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Abstract  
 
As underlined in Arthur’s book “the nature of technology” we are very knowledgeable on the 
design of objects, services or technical systems, but we don’t know much on the dynamics of 
technologies. Still contemporary innovation often consists in designing techniques with 
systemic impact. They are pervasive– both invasive and perturbing-, they recompose the 
family of techniques. Can we model the impact and the design of such techniques? More 
specifically: how can one design generic technology, ie a single technology that provokes a 
complete reordering of families of techniques? 
Recent advances in design theories open new possibilities to answer these questions. In this 
paper we use C-K design theory and a matroid-based model of the set of techniques to 
propose a new model (C-K/Ma) of the dynamics of techniques, accounting for the design of 
generic technologies. We show: 
• F1: C-K/Ma offers a computational model for designing a technique with systemic impact. 
• F2: C-K/Ma accounts for some phenomena associated to generic technology design. 
• F3: C-K/Ma offers an efficient guide for the design of technologies with systemic impact, 
based on generativity and genericity criteria 

1 INTRODUCTION – DESIGNING FOR SYSTEMIC IMPACT?  

In his book “the nature of technology” (Arthur 2009), W. Brian Arthur explains that looking for “some 
common logic that would structure technology and determine its ways and progress” he couldn’t find 
it. Is this claim exaggerated in the light of the literature in the engineering design community? Not that 
much: we are very knowledgeable on the design of objects, services or technical systems, relying on 
techniques or building blocks. But what do we know on the design of these “techniques” or building 
blocks? What do we know about the dynamics of techniques?  
This question is all the more relevant when we consider some famous technologies and their impact: 
software in mechanical systems (aeronautics, mechatronics), semiconductors in a large variety of 
systems, additive processes in industrial processes, etc. All these technologies have a “systemic” 
impact, they are pervasive – both invasive and perturbing-, they recompose the family of techniques. 
Of course we know of some technologies that completely changed the technical environment of their 
time – “steam engine”, “electricity”… One even associated each industrial revolution to a handful of 
such techniques. And today this process of reorganizing the family of techniques might be more 
frequent. And it is not sure that we understand it: what is the origin of such pervasive techniques? 
How can we model their impact - rearrangements, “creative destruction”, re-ordering? Are there 
design strategies to design the techniques and their impact? And even more specifically: how can one 
design generic technology, ie a single technology that provokes a complete reordering of families of 
techniques?  
Recent advances in design theories open new possibilities to answer these questions. In this paper we 
use C-K design theory and a matroid-based model of the set of techniques to propose a new model (C-
K/Ma) of the dynamics of techniques, accounting for the design of generic technologies. We show:  
• F1:  C-K/Ma offers a computational model for designing a technique with systemic impact.  
• F2:  C-K/Ma accounts for some phenomena associated to generic technology design.  
• F3: C-K/Ma offers an efficient guide for the design of technologies with systemic impact, based 

on generativity and genericity criteria.  
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2 RESEARCH QUESTIONS – DESIGN AND INTERDEPENDENCES 

