), and assume that:

– π0 and T0 are both rooted at Γ ,
– and the mapping µ is total.

Then π0 is said to be linked to (T0, σ).

Definition 4 (Bilink). We say that π, with open leaves {s1, · · · , sn} is bilinked
to two GS3 proof-trees θ0 and θ1 if, and only if, it is partially linked to θ0 and to
θ1, and the respective mappings µ0 and µ1 verify the disjointness and covering
conditions:

– Dom(µ0) ∩ Dom(µ1) = ∅
– Dom(µ0) ∪ Dom(µ1) = {s1, · · · , sn}

Given a link µ between a GS3 open proof-tree π and an initial part of T , the
intention is to apply to all the open leaves s ∈ µ−1(bj), the same rule as on bj .
This is formalized in the next definition:

Definition 5 (Parallel extension). Let π0 be a GS3 proof-tree, linked to (T0, σ)
with mapping µ0, where T0 is an initial part of a closed strict tableau T with uni-
fier σ. Let T1 be the extension of T0 along T on some open leaf b with rule r .

The open proof-tree π1 of GS3 is called a parallel extension of π0 along T1 (by
r) if it can be linked to (T1, σ) such that the mapping µ1 is equal to µ0, except
on the newly created leaves of π1, in which case the new leaves are mapped to
the corresponding premise leaf(s) of r in T1.

By abuse of language, this process is called the parallel extension of π along T .
The equivalent notion can be defined for two (partially) linked GS3 proofs-terms
and we will use the same terminology.

In practice, π1 is built out of π0 by adding the inference rule r on the suitable
leaves. Since this consumes exactly one rule of T , the process of parallel extension
eventually stops and generates a GS3 proof-tree. This proof-tree is a sequent
proof: all its leaves are closed because they are totally linked to leave themselves
closed. The main question is whether this is always possible. The example in
Section 4.2 shows that it is not so simple.

4.4 Parallel Extensions

Now we are equipped to describe our algorithm and prove the following theorem:

Theorem 2. Given any closed tableau T with unifier σ, any initial part T0, and
any GS3 proof-tree π0 linked to (T0, σ), it is possible to parallely extend π0 along
T .

Proof. Let b be an open leaf of T0, and r the rule applied to it in T . Let T1 be
the extension of T0 along T on b with rule r . Consider the different cases for r :

– r is an α-rule on a formula A: on each si ∈ µ−10 (b), σA is present on si by
definition of linkedness, we apply r on it. We link this new proof-tree exactly
as the old one, and let µ1 be defined as:{

µ1(sj) = µ9(sj) for anysj /∈ µ−10 (b)
µ1(sn.0) = µ0(b).0 for anysi ∈ µ−10 (b)

Since both the tableau and the GS3 rules are non-destructive, the invariant
σ∆µ(s) ⊆ Γs is maintained.

– r is a γ-rule: we do exactly the same.
– r is a β-rule. We act similarly, except that we have two new open leaves in
T1, b.0 and b.1. As well, all the si open leaves of π0 split into si.0 and si.1.
The new linking function µ1 is straightforward:

µ1(sj) = µ0(sj) for anysj /∈ µ−10 (b)
µ1(sn.0) = µ0(b).0 for anysi ∈ µ−10 (b)
µ1(sn.1) = µ0(b).1 for anysi ∈ µ−10 (b)

– r is a δ-rule: this is entailed by Theorem 3 below. We postpone this case to
the end of Section 4.5.

– r is a closure rule: we apply the axiom rule on each si ∈ µ−10 (b). b is now
a closed leaf of T1, and accordingly the si are no more open. We thus need
restrict the domain of µ0: µ1 = µ0|I , where I = {sj | µ0(sj) 6= b}. ut

Notice that the choice of the leaf b is not imposed. In order to optimize the
translation, it is possible to define some heuristics to choose the branch. As well,
for better performances, the heuristics may rearrange, on each path, the order
of the rules but the theoretical barrier discussed above will still pop up at some
point. This is why we do not insist on optimization here.

