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ABSTRACT

Pigments made of metal particles of around 10 µm or 20 µm produce sparkling effects in paints, due to the
specular reflection that occurs at this scale. Overall, the optical aspect of paints depend on the density and
distribution in space of the particles. In this work, we model the dispersion of metal particles of size up to
50 µm, visible to the eyes, in a paint layer. Making use of optical and scanning electron microscopy (SEM)
images, we estimate the dispersion of particles in terms of correlation functions. Particles tend to aggregate
into clusters, as shown by the presence of oscillations in the correlation functions. Furthermore, the volume
fraction of particles is non-uniform in space. It is highest in the middle of the layer and lowest near the surfaces
of the layer. To model this microstructure, we explore two models. The first one is a deposit model where
particles fall onto a surface. It is unable to reproduce the observed measurements. We then introduce a “stack”
model where clusters are first modeled by a 2D Poisson point process, and a bi-directional deposit model is
used to implant particles in each cluster. Good agreement is found with respect to SEM images in terms of
correlation functions and density of particles along the layer height.

Keywords: heterogeneous media, optical properties, paints, random microstructure models..

INTRODUCTION

In automotive applications, most paints consist
of multi-layered materials, where each layer has
a different purpose, ranging from anti-corrosion
to visual aspects (Streitberger, 2008). The overall
appearance of paints depends on the paint composition
but also on the spatial distribution of particles, most
often heterogeneous and multi-scale (Couka et al.,
2015). At the largest scales, where geometrical optics
apply, metal particles produce specular reflection and
sparkling effects. These effects depend on the chemical
nature of the particles, their surface roughness, but also
on the dispersion of particles and on clustering effects
(Dumazet, 2010).

The description of industrial paint layers is a
challenging problem. The separation and identification
of chemical elements in paint coatings, used to
estimate their dispersion in the material, is a complex
task (Yang et al., 2010 a;b). At the nanometric
scale, the effect of pigments on the optical properties
has been studied experimentally and compared with
effective medium theories (Cummings et al., 1984).
More recently, numerical works have been carried out
to estimate the effect of the dispersion of pigments
in a deposit model (Azzimonti et al., 2013). To
represent the material and compute its properties using
numerical means, a microstructural model is required.

In other contexts, microstructure models based
on hardcore processes have been proposed to forbid
the overlap of inclusions in the embedding medium.
The effective elasto-plastic response of particle-
reinforced composites has been studied in (Chawla
et al., 2006), making use of an optimized hardcore
procedure to generate microstructures. In (Moreaud
et al., 2012), a hardcore deposit model is proposed
to simulate a boehmite material. However, the
simulation of microstructures using hardcore models
becomes difficult when approaching the close-packing
limit (Escoda et al., 2015). To overcome this
difficulty, random walk stochastic procedures have
been developed (Altendorf and Jeulin, 2011) to
generate fibrous microstructures, as an improvement
on random sequential adsorption models (Feder,
1980). Another problem concerns the generation of
multiscale models, for which various methods have
been proposed (Paciornik et al., 2002; Jean et al.,
2011).

This work is concerned by the modeling of
microscopic metallic particles, responsible of the
sparkling effects in a paint layer, by means of 3D
random microstructures. Such virtual microstructures
are required to simulate the paint layers optical
response with a rendering engine. We first present the
material, then segment and separate particle in SEM
images. We use the segmented images to measure
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the dispersion, size, shape and orientation of particles
using various morphological tools. We introduce and
evaluate a deposit and “stack” model, we conclude on
their ability to modelize the dispersion of the metallic
particles.

METHODS

OPTICAL AND ELECTRON MICROSCOPY
IMAGES

This work focuses on a sparkling, grey-colored
industrial paint layer used in automotive applications.
The material color results from two types of pigments:
several metal oxides of unknown composition, not
larger than a few micrometers, and, at a larger scale,
aluminium metallic particles of up to 50 µm visible
to the eyes. The two types of pigments are encircled
in red and orange respectively in Fig. 1a, an optical
microscopy image representing the surface of the
layer. The image, however, does not allow one to
separate all pigments. Instead, aluminium particles are
clearly visible in SEM (scanning electron microscopy)
images (Fig. 1b). This image represents a 2D section
orthogonal to the surface layer. As shown in the two
views, the average shape of the aluminium particles is
flat and the particles are often aligned with the layer
surface.