2.1 Endogenous dynamics of technologies : the design of interdependencies 
In the multiple approaches on the dynamics of technologies, we can distinguish two main trends. On 
the one hand, many works tend to consider that the dynamics of technologies is based on 
combinations. Arthur’s book provides a synthesis of these approaches (Arthur 2009). Technologies are 
building blocks that can be “combined”. Combinations are selected – for instance by markets. The 
scientific study of phenomena regularly provides new building blocks. Hence the dynamics of 
technologies is combinatorial, and it is controlled by market and science. This kind of model is used in 
many evolutionary economics works (Dosi et al. 1988; Saviotti and Metcalfe 1991). This approach is 
“exogenous”: the dynamics of technologies relies on exogenous forces – market and science.  
On the other hand, several authors, particularly in engineering design have underlined that for one 
given set of functions, there are different ways –different combinations- to address it. In particular, 
Design Structure Matrices (Ulrich and Eppinger 2008), or Modularity (Baldwin and Clark 2000), or 
Aximatic Design (Suh 2001) lead to distinguish between technological systems, although these 
systems seem equivalent from a functional point of view: systems with less interdependencies (DSM), 
with modularity (Baldwin’s Design Rules) or with independences (first axiom of Axioamtic Design) 
are “better” – they are said to be more robust, easier to realise, or they enable a large variety of 
alternatives,… In these approaches, market and science are not the only engines in the dynamics of 
technological system: the techniques themselves have their own, endogenous dynamics. 
This endogenous dynamics is related to some “structures” of the technical systems. Engineering 
design literature has already studied how, in certain cases, specific interdependences have a systemic 
impact: enabling “modularity” or “diagonal matrices” or providing a new “common core” (Gawer 
2009; Kokshagina et al. 2013a) open access to a large variety of configurations. This systemic impact 
can be characterized by criteria like generativity and genericity: the generativity of the design in a 
technical system is the variety and originality that can be designed with a given system (Le Masson 
and Weil 2013; Hatchuel et al. 2011)), whereas one single technique can be used in many different 
systems, this is the genericity of this technique  (Bresnahan and Trajtenberg 1995).  
The literature underlines the deep interaction between techniques interdependences and design. Still 
we miss a general model for the “endogenous” dynamics of technology, ie for design strategies with 
systemic impact (Q0). More precisely:  
• Q1: Can we find a model that accounts rigorously for “systemic impact”, and in particular for 

such notions as genericity, generativity, independence and dependence - can we reach a 
computational and quantitative approach of these notions?  

• Q2: How does such a model predict the emergence and possibility of strategies for the design of 
techniques with systemic impact (pervasive techniques)? In particular, how can one model the 
design of generic technologies?  

2.2 Design theory and knowledge structure 
How do design theories account for “systemic impact”?  
1- Contribution to Q1: design theories account largely for the impact of knowledge structures on the 
design of new artefacts. Historical analysis of Design Theories studied the effect of knowledge 
structure on the generative power in different cases (parametric design, systematic design) (Le Masson 
and Weil 2013). General Design Theory (Yoshikawa 1981; Reich 1995) shows how a knowledge 
structure with an Hausdorff measure (distinction criteria) warranties the design of any functional 
combination; Coupled Design Process (Braha and Reich 2003) shows that more generally, the set of 
functional combinations that can be reached depends on the “closure” of technologies, ie their 
neighbourhood of alternative technologies; in Infused Design (Shai and Reich 2004a, b), the design 
capacity depends on the rules in one domain and the laws linking different domains and it has been 
shown that innovative design comes from the existence of “holes” in the correspondence between 
domains (Shai et al. 2013); in C-K theory the generative power comes from “holes” in the knowledge 
structure (Hatchuel et al. 2013). 
This review shows that given a structure of dependences and independences in knowledge, Design 
Theories help to predict the impact of this structure on design capacities, characterized by differences 
in the capacity to create original design (generativity) and in the capacity to generate simultaneously or 
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easily a large set of solutions (genericity). However they don’t offer yet a computational and 
quantitative approach of generativity, genericity, dependence and independence.  
2- Contribution to Q2: how do design theories model the design of a new “technology” characterized 
by its systemic impact? Or: how to design a specific “knowledge structure”? Actually design theories 
tend to favour the design of artefacts, given a certain knowledge structure; they barely address the 
issue of designing a specific knowledge structure. Some insights are given in (Kokshagina et al. 
2013a), based on a study of algebraic extensions with C-K theory: the authors show that an algebraic 
extension begins with a concept and, depending on the concept, it is possible to generate fields with 
specific structures – in particular a specific field size. In the example, the authors studied the design 
process associated to a knowledge structure. It was actually made possible by one key property of 
contemporary design theories: they don’t depend on specific objects or domains – knowledge is a 
“free parameter”.  
Hence, even if design theories did not focus until now on the design of specific knowledge structures, 
design theories provide favourable frameworks to study this question. In this paper, we will use design 
theories to analyse design strategies applied on knowledge structures.  