4.5 Parallel δ-extensions

The possibility of a δ-extension is made possible by the following theorem:

Theorem 3 (δ-theorem). Let (T, σ) be a closed tableau. Let Γ its root for-
mulas, ∃xD(x) be a formula of it, on which a δ-rule is applied, generating the
Skolem term δ and the formula let Dδ = D(δ). We consider the instances by σ
of those term and formulas, and call them identically.

Let θ be an (open) GS3 proof-tree composed only with formulas that appear
in (T, σ) (as instances by σ of formula of T), rooted at Γ and such that each leaf
contains at least Γ .

Assume that a set of leaves, denoted B, contains ∃xD(x). Let π0 be an initial
part of θ.

Then it is possible to build a proof-tree π1, rooted at Γ , that is bilinked to π0
and θ with mappings µπ0 and µθ respectively, such that:

– There is no s1 such that µθ(s1) ∈ B, i.e. the leaves of θ in B are “unreach-
able”.

– for any leaf s1, such that µπ0
(s1) is a prefix of a path b ∈ B (for short:

µπ0(s1) is a prefix of B), Dδ appears on this node as a side formula.
– All other leaves s1 of π1 have the same formulas than µπ0(s1), or than µθ(s1).

Proof. We build π1 by induction on the pair (size of Skolem term δ, size of π0).
First of all, if π0 has no rule, there is a tension between the imposed formulas

at the root of π0, Γ , and the leaves of π1 linked to a prefix of B, that contain (at
least) Γ,Dδ. That prevents π1 to be π0 itself. Indeed, we start with a manipulated
clone of θ and we graft Γ,Dδ at the leaves B of θ, as follows:

– We let π1 be θ where, to all the leaves b ∈ B we have weakened to get Γ,∃xD,
applied the δ-rule to generate Dδ, and weakened once again on ∃xD. There is
no freshness problem, since Γ does not contain any Skolem term or symbol.
π1 has the same leaves as θ, except for a new set of leaves, which we call
B†. It is composed of the b† = b.0kb , where b ∈ B and kb is the necessary
number of 0 introduced by the δ-rule and the weakenings. The formulas of
the leaves in B† are exactly Γ,Dδ.

– We define the bilink in the following way:
• µθ is the partial link from π1 to θ defined on all the leaves b of π1 that

are not member of B†. It is merely the identity:

µθ(b) = b if b /∈ B†

• µπ0
is the partial link from π1 to π0 defined on B†. It is the constant 0

function, since π1 has no rule:

µπ0
(b†) = 0 if b† ∈ B†

Otherwise, π1 has at least one rule. Then, we consider any initial part π0
0

of π0, that has one rule less and is still an initial part of θ. Let us call π1
0 the

proof-tree produced by the induction hypothesis, with mapping µ0
π0

(resp. µ0
θ)

from π1
0 to π0

0 (resp. θ).
To go from π0

0 to π0, a rule r is applied on leaf b. We have the following cases:

– b is not a prefix of B. we simply copy the rule on each branch s10 of π1
0 linked

to b, i.e. such that µ0
π0

(s10) = b. The bilink is formed with an unchanged µθ.
µπ0 is straightforwardly defined from µ0

π0
as in the proof of Theorem 2.

– b is a prefix of B and r is an α-,β-,γ-rule: we simply copy the rule on each
branch s10 of π1

0 linked to b, let µθ unchanged and let µπ0 be defined from
µ0
π0

as in the proof of Theorem 2.
In the case of a branching β-rule, we weaken on D on s10.0 (resp. on s10.1), if
b.0 (resp. b.1) is no more a prefix of B. At least one of b.0 and b.1 is a prefix
of B.

– b is a prefix of B, r is a δ-rule and either the Skolem term ε is not comparable
to δ for the subterm relation, or it contains δ as a subterm: in this case, we
copy the rule as above, since the Skolem term is still fresh.