The aim of this work is to characterize and model
the shape and dispersion of aluminium particles in
the paint layer, which produce its sparkling effects.
We disregard the oxide pigments entering the paint
composition at a smaller scale. Hereafter, we make use
of 5 non-overlapping SEM images similar to Fig. 1b to
model the aluminium particles spatial distribution.

The actual manufacturing process and exact
composition behind this industrial paint is unknown
and is therefore not modeled. Instead, we use 3D
models with a small number of parameters to mimic
the real material. The latter bear no relation with the
actual manufacturing process.

(a)

(b)

Fig. 1. Surface of the paint layer (a) (taken by optical
microscopy on a raw surface of the paint), and its slice,
orthogonal to the surface (b) (SEM image, taken in SE
mode).

SEGMENTATION AND SEPARATION OF
PARTICLES

We now segment the aluminium particles from the
background in the grey-level SEM images. We also
separate individual particles. This step is necessary for
computing statistics on particles. The black region at
the top of the image, outside of the paint layer, is first
segmented by thresholding the images. The threshold
value is chosen manually. Furthermore, the paint layer
is not exactly aligned with the borders of the SEM
images. We identify it with a parallelogram in each
image and measure its disorientation with the image
borders.

We now apply an area opening of size 20 pixels
with a square structural element to remove noise in
the image and smoothen the background (Fig. 2b).
The resulting image is segmented by an entropy-based
automatic thresholding (Otsu, 1979) (Fig. 2c).

Some of the aluminium particles have merged
because of the low contrast in the gaps located
in between two particles that are close to one
another. The watershed algorithm is used to separate
the particles. Watershed markers are obtained in
several steps. We first compute the distance function
given by successive erosions using a horizontal
structural element (Fig. 2d). The size of the structural
elements size is 3 pixels. The deepest markers are
extracted from the distance map using the H-maxima
algorithm (Schmitt and Preteux, 1986) with size
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parameter set to 35 pixels. The histogram of the
distance map is stretched for more convenience. Using
the markers, we compute the watershed partition on the
inverse of the distance map previously computed. This
leads to a slightly over-segmented image (Fig. 2e).
Only about 6 boundaries per image are not well
located. We correct them manually.

In the next sections, we use the 5 segmented
images to measure various statistics on the segmented
image χ(x,y) where χ = 1 in the particles and 0
outside. Then the measures are used to build two 3D
microstructure models for the aluminium particles.

(a)

(b)

(c)

(d)

(e)

Fig. 2. Original (a) and opened (b) images. Segmented
image (c). Distance by erosion using a horizontal
structural element (d). Result of the watershed
algorithm (e). Magnification; Resolution of the initial
image: 1280x77 pixels

Hereafter we compute the lineic fraction of
particles along the height, the correlation functions,
a distribution of size and orientations and statistics
on particles aggregates. The area fraction, extracted
from the segmented images, is about f = ⟨χ(x,y)⟩x,y =
6.5%.

FRACTION OF PARTICLES ALONG THE
HEIGHT
The lineic fraction of aluminium particles is not

usually constant along the paint layer height. To
estimate it, we first correct the angular deviation of
the paint layer in each image by a rotation. The
fraction of particles ft(y) = ⟨χ(x,y)⟩x is then obtained
by averaging over lines parallel to e2 (vertical axis).
For each sample, the latter function is represented in

Fig. 3 as a function of y/Ly, where Ly is the paint
layer height. We emphasize that this is a relative,
not an absolute, distance. The fraction of particles, of
about 17%, is highest in the middle of the paint layer,
and nearly 0 close to the outer layers. Accordingly,
the microstructure is not stationnary in the vertical
direction.

0 20 40 60 80 100
Height (%)

0

0,05

0,1

0,15

0,2

0,25

Lineic fraction (%)

Sample 1
Sample 2
Sample 3
Sample 4
Sample 5
Average

Fig. 3. Lineic fraction of particles along the paint
height, for the 5 samples (colored curves) and their
mean (black line).