2.3 Knowledge structures characterized (only) by independences: matroids 
What is the relevant knowledge structure to study design strategies with systemic impact? As seen 
above, we expect to characterize this knowledge structure by dependences and interdependences, such 
that generativity and genericity can be computed.  
Let’s take an example: following axiomatic design, the designer diagonalizes a matrix of technologies: 
he designs a technique to change the (interdependent) techniques into independent ones. In this case, 
interdependences in the knowledge base are characterized by linear algebra. We could also take as 
knowledge base a functional graph (with graphical relations between functions) and design a graph 
with less interdependences. We use design theory to change the dependence relations in a graph. Yet, 
in these examples, we are actually only interested by the evolution of dependence relations – be they 
based on linear algebra or graphs. Hence our analysis would be more general if applied to a knowledge 
structure that is only characterized by the interdependences between the elements – whatever the deep 
nature of the relation (graph or linear algebra). By chance mathematicians have already studied such a 
strange object in great detail: they call it matroid.  
Matroid structures were introduced by Whitney, in the 1930s (Whitney 1935), to capture abstractly the 
essence of (linear) dependence. Whitney explains his project as follows: “let C1, C2,… Cn be the 
columns of a matrix M. Any subset of these columns is either linearly independent or linearly 
dependent; the subset thus falls into two classes. These classes are not arbitrary; for instance the two 
following theorems must hold: a) any subset of an independent set is independent; b) if Np and Np+1 
are independent sets of p and p+1 columns respectively then Np together with some column of Np+1 
forms an independent set of p+1 columns […] Let us call a system obeying a) and b) a “matroid”. (p. 
509) (Whitney 1935). Hence the description with matroids will be very general (and quite poor – as 
Whitney: “The fundamental question of completely characterizing systems which represent matrices is 
left unsolved”) but it has the great advantage of only characterizing the relationship between elements 
in two modes: independence and dependence. And this remains valid for many types of relations– 
Whitney: “In place of a matrix we may equally well consider points or vectors in a Euclidean space, or 
polynomials, etc…” and more recently: graphs, matrices, groups, algebraic extensions… (for a 
pedagogical introduction to matroid, see (Neel and Neudauer 2009)).  
 
Hence this paper aims at understanding the ‘endogenous’ dynamics of technologies by applying 
design theory on a knowledge structure modelled with matroid. We expect to characterize in this 
model how design strategies depend on (and also change) dependences and independences in a 
knowledge structure and how specific design strategies increase generativity and genericity.  

3 A C-K MODEL WITH MATROIDS 

3.1 Notions of techniques, systems and independences in a matroid framework 
To build a C-K model with matroid, we introduce the matroid of known techniques as the K-space in 
C-K. Assume E, a list of known techniques (also called technological building blocks in the paper): 
T1,… Tn. We select a subset of this set of technological building blocks. If they build a working 
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system, we will say they are dependent (we could say “compatible”); if not, they are independent. We 
can easily check that these sets follow the matroid properties, hence form a matroid.  
We model in matroid basic notions of the dynamics of technologies: a technique, a working system, a 
family of techniques, the structure of all techniques, the structure of all working systems (See table 1).  

