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Abstract 
In this communication we present experimental techniques, equipment and 

thermodynamic modelling for investigating systems with high acid gas concentrations and 

discuss experimental results on the phase behaviour and thermo-physical properties of acid 

gas-rich systems. The effect of high CO2 concentration on density and viscosity were 

experimentally and theoretically investigated over a wide range of temperature and pressures.  

A corresponding-state model was developed to predict the viscosity of the stream and a 

volume corrected equation of state approach was used to calculate densities.  The phase 

envelope and the hydrate stability (in water saturated and under-saturated conditions to assess 

dehydration requirements) of some acid gas-rich fluids were also experimentally determined 

to test a generalized model, which was developed to predict the phase behaviour, hydrate 

dissociation pressures and the dehydration requirements of acid gas rich gases.  

 

1.1 Introduction 
 
As the global demand for natural gas is forecasted to steadily grow, the demand will be met 

by supplies produced from “unconventional” gases. With sour gas fields worldwide 

accounting for some 40% of natural gas reserves, the development and production of these 

reserves are under very serious consideration (Lallemand et al. 2012). The main challenges 

facing companies developing these fields with high concentrations of acid gases are reservoir 

engineering, phase behaviour predictions, processing and their removal from hydrocarbon 

streams, transportation and storage.  

Due to the huge quantities of these gases produced and more stringent environmental 

regulations these gases cannot be flared, thus one of the most viable options is to inject them 

back into the reservoir for storage as well as enhance oil recovery (EOR). For acid gases, the 

disposal alternatives are: injection of compressed acid gas into the formation; disposal of acid 

gases with the formation water or solubilise acid gases into a light hydrocarbon solvent and 

use the solvent as a miscible flood EOR (Jamaluddin et al., 1996).  In fields with high 

concentration of H2S dehydration using glycols may lead to additional problems such as 

corrosion and the release of H2S when it is regenerated. In such cases the knowledge of 
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multicomponent gas water content and the optimum injection pressure will be essential. 

Furthermore reinjection into new reservoirs (such as Kashagan field in Kazakhstan) will 

require extremely high pressures. The design of such compressors requires accurate thermo-

physical properties of multicomponent mixtures. 

However limited data are available on the phase and hydrate behaviours of CO2-rich or 

acid gas systems to validate existing thermodynamic models. Therefore the applicability of 

the existing models and their uncertainties can lead to over or undersized designs. In this 

communication we present experimental techniques, equipment and thermodynamic 

modelling for investigating systems with high CO2 or H2S concentrations, including gas 

reservoirs with high CO2 content and/or CO2-rich systems from capture processes.  In 

particular, experimental measurements of the locus of incipient hydrate-liquid water-vapour 

curve for a methane – H2S binary system and a CO2-rich natural gas (70 mole % of CO2 and 

30 mole % of light hydrocarbons C1 to nC4) in equilibrium with liquid water are presented at 

pressures up to 35 MPa. Experimental data are reported for water content in equilibrium with 

hydrates at about 150 bar and temperature range from 233 to 283 K.  Density and viscosity of 

the mixture were also measured from 253 to 423 K at pressure up to 124 MPa. An example of 

dry ice formation in a CO2-rich natural gas will be also described. 

The Cubic-Plus-Association (CPA-EoS) or the Soave-Redlich-Kwong (SRK) equation 

of state combined with the solid solution theory of van der Waals and Platteeuw (1959) as 

developed by Parrish and Prausnitz (1972) was employed to model the fluid and hydrate 

phase equilibria as previously described by Chapoy et al. (2012).  The predictions of the 

thermodynamic model were compared with the experimentally measured properties 

(saturation pressure, dew point, frost points, hydrates). A corresponding state model 

developed to predict viscosity of the CO2-rich stream (Chapoy et al. 2013) was used to 

evaluate the new viscosity data. 

 
1.2 Experimental Setups and Procedures 

 
The majority of the setups and procedures used in this paper were described in detail in 

Chapoy et al. (2005), Chapoy et al. (2012), Chapoy et al. (2013) and Hajiw et al. (2014). A 

brief description of each setup is given below. 

 

1.2.1 Saturation and Dew Pressure Measurements and Procedures 

 

The equilibrium setup consisted of a piston-type variable volume (maximum effective 

volume of 300 ml), titanium cylindrical pressure vessel with mixing ball, mounted on a 

horizontal pivot with associated stand for pneumatic controlled rocking mechanism.  Rocking 

of the cell through 180 degrees at a constant rate, and the subsequent movement of the 

mixing ball within it, ensured adequate mixing of the cell fluids. Cell volume, hence pressure, 

can be adjusted by injecting/withdrawal of liquid behind the moving piston. The rig has a 

working temperature range of 210 to 370 K, with a maximum operating pressure of 69 MPa.  