CORRELATION FUNCTION
The covariance function is defined as the

probability :

C(r) = P{x ∈ H ,x+ r ∈ H }, (1)

where H is the union of the aluminium particles, and
x is a point. At large distances |r| ≫ 30 µm the two
events x ∈ H and x + r ∈ H become uncorrelated
and C(r=∞)≈C(0)2. Thus, we define the normalized
covariance, or correlation function, as:

C(r) =
C(r)−C(0)2

C(0) [1−C(0)]
. (2)

We take r = re1 (r ≥ 0), aligned with the paint layer
surface (Fig. 4) or r = re2 along the paint height
(Fig. 5). The slope at the origin for C(re1) is nearly
the same for each sample (Fig. 4). The tangent at
the origin, represented in the same figure, intersects
the r-axis at about r ≈ 12 µm. This value is the
average length of the particles along the direction e1.
The “average” here is not an average in number (of
particles), but in number of chords, i.e. it is weighted
by the particles thickness.

Along the layer height, the correlation function
C(re2) (Fig. 5) instead shows local minima that

3



COUKA E et al.: A mixed Boolean and deposit model

are typical of repulsion effects in stacks of non-
overlapping inclusions. Here, the tangent at the origin
intersects the r-axis at about 3 µm, the mean particle
thickness. As expected, this length is much smaller
than the average size along e1.

8.8 17.6 26.4 35.2 r (µm)
0

0.2

0.4

0.6

0.8

1
C(r)

Sample 1
Sample 2
Sample 3
Sample 4
Sample 5
Average

Fig. 4. Correlation function C(re1) along a direction
parallel to the paint surface: each of the 5 samples
(colors), mean (black line).
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Fig. 5. Correlation function C(re2) along a direction
transverse to the paint surface: each of the 5 samples
(colors), mean (black line).

PARTICLES SIZE AND ORIENTATION

In the following, we model aluminium particles
as cylinders and measure the distribution of lengths
along the principal direction of the particles to infere
their size distribution in 3D. We first identify two
extremal points in each particle, with maximum and
minimum coordinate along e1. The thickness of the

particle is estimated as the diameter of the inscribed
circle centered in the middle of the two extremal
points (Fig. 6). Knowing the centre of each particle,
we compute the size of the inscribed circle from the
dilation by a rhombicuboctahedron. The orientation
and length along the main direction of the particle is
estimated by simple geometrical formulae (Fig. 6).

Fig. 6. Representation of the identification of the
parameters of a segmented cylinder.

Assume first that all particles are identical
cylinders with the same basis diameter D, and
unspecified distribution of orientations. The particles
appear as elongated rectangles on a 2D section. The
cumulative distribution of the length L of the largest
side of the rectangles reads:

P1(ℓ) = P{L ≤ ℓ}= 2
π

sin−1 ℓ

D
. (3)

The cumulative distribution function for the measures
is concave whereas it is convex for the theoretical
distribution P1(ℓ), as seen in Fig. 7, which invalidates
our hypothesis. Therefore, we seek for an alternative
3D model for the particles size distribution.

We notice the existence of small particles in
optical images, and consider a uniform distribution of
diameters in the range [0;D] for the cylinders basis.
The resulting cumulative distribution is derived by
integrating on Eq. 3. We find:

P2(ℓ)=
2
π

(
tan−1 ℓ√

D2 − ℓ2
+

ℓ

D
log

D+
√

D2 − ℓ2

ℓ

)
.

(4)

Choosing D = 26.4 µm, a good agreement
is found between the distribution above and the
measures (Fig. 7).
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Fig. 7. Cumulative distribution of the lengths of
the particles along their main direction, on a 2D
section: measurements (red), theoretical distribution
for cylinders with constant (green) or uniform
diameter (blue).

The orientation of the particles, defined as the
angle between their main directions and the surface
of the paint, is extracted using previously computed
points (Fig. 6). The cumulative distribution function
(Fig. 8) as a result of a uniform distribution is linear
in the range [−3.5◦;21.5◦]. Many of the misoriented
particles are small, for which no apparent orientation
is visible. Neglecting the latter, and centering the
distribution around 0◦, we model the orientation of
the particles as a uniform distribution in the range
[−12.5◦;12.5◦].