Table 1. notions in the dynamics of techniques and notions in matroid theory 

Dynamics of techniques Matroid theory Illustration with graphic 
Technique An element in a matroid 

 
Working system: a system made of 
compatible techniques (techniques 

that work together) 

A circuit (eg a cycle, ie 
a minimal circuit) 

 

extracted from 
M below 

A family of techniques: a subset of 
techniques such that no “external” 
technique is compatible with the 

techniques in the family 

A flat, extracted from a 
matroid 

  

extracted 
from M 
below 

The structure of techniques  The matroid of 
techniques 

Matroid M:   
The structure of working systems  The dual of the matroid 

of techniques  

3.2 Designing a new matroid: a C-K design process on matroids 
The design process is modeled with C-K theory with a matroid in K. It enables critical distinctions:  
a) C-K/Ma accounts for the distinction between deduction and design.  Deduction consists in proving 
that one circuit (working system) exists in the matroid; design consists in creating techniques added to 
the matroid, to design one circuit that was “unknown” in the initial matroid (a new working system).  
b) C-K/Ma accounts for the distinction between designing a “stand alone” working system based on 
existing techniques (one “project”) and designing a structured set of techniques: the first one consists 
in extracting one working system from the matroid of known techniques to create a separate working 
system (and matroid theory teaches us when and how it is systematically possible); the latter consists 
in designing a new technique added to the matroid of techniques. 
We are now focusing on this latter case: the design of a new matroid of techniques from an existing 
one, by adding one technique (one edge). Matroid theory teaches us that there are only two operations 
to add one additional edge to a matroid: extension and co-extension (Oxley 2011) – see table 2 below. 
We can show (Le Masson et al. 2015) that these two operations in matroid correspond to two ways to 
design techniques: designing for one new working system or designing a generic technique.  

Table 2. Design operations in the dynamics of technique and in matroid 

Designing one working system 
based on existing techniques 

Extracting one circuit (possible 
for all minors of the matroid of 

techniques)  
Cumulative design of working 
systems with new technique 
linking other techniques and 

minimizing propagations 

Extension 
ie one dependent edge, 

depending on the techniques to 
be linked together  

Designing a generic technique, 
generic to several technical 

families 

Coextension,  
ie one independent edge 

common to several connected 
components  

 
1- Matroid extension models the design of one technique to get one additional working system inside 
one family, while keeping all the already known techniques and their relations. It is as little pervasive 
as possible: extension only changes the families of techniques (flats) containing the new working 
system – all the other families are unchanged.  
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2- Co-extension is, in matroid, the dual operation. It is far less intuitive. It models the design of a 
“pervasive” (or generic) technique. We can illustrate the coextension logic, and its difference with 
extension, on one example (figure 1) : suppose one knows techniques to make knives and techniques 
to make bottle openers. By extension one can take one technique of the “family” of knives and another 
from the family of bottle openers and make them dependent by designing one additional technique – 
namely the insertion of a bottle opener in the knife handle: this is an extension. By co-extension one 
designs a technique to keep all the previous knifes and bottle openers techniques: for instance the 
articulation of the tools on one handle is the technique that enables to design swiss army knives.  

 
Figure 1: Illustration of the extension and co-extension on one simple case 

a) Extension preserves the rank, creates a new dependent edge in a flat – hence extension creates a 
new working system using the new technique, this new system being a “direct value” of the 
extension. By contrast co-extension creates a new independent edge and increases the rank. The 
new building blocks (the new edge) is not included in a “new” working system combining 
building blocks that couldn’t be combined before. The direct value created by the new edge is not 
self-evident.  

b) Extension is non-pervasive: it modifies only the flats that include the newly created working 
system. By contrast, coextension doesn’t create a new working system with the new technique 
and, even worse, it disturbs “old” working systems! In the figure above we see that the 
coextension transforms a working system {t12, t13, t23} into an independent set (hence no more a 
working system) and it is necessary to add e to the system to make it work again. The new 
technique is now required to make work systems that worked without it before!  

c) In co-extension, the new edge connects connected components that were independent before, ie 
the new technique enables “bigger” working systems by aggregating smaller working systems. 
The new edge integrates known working systems into a bigger one. This is the critical property of 
coextension: it “combines” working systems. As such it is pervasive.  

d) Working systems combination is “modular”. For one “old” working system (say {t12, t13, t23}), 
there are now two working systems alternatives: {t12, t13, t23, e} and {t12, t13, t34, t45, t53, t32}. Hence 
coextension creates what engineering usually calls “platform” and “modularity”.  