– b is a prefix of B, r is a δ-rule and the Skolem term ε is exactly δ. Since only
formulas of T, σ appear, the Skolem formula must be exactly Dδ, otherwise
the term would be different. By induction hypothesis on π1

0 and µ0
π0

, b already
contains Dδ as a side formula. π1

0 has already the desired form and we let
π1 = π1

0 , µπ0
= µ0

π0
and µθ = µ0

θ.
– b is a prefix of B, r is a δ-rule and the Skolem term ε is a strict subterm of δ.

Let Eε be the Skolem formula and ∃yE the quantified formula. We cannot
apply the δ-rule on ∃yE because ε is not fresh. As well, we cannot recover
freshness by weakening on Dδ, since this loses the invariant.
But, since ε is a strict subterm of δ, we can apply the induction hypothesis

on π1
0 , on ε with the formula ∃yE, the set of leaves Bb = µ0

π0

(−1)
(b) and with

π1
0 as an initial part of itself.

We get a proof-tree, that we call (on purpose) π1, along with a bilink µ1, µ2

to π1
0 and π1

0 . Let s be a branch of π1. µ2(s) /∈ Bb , because “no µ2(s) can be
a prefix of Bb”, and as we chose π1

0 as an initial part of itself, being a prefix
means being equal. Therefore, if s is linked to a prefix of Bb , we must have
µ1(s) ∈ Bb and s contains the formulas:

• Eε by the very hypothesis of Theorem 3
• all the formulas of the corresponding branch of Bb by the definition of a

partial link, that is to say the formulas of the branch b, plus the formula
Dδ since b is a prefix of B.

Therefore all those branches contain the formulas of the branch b.0 of π1,
plus the side formula Dδ.
We now proceed to the definition of the bilink of π1 with π0 and θ:

• µπ0
(s) = b.0 if µ1(s) is defined and belongs to Bb , otherwise said if

µ0
π0

(µ1(s)) = b.
• µπ0

(s) = µ0
π0

([µ1 t µ2](s)) if µπ0
is defined on [µ1 t µ2](s) and different

of b. The merge t is well-defined because of the bilink µ1, µ2 is disjoint.
• µθ(s) = µ0

θ([µ
1 t µ2](s)) otherwise, which is defined exactly when the

two other cases fail.

We indeed compose the partial link functions, except when it comes to the
branch b. It is easy to see that it is a bilink (Definition 4). Moreover, let us
check the conditions of the theorem:

• no leaf s such that µθ(s) is defined is a prefix of B because this property
holds for µ0

θ. The leaves s linked to a prefix of B are either such that
µπ0(s) = b.0 or such that µπ0(s) = µ0

π0
([µ1 t µ2](s)).

• the leaves linked to a prefix of B have Dδ, and only Dδ, as a side formula.
In the case µπ0(s) = µ0

π0
([µ1 tµ2](s)) , this is true by hypothesis on µ0

π0

(it adds exactly Dδ as a side formula) and on µ1/µ2, that preserve the
formulas, since µ1(s) does not belongs to/is not a prefix of (which is the
same here) Bb .
In the case µπ0

(s) = b.0, this property has been checked above.
• all other leaves have the same formulas as the branch they are linked to.

This is an inductive property of the partial links µ0
π0

, µ0
θ, µ

1 and µ2.

As a remark, we can see that, if the partial links µ1 and µ0
π0

are surjective,
then the partial link µπ0 is also surjective. ut

We conjecture that we can restrict ourselves, in Theorem 3, to the case of
a single rule r that applies on all branches of π0 that are a prefix of B. In this
case, we can apply r on all the leaves that are mapped to a prefix of B at once,
that can save us to investigate them one by one.

Notice that considering a set of leaves B is essential to be able to apply
induction hypothesis twice. This need comes from the fact that we duplicate
parts of the proof, and formulas and rules are duplicated: a single tableau rule
can be applied several times, in parallel, in the corresponding sequent proof.