-90º -60º -30º 0º 30º 60º 90º
Orientations

0

0,2

0,4

0,6

0,8

1
Proportion of particles

Cumulative distribution
Linear approximation

Fig. 8. Cumulative distribution of the orientation of the
particles, with respect to the paint layer surface (blue).
The latter is quasi-linear in the range [−3.5◦;21.5◦]
(red).

DISTRIBUTION OF AGGREGATES

As seen in SEM images (Fig. 1), particles tend
to aggregate in the direction transverse to the surface
of the paint layer, as “stacks”. We define stacks as
lines transverse to the surface layer and construct them
recursively. Each stack initially contains one particle.
We identify them with the line passing by the particle
center, parallel to the direction e1. We merge two
stacks if the distance between them is smaller than
the mean radius of all particles, about 7.24 µm. Once
again, the new stack is defined as a line transverse to
the surface layer. Its e1 coordinate is the average of
that of the merged stacks, weigthed by the number of
particles each of them contain. The process is stopped
when stacks can not be merged anymore. An example
of the set of stacks is shown in Fig. 9. The number
of particles per stack does not exceed 6. Its statistic
is given in Tab. 1. The mean number of particles per
stack is 1.7. Accordingly, the mean distance between
two particles in one stack is 5.85 µm.

Fig. 9. Distribution of particles along “stacks” (red
lines).

Table 1. Proportion of stacks (column 2) per number
of particles (column 1).

Particles per stack Proportion of stacks
1 56.9%
2 28.8%
3 7.84%
4 3.27%
5 1.96%
6 1.31%

RESULTS

We compare now the measures obtained on the
SEM images to the ones taken on numerical random
microstructure models. For the sake of simplicity, we
model the particles as cylinders in the rest of this work.
Their diameters follow a uniform distribution in the
range [0;D] with D = 26.4 µm. The angle between
the cylinder basis and the surface follows a uniform
distribution as well, in the range [−12.5◦;12.5◦].
Furthermore, we fix the cylinders’s aspect ratio (basis
diameter over height) to 4. This value is consistent with
the particles surface density, related to the slopes at the
origin of the correlation functions (Figs. 4 and 5).
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We emphasize that the models are general. With
minimal changes, they allow one to incorporate more
complex particle shapes. This holds in particular for
flakes which ressemble cylinders.

DEPOSIT MODEL

In this section, we model the dispersion of particles
by a 3D deposit model. This model is loosely inspired
by the actual fabrication process of the material.
Cylinders fall along direction e2 from the top of the
simulated domain to the bottom. If they encounter
another cylinder, or the bottom, they are moved in the
opposite direction, from bottom to top, by a distance
d. Their initial position is taken randomly on the top
of the domain. If a cylinder is not entirely contained in
the domain, it is rejected and a new initial position is
chosen for another cylinder.

The simulation is stopped after N failed attempts.
This number controls the density of particles at the
top of the layer. This model has two parameters:
the repulsion distance d and the number of failed
attempts N. The repulsion distance is chosen as a
random variable in the range [0;dmax] to allow contact
points between particles as seen in the SEM images
(Fig. 1). We choose dmax/2 = D/2. This value is close
to the mean distance between two particles in a stack
(5.85 µm). Furthermore, we move cylinders by steps of
2 voxels. This low value is necessary in order to make
sure that no cylinder passes through another.

We let N vary to recover the measured surface
fraction of particles, and find N = 30. A 2D section
of the model is represented in Fig. 10. The fraction
of particles along lines parallel to the surface layer
is represented in Fig. 11 with respect to the height
coordinate e2, and compared with that of SEM
images. For the deposit model, we average over
100 configurations of size 1024× 1024× 104 voxels.
Although the fraction of particles is 0 along the bottom
and top of the model as in the real material, the fraction
of particles is overall much more regular in the deposit
model than in the paint layer. In the deposit model,
the variation of the particle fraction near the surfaces
is controlled by the size of the cylinders and their
orientation. However, these two parameters are unable
to reproduce the fluctuations observed in the SEM
images.

Likewise, we compare the model in terms of
correlation function (Fig. 12). The slope at the origin
is correctly reproduced. Repulsion effects show up
as a local minimum on the correlation function for
the deposit model around a size of 5.85 µm. This
size is comparable to that of the bump observed on
the SEM images. This bump is itself an effect of

local minima in the correlation functions of individual
samples (Fig. 5). Nevertheless, repulsion effects are
much more pronounced in the deposit model than
in the paint layer. Thus, both measures investigated
here, the fraction of particles along lines parallel to
the surface and the correlation function, invalidate
our deposit model. In the next section, we consider a
different model where we directly use statistics on the
number of particles per stack.