3.3 Historical illustration: the genericity of steam engine modelled with matroids.  
With the illustration below we show how matroid models help to account for one famous historical 
case of designing a generic technology and how it confirms the most paradoxical properties of generic 
techniques modeled in matroids. 
The story of the steam engine is often told this way: Watt designed a steam engine and progressively 
many applications were found for it. Yet, as shown in (Kokshagina et al. 2013a; Dickinson 1936; 
Thurston 1878), this story does not correspond to how Watt and Boulton designed a “generic” steam 
engine.  
Actually the first generation of steam engines was adapted to mining, but not to other uses; hence there 
was no “steam engine” in the 1770s, but only water pumps for mining – and Watt was first famous, in 
1770s for greatly enhancing Newcomen “fire pumps” with a separate condensation chamber. Actually 
the story of the “generic steam engine” begins later: in the 1780s, Boulton asked Watt to work on a 
new concept “a steam engine that is compatible with multiple machine tools” and it is Watt’s new 
design for this concept, that appeared as the “steam-engine generic technology”. Boulton’s brief was 
targeting a complete recomposition of the structure of techniques of his time: if a steam engine is 
compatible with multiple machine tools, it becomes a core component of all future machines, as all 
new machine tools will be redesigned to take the best advantage of the steam engine. This “genericity” 
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goal corresponded for Watt to a surprisingly focused design issue: design a new generic technique to 
transmit movement from the steam engine to any other machine. This is what led Watt to the well 
known the “reciprocating steam engine” (see figure 2 below).  

          
Figure 2: a) 1763 Watt steam engine with separate condensation chamber (not generic) ; b) 

1784 Watt & Boulton Double acting steam engine. The parallelogram creates genericity.  

In C-K/Ma the design of a “generic” steam engine relies on co-extension (see figure 3). In K: the 
known technique. In C, Boulton concept, and the design result: a new order of techniques based on a 
new technique for movement transmission. The latter appears as a “platform” that connects the steam 
engine either to mining or to workshop machine tools (in textile, iron industry, etc.). The main design 
effort consisted in designing the coupling technique (here the double acting transmission system). A 
pure extension logic would have led to adapt the steam engine to each of the applications.  
This example illustrates many features (and paradoxes) of the design of generic techniques:  
• Generic technique doesn't emerge as a complete original technology  
• Despite their great systemic impact, they are discrete: the invention is neither the fire engine, 

nore the condensation chamber, it is only the cinematic mechanism on top of the vertical rod 
• This is not an evolutionary process in which designers “discover” phenomena or “combine” 

randomly techniques: this is the intentional design of a pervasive technique.  

 
Figure 3: Designing steam engine as a generic technology 

4 A COMPUTATIONAL MODEL OF THE DYNAMICS OF TECHNOLOGIES 

We show now that C-K/Ma provides us with quantifiers for the dynamics of technologies 
(dependence, genericity, generativity), and hence helps to analyse industrial dynamics.  

4.1 Characterizing features of the dynamics of technologies 
Independence: The literature review helped to realize that the endogenous dynamics of technologies 
depends on the independence between techniques. Dependent techniques are already linked by strong 
relations, they can be deduced one from the other – they are deterministic. On the other hand 
independent techniques are not yet related so they are “holes” in the knowledge base.  
With C-K/Ma we can quantify independence and dependence: the rank of the matroid M, r(M), gives 
the level of independence; the co-rank r* gives the level of dependence (r* is the rank of the dual M*, 
ie the independence between working systems.). Both are linked by the equation: r(M) + r(M*) = ⎪M⎪ 
where ⎪M⎪ is the number of edges, ie the number of technological building blocks.  
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Generativity: Generativity is a critical feature of any design theory (Hatchuel et al. 2011). It is usually 
hardly quantified. In C-K/Ma generativity can be seen as the number of new edges (techniques) that 
can be created on a given matroid, either by extension or by co-extension. Hence we quantify the 
generativity by the number of possibilities of single edge extension gext(M) and of single edge 
coextension gco-ext(M) (see figure 4 below): gext(M) = r(r-1)/2-r*+p and gco-ext(M)= r*(r*-1)/2-r+p* 
(where p and p* are the number of loops or parallel edges in M and M*). gext(M) is rather the 
maximum number of basic new working systems while gco-ext(M) estimates here the maximum quantity 
of “generic” techniques that can be proposed on a set of given techniques.  