We are now in position to show the remaining case of Theorem 2 dealing
with r when it is a δ-rule : let δ be the Skolem term, and Dδ the Skolem formula,
after instantiation by σ. We apply Theorem 3 to θ = π0, with B = µ−10 (b), and
π0 as an initial part of θ. Due to the non-destructive nature of GS3, Γ appears
on each leaf of θ. We get a proof-tree π1 bilinked to θ/π0, that is to say linked to
π0 by µ1 = µθ t µ0, where all the branches linked to B (equivalently such that
µ0(µ1(s)) = b) contain Dδ as a side formula. µ1 is a link because of the covering
condition in Definition 4.

Therefore, we have a link µ from π1 to (T1, σ), defined by µ(s) = µ0(µ1(s))
if µ0(µ1(s)) 6= b, and µ(s) = b.0. The parallel δ-extension has succeeded as well.

ut
Lastly, to show Theorem 1, we need to follow strictly GS3 rules, that is

to say replace the Skolem terms by fresh constants on the proof-tree obtained
by iterating Theorem 2. Since Skolem term are now fresh, this boils down to
replacing each Skolem term by a different constant. ut

5 Related work and Conclusion

The effect of using optimized versions of Skolemization has been well studied for
tableaux methods on classical logic.

The increased efficiency resulting from the use of optimized Skolemization
in tableaux methods to handle existential quantifiers has seen a nice body of
work. Baaz and Fermüller [1] show how a more efficient δ?-rule, which offers

non-elementary speedups in proofs. Even more efficient δ-rules, in terms of po-
tential speedups, are presented by Cantone and Nicolosi Asmundo [6] with the
δ?

?

variant and by Giese and Ahrendt [12] with the Hilbert’s symbol based δε

rule. All these enhanced Skolemization procedures are instances of Cantone’s and
Nicolosi Asmundo’s theoretical framework[7]. These demonstrated speedups can
be paralleled to the exponential explosion one might experience when syntacti-
cally reconstructing tableaux proofs as ground sequent derivations.

The technique we use in this paper to show a syntactic soundness proof for
first-order free variable classical tableaux with Skolemization consists in linking
proof-trees to synchronize their simultaneous expansions. We are hopeful this
can be extended to handle other δ-variants. The need for grafting various sub-
trees during the construction of sequent proof, to take into account the relative
freshness of the Skolem terms, and the consequent growth in width and breadth
confirm that, in presence of free variables and Skolemization, tableaux proofs are
necessarily shorter in a non-elementary way [1]. This process can indeed make
the size of the sequent proof explodes. Our proof also confirms that semantic
arguments are shorter and often clearer, even though syntactic transformations
are needed in the context of proof verification.

It has to be noticed that (pre-) outer Skolemization or Skolemization after a
prenex normal form transformation would ease a lot the soundness proof. Since
tableaux do not bear any δ rule, we could translate directly the proof in GS3,
and apply Skolem theorem (if ∀xA(f(x)) ` then ∀x∃yA(y) `). In particular, the
proof-tree does not grow, as there is no speedup in tableaux.

Our result is not specific to sequent calculus, it also readily applies to turn
free-variable tableaux with Skolemization into tableaux without free variables,
and should generalize gently to other logics. In particular, our next goal is to lift
this work to the context of deduction modulo [9] , to de-Skolemize proofs, and
obtain proofs checkable by tools such as Coq or Dedukti [4].

The advantage of a syntactic transformation that avoids to appeal to the
cut rule, as our, is that it paves the way for a cut admissibility theorem. Indeed,
from a sequent calculus proof with cuts, we would first get universal validity by
(sequent) soundness, then derivability of a tableau proof by completeness, and
next, a cut-free sequent-calculus proof by our method. Cut elimination is known
since the early days of logic for GS3, this is why switching to other calculi is
interesting. In particular, in deduction modulo, cut elimination depends on the
chosen rewrite system.

We could also automate the transformation, by writing a program, eventually
certifying it in Coq, for instance through a certified programming environment
as FoCaLiZe [10].