Fig. 10. 2D section of the deposit model. White:
particles.
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Fig. 11. Mean fraction of particles ⟨χ(x,y)⟩x as a
function of the height y: SEM images (blue) and
deposit model (red).
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Fig. 12. Correlation functions over 2D sections of the
deposit model (red) and SEM images (blue).
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STACK MODEL
In the “stack” model developed hereafter, we

proceed in two steps. We first simulate stacks by a 2D
Poisson point process on the surface layer. The Poisson
point process is the most simple random point process.
The validity of this assumption will be examined later
on. Second, we associate each stack with a random
number of particles. This random number follows the
distribution in Tab. 1. Next, particles are recursively
added in the simulated domain, along each stack. Each
particle is a cylinder with shape, size and orientation
defined as in the deposit model. As in the deposit
model, the particles do not intersect. Initially, we place
the center of each cylinder at a random initial position
along the stack axis. This initial position follows a
given distribution. Cylinders are moved along the stack
axis to the top of the domain if the initial position is
closer to the top than it is from the bottom. Otherwise
we move the cylinder in the opposite direction. We
let the cylinder move as long as it intersects another
cylinder.

The distribution of initial positions strongly
influences the final density of particles along e2,
as computed in Fig. 3. We choose a triangular
distribution, symmetrical around the middle of the
stack axis. More precisely, we take:

f (y) =

 (1/δ ) [1− (1/δ )|y−L2/2|]
if |y−L2/2|< δ

0 otherwise,
(5)

where L2 is the width of the domain, i.e. the distance
between the bottom and top. The density of probability
f (y) is highest at the center y = L2/2 and decreases
linearly with y. It is zero at y = L2/2±δ . We optimize
on the parameter δ to approach the density fraction
of the SEM images, in terms of least squares. The
density fraction of the cylinders in the stack model is
narrow for small values of δ and wider for large values
(Fig. 13). We find δ = 0.05L2 as optimal value.

Two random 2D sections of the optimal stack
model are shown in Fig. 14, together with one
segmented SEM image for comparison. Overall, the
stack model is much more heterogeneous than the
deposit model. On the one hand, particles are stacked
together as clusters. On the other hand, isolated
particles appear, although no repulsion effect has been
introduced in the model. We remark that both features
are present in the SEM images. Furthermore, there
exists vertical areas joining the bottom and top which
are free of particles. This last feature is present in the
deposit model but is difficult to control. It presumably
has implications on the optical rendering. Hereafter,
we compare our model with SEM images in quantitive
ways.

The density fraction of particles along e2 is shown
in Fig. 15vand compared with measures on the SEM
images. Measures for the stack model are averaged
over 100 configurations of size 1024×1024×104. As
expected, the higher concentration of particles in the
middle is recovered in the stack model. Overall, the
density fraction of particles is very close to that of the
real material.

50 100
Height (%)

0

0,05

0,1

0,15

0,2
Lineic fraction (%)

δ=40
δ=20

Fig. 13. Effect of the parameter δ on the density
fraction of particles in the stack model (over 100
realisations): δ = 20 (blue), δ = 40 (red). Dotted
lines: probability density as defined in Eq. 5, governing
the initial position of the cylinders.

(a)

(b)

(c)

Fig. 14. Segmented SEM image (a) compared with two
2D sections orthogonal to the layer’s surface of the
stack model (b and c).
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Fig. 15. Density of particles over lines parallel to the
surface layer, as a function of the coordinate along the
height e2: stack model (red), SEM image (blue).