 
Figure 4: Generativity of a matroid, genericity of a new edge added to this matroid 

Genericity: With genericity we mean the number of applications derived from one design 
(Kokshagina et al. 2013a). Genericity characterizes the systemic impact of one particular new 
technique. We quantify genericity by the number of new circuits that can be created after the design of 
e, with one additional extension or coextension. We call N=M∪e the matroid created by e added to 
M.  If e results from an extension, then r(N) = r(M) and r*(N)= r*(M)+1. Hence genext (eext) = -1. 
(Similarly genco-ext (eco-ext) = -1). If e results from a co-extension, then r(N) = r(M) + 1 and 
r*(N)=r*(M). Hence genext(eco-ext) = r (conversely: genco-ext(eext) = r*). (see figure 4)  

4.2 Illustration: designing generic technologies in the semiconductor industry 
We use these quantifiers to analyze the design of generic technique in semiconductor industry 
(Kokshagina et al. 2013b). The concept consists in combining three unrelated technological families:  
• Family 1: the computing technological building blocks (CMOS transistor) 
• Family 2: the Radio-Frequence sensors, to receive and digitalize radio frequency signals 
• Family 3: the “back-end” system, in charge of routing and processing signals  

By combination one expects a system that enables circuits using building blocks in two or the three 
families. The notion of “combination” is usually quite fuzzy and hides the design issues. We apply the 
matroid model. Combining extensions and co-extensions, one can propose four different solutions (see 
figure below) and compare the genericity created by each design alternative.  
• The “pure extension” appears as an effort to design “micro-combinations” of building blocks; it 

brings multiple working systems –hence a direct value-, still it doesn’t enable to combine all 
previously known building blocks. The genericity is negative: the new design has decreased the 
generativity potential of the matroid.  

• The “pure co-extension” strategy creates a working system that uses all previously known 
techniques; it is modular. It creates less working systems than in “pure extension” case. The 
genericity is very high: the new design has increased the generativity potential of the matroid.  

• Hybrid case 1 exhibits a new connected sub-component that connects each of the modular ones. 
We see here a “platform”. Genericity is high.  

• Hybrid case 2 enables to get the expected performance (connections between the connected 
components) by designing only two edges, whereas all the other solutions design three edges.  

The design strategy adopted at STMicroelectronics actually follows the latter process: mixing CMOS 
and bipolar into a new connected component called bi-CMOS (hence an extension) and the redesign 
of the back-end to connect it to the new bi-CMOS (co-extension).  
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Figure 5: Combining technologies – the case of B9MW in semiconductors 

This example shows how C-K/Ma and the quantifiers on generativity and genericity enrich our 
understanding of the strategies to design techniques with systemic impact.  