References

[1] Baaz, M., Fermüller, C.G.: Non-elementary Speedups between Different Versions
of Tableaux. In: Baumgartner, P., Hähnle, R., Posegga, J. (eds.) TABLEAUX’95.
LNCS (LNAI), vol. 918, pp. 217–230. Springer, St.˜Goar (1995)

[2] Beckert, B., Hähnle, R., Schmitt, P.H.: The Even More Liberalized delta-Rule
in Free Variable Semantic Tableaux. In: Proceedings of the Third Kurt Gödel
Colloquium on Computational Logic and Proof Theory. pp. 108–119. KGC ’93,
Springer-Verlag, London, UK (1993)

[3] Beth, E.W.: Semantic entailment and formal derivability. Mededelingen van de
Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Letterkunde
18(13), 309–42 (1955)

[4] Boespflug, M., Carbonneaux, Q., Hermant, O.: The λΠ-calculus modulo as a
universal proof language. vol. 878, pp. 28–43. CEUR-WS.org (2012), ceur-ws.
org/Vol-878/paper2.pdf

[5] Bonichon, R., Delahaye, D., Doligez, D.: Zenon : An Extensible Automated The-
orem Prover Producing Checkable Proofs. In: Dershowitz, N., Voronkov, A. (eds.)
LPAR. LNCS, vol. 4790, pp. 151–165. Springer (2007)

[6] Cantone, D., Nicolosi Asmundo, M.: A Further and Effective Liberalization of the
delta-Rule in Free Variable Semantic Tableaux. In: Selected Papers from Auto-
mated Deduction in Classical and Non-Classical Logics. pp. 109–125. Springer-
Verlag, London, UK, UK (2000)

[7] Cantone, D., Nicolosi Asmundo, M.: A Sound Framework for delta-Rule Variants
in Free-Variable Semantic Tableaux. J. Autom. Reasoning 38(1-3), 31–56 (2007)

[8] Dowek, G.: Polarized resolution modulo. In: Calude, C.S., Sassone, V. (eds.) IFIP
TCS. IFIP, vol. 323, pp. 182–196. Springer (2010)

[9] Dowek, G., Hardin, T., Kirchner, C.: Theorem Proving Modulo. J. Autom. Rea-
soning 31(1), 33–72 (2003)

[10] Dubois, C., Hardin, T., Donzeau-Gouge, V.: Building certified components within
focal. In: Loidl, H.W. (ed.) Trends in Functional Programming. Trends in Func-
tional Programming, vol. 5, pp. 33–48. Intellect (2004)

[11] Fitting, M.: First Order Logic and Automated Theorem Proving. Springer-Verlag,
2nd edn. (1996)

[12] Giese, M., Ahrendt, W.: Hilbert’s ε-Terms in Automated Theorem Proving. In:
TABLEAUX’99. LNCS, vol. 1617, pp. 171–185. Springer-Verlag, London, UK
(1999)

[13] Hähnle, R., Schmitt, P.: The liberalized δ-rule in free variable semantic tableaux.
Journal of Automated Reasoning 13(2), 211–221 (1994)

[14] Nonnengart, A., Weidenbach, C.: Computing Small Clause Normal Forms. In:
Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasonning, vol. 1,
chap. 6, pp. 336–367. Elsevier Science Publishers B.V. (2001)

[15] Schwichtenberg, H., Troelstra, A.S.: Basic Proof Theory. No. 43 in Cambridge
Tracts in Theoretical Computer Science, Cambridge University Press, 2nd edn.
(2000)

[16] Smullyan, R.: First-Order Logic. Springer (1968)
[17] Waaler, A., Antonsen, R.: A Free Variable Sequent Calculus with Uniform Vari-

able Splitting. In: Mayer, M.C., Pirri, F. (eds.) TABLEAUX’03. LNCS, vol. 2796,
pp. 214–229. Springer (2003)

ceur-ws.org/Vol-878/paper2.pdf
ceur-ws.org/Vol-878/paper2.pdf

	A syntactic soundness proof for free-variable tableaux with on-the-fly Skolemization