We now evaluate our stack model in terms
of the correlation function C(re2) along e2. The
correlation functions of individual SEM images show
fluctuations characteristic of repulsion effects (Fig. 5)
or hardcore phenomena due to contact points in 3D.
This effect disappears when averaging the correlation
functions measured over all the images of the sample
(black curve). Accordingly, we compare separately the
correlation functions of one 2D section of random
configurations of the stack model with individual SEM
images (Fig. 16), and that of averages (Fig. 17).
For the latter, we average over all SEM images and
over 10 realisations of the 3D stack model. Overall,
the correlation functions for the stack model follow
the same patterns as in SEM images. Averaging
suppresses the fluctuations observed on individual
sections for r > 5µm, for both SEM images and the
stack model. Furthermore, these fluctuations are of
the same order of magnitude in the SEM images
and 2D sections of the stack model. However, the
correlation functions of SEM images show slightly
larger differences between individual images than
was found for random configurations of the stack
model. Good agreement is found between the means
of correlation functions as well (Fig. 17): the slopes
at the origin are nearly the same, and the correlation
functions show a regime change at about 4 µm. The
small discrepancy observed at length scale larger than
4 µm is hardly representative, given the small number
of available SEM images.

Finally, we compare the distribution of lengths of
the particles along their main directions, as observed
in 2D sections of the stack model with that of SEM
images and the theoretical formula seen in Eq. 4
(Fig. 18). We compute this length by the same

methodology as described previously (see Fig. 6).
Again, the stack model reproduces the general trend
measured on the SEM images.

0 4.4 8.8 13.2 17.6 22 r (µm)
0

0.2
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0.8

1
C(r)

IEM images
Stack model

Fig. 16. Correlation function C(re2) along e2 along the
height: individual 2D sections of random realizations
of the stack model (red) and individual SEM images
(blue).
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Fig. 17. Correlation function C(re2) along e2 along
the height: mean over random realizations of the stack
model (red) and mean of SEM images (blue).
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Fig. 18. Cumulative distribution function of the length
of particles along the main directions as observed on
SEM images (blue) and stack model (red). Theoretical
formula seen in Eq. 4 shown in green.

DISCUSSION

In this work, we studied micrography images
of a paint layer. The 2D distribution of sizes and
orientations of metallic particles, measured along
sections in the material, were used to determine similar
3D parameters required by the modeling. Furthermore,
the dispersion of the particles showed strong clustering
effects and inhomogeneous dispersion along the height
of the paint layer. The particles density is highest along
the middle of the layer and zero along its borders.

A basic deposit model where particles fall along
the direction normal to the paint layer was unable
to qualitatively reproduce the observed clustering
effects and fluctuations of density over the height.
Accordingly, we modelled the particles dispersion by
a combined Poisson point process for the clusters
and a hard-core process for implanting particles in
each cluster. We use statistics on the number of
particles per cluster and density of clusters in the
paint layer, that were determined on the SEM images.
The resulting “stack model” showed good agreement
with the SEM images in terms of particles size and
correlation functions. The density of particles along
the height is also well reproduced. This stack model
is straightforward to implement and requires only one
parameter that is easy to identify. It may also take
into account particles with any distribution of shapes
and orientations, and could be adapted to other similar
paints.

ACKNOWLEDGEMENT

This study was made with the support of A.N.R.
(Agence Nationale de la Recherche) under grant 20284
(LIMA project). The authors are grateful to Philippe
Porral and Christian Perrot-Minnot (PSA, France)
for providing the material samples, and to Mona
Ben Achour, Anthony Chesnaud and Alain Thorel
(Center of Material, MINES ParisTech, PSL Research
University) for contributing images of the material.

REFERENCES

Altendorf H, Jeulin D (2011). Random walk based
stochastic modeling of 3D fiber systems. Phys Rev
E 83(4):041804.

Azzimonti DF, Willot F, Jeulin D (2013). Optical
properties of deposit models for paints: full-fields
FFT computations and representative volume
element. J Modern Opt 60(7):1-10.

Chawla N, Sidhu R, Ganesh V (2006). Three-
dimensional visualization and microstructure-
based modeling of deformation in particle-
reinforced composites. Acta Mater 54:1541-48.

Cummings KD, Garland JC, Tanner DB (1984).
Optical properties of a small-particle composite.
Phys Rev B 30(8):4170-82.

Couka E, Willot F, Jeulin D, Ben Achour M, Chesnaud
A, Thorel A (2015). Modeling of the multiscale
dispersion of nanoparticles in a hematite coating.
J Nanosci Nanotech 15(5):3515-21.

Dumazet S (2010). Modélisation de l’apparence
visuelle des matériaux - rendu physiquement
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