4.3 Characterizing the dynamics of techniques 
C-K/Ma also uncovers general rules on the dynamics of techniques. First negative results:   
1- Lego like structure of techniques implies exogenous dynamics. Let’s analyse the intuitive model 
of “combination” (used in (Arthur 2009)). In this model, each building block can be combined with 
another one to create a working system. This “legolike” structure corresponds to one specific matroid, 
namely U(1,n). In U(p,n) the independent sets are the sets containing less than p elements taken 
among n. We have gext(U(1,n)) = 0 : extension is impossible in U(1,n). The “pure combination” 
approach prevents the design of new working systems! (actually because all working systems are 
known in the legolike structure). We also have: gco-ext(U(1,n)) = (n-1).(n-2)/2-1. Hence U(1,n) is very 
generative in coextension. However, these coextensions are impossible in “lego-like” approaches 
because the co-extended matroid is no more Lego-like (the U(1,n) family is not stable by coextension). 
Hence a Legolike structure can not account for the endogenous dynamics of technological systems. It 
explains why intuitive “combination” models tend to rely on exogenous dynamics.  
2- Purely independent techniques implies exogenous dynamics. Let’s analyse another “intuitive” 
model of systems. We consider now the n techniques in a working system that follows the first axiom 
of Suh. This is a working system, hence the n techniques form a circuit. Now the first axiom applies 
“inside the working system”, which means that the dependence linking all techniques to form a 
working system is neglected and any subset of n-1 techniques follows the first axiom. They are 
independent. Hence the set of techniques enabling a Suh working system might be represented by a 
U(n-1, n) matroid. In such a matroid, no co-extension is possible. Ie Suh’s first axiom prevents the 
design of generic techniques. Hence a “perfect” system engineering will finally prevents the 
emergence of a generic technique! Conversely by co-extension U(n-1, n) is not stable so that the 
newly created structure is no more following Suh Axiom. Hence it is not possible to account for 
endogenous dynamics if one considers that the techniques follow the Suh axiom of independence.   
3- A theorem for continuous endogenous dynamics: the necessary combination of extension and 
coextension. The two simplified representations of technical systems – pure combination or pure 
independence- actually correspond to very particular matroids and we showed that they can not 
account for the dynamics of techniques. More generally: since the extension-genericity of extension is 
negative (decreasing generativity) and the coextension-genericity of co-extension as well, extensions 
or coextensions alone lead to deadlocked systems. A direct consequence of the negative genericity is a 
general theorem for the continuous endogenous dynamics of technique: the only way to get an 
unlocked endogenous dynamics consists in combining extension and coextension – ie the combination 
of the design of working system and the design of generic techniques.  
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5 MAIN FINDINGS AND CONCLUSION 

We built a model of the design of knowledge structure by combining design theory (C-K theory) and a 
model of independence in knowledge structures (matroid theory). Findings are:  
1) F1:  C-K/Ma offers a computational model for designing a technique with systemic impact. C-K/Ma 
characterizes main operations (extension, co-extension) and their effect (rank, co-rank, generativity, 
genericity). This model helps to overcome misleading intuitions. We show that lego-like 
“combinative” model as well as Suh independence prevent endogenous dynamics.  
2) F2:  C-K/Ma accounts for phenomena associated to generic technology design:  
a) a generic technique does not seem to add functional value but is finally in every machines as the 

key technique to combine previously independent working systems;  
b) a generic technique couples and decouples, it creates a “modular” relations between working 

systems – it reorganizes technical systems in a flexible way.  
c) A generic technique opens new opportunities: new techniques can be added to the newly coupled 

working systems.  
3) F3: C-K/Ma offers an efficient guide for the design of technologies with systemic impact, based on 
generativity and genericity criteria. It uncovers the variety of design strategies for pervasive 
techniques.  
Finally, relying on advanced models of design theory and matroid, this paper strengthens the study of 
the endogenous dynamics of technical systems and opens new ways. Beyond the phenomena and the 
strategy, the model might also be useful to study economics and organizational issues. In particular the 
logic of “indirect” value in the design of generic technology actually raises interesting institutional 
issues: are companies – more interested for direct value- able to design generic technologies with high 
indirect value? Who could be the new actors in charge of these designs? To study the design of generic 
techniques we integrated in the model the logics of cohesion and interdependences between techniques 
– this might now lead us to shed new light on the logics of cohesion and interdependences in 
economics and society, in particular among designers and in their societies, like the Design Society.  
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