System temperature is controlled by circulating coolant from a cryostat within a jacket 

surrounding the cell. The equilibrium cell and pipework were thoroughly insulated to ensure 

constant temperature. The temperature was measured and monitored by means of a PRT 

(Platinum Resistance Thermometers) located within the cooling jacket of the cell (accuracy 

of ±0.05 K).  A Quartzdyne pressure transducer with an accuracy of ± 0.05 MPa was used to 

monitor pressure.  The bubble point was determined by changing the volume of the cell and 

finding the break over point in the pressure vs. volume curve as shown in Figure 1. 

A typical test to determine the dew point is as follows: To obtain the dew point using 

the isochoric method the cell is loaded with the test sample and is set to 5 degrees above the 



estimated dew point temperature. The cell is cooled until the system has clearly become two 

phase.  The cell temperature is then step heated, allowing sufficient time for equilibration, 

until the system has clearly become single phase again. Throughout the process the cell is 

rocked using a pneumatic pivoting system to ensure all of the cell constituents are thoroughly 

mixed and equilibrium is reached. The system pressure and temperature are recorded every 

minute using a logging program. The recorded data is then processed to determine the system 

pressure at each temperature step. This process results in two traces with very different slopes 

on a pressure versus temperature (P/T) plot, one in the single phase and one in the 2 phases 

region. The point where these two traces intersect is taken as the dew point (Figure 2). 
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Figure 1. Plot showing an example of bubble point determination from plot of change in cell 

pressure versus volume  
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Figure 2. Plot showing an example of dew point determinations from equilibrium step-

heating data using the isochoric method. 

 

1.2.2 Hydrate dissociation Measurements and Procedures 

 

Dissociation point measurements were conducted using the isochoric step-heating method. 

The phase equilibrium is achieved in a cylindrical cell made of Hastelloy equipped with a 



pressure magnetic mixer.  A detailed description of the apparatus and test procedure can be 

found elsewhere (Hajiw et al., 2014; Chapoy et al., 2013).  The weight of the fluids (i.e., 

water and the multicomponent fluid) injected are recorded prior to any measurements and the 

overall feed composition can thus be calculated. 

 

A typical test to determine the dissociation point is as follows: the cell is cleaned and dried. 

About half of the volume of the cell is initially preloaded with water, prior to applying 

vacuum to the system. Then, the fluids are loaded into the cell to reach the first desired 

pressure the temperature is then increased stepwise, slowly enough to allow equilibrium to be 

achieved at each temperature step. At temperatures below the point of complete dissociation, 

gas is released from decomposing hydrates, giving a marked rise in the cell pressure with 

each temperature step (Figure 3).  However, once the cell temperature has passed the final 

hydrate dissociation point, and all hydrates have disappeared from the system, a further rise 

in the temperature will result only in a relatively small pressure rise due to thermal expansion.  

This process results in two traces with very different slopes on a pressure versus temperature 

(P/T) plot; one before and one after the dissociation point.  The point where these two traces 

intersect (i.e., an abrupt change in the slope of the P/T plot) is taken was the dissociation 

point (see Figure 3).  

For a full discussion on accuracy and uncertainties of hydrate dissociations measurements the 

reader is invited to check the work of Stringari et al. (2014) or Hajiw, (2014).  
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Figure 3. Dissociation point determination from equilibrium step-heating data.  The 

equilibrium dissociation point is determined as being the intersection between the hydrate 

dissociation (pressure increase as a result of gas release due to temperature increase and 

hydrate dissociation, as well as thermal expansion) and the linear thermal expansion (no 

hydrate) curves. 

 

1.2.3 Water Content Measurements and Procedures 

 

The core of the equipment for water content measurement has been originally described by 

Chapoy et al. (2012) and Burgass et al. (2014). The setup comprises of an equilibrium cell 

and a device for measuring the water content of equilibrated fluids passed from the cell.  The 

equilibrium cell is similar to the one described in the saturation pressure measurements.  The 

moisture/water content measurement set-up consists of a heated line, a Tuneable Diode Laser 

Adsorption Spectroscopy (TDLAS) from Yokogawa and a flow meter. The estimated 

experimental accuracy of water content is ±5 ppm mole. 

 

 



1.2.4 Viscosity and density Measurements and Procedures 

 

All viscosity and density measurements were conducted using an in-house designed and 

constructed set-up; a schematic view is shown in Figure 4.  This setup has been designed to 

have a maximum working pressure of 200 MPa (density measurements are limited to 140 

MPa) and a maximum working temperature of 473.15 K.  For these measurements, the set-up 

was located inside the chamber of an oven, manufactured by BINDER GmbH, capable of 

being used at temperatures from 200 to 443.15 K. The set-up is comprised of two small 

cylinders, with volumes of 15 cm
3
, connected to each other through a capillary tube with a 

measured length of 14.781 metres and a calculated internal diameter of 0.29478 mm.  An 

oscillating U tube densitometer Anton Paar DMA-HPM is connected to the set-up.   
 

 

Figure 4. Schematic drawing of the viscosity - density set-up 

 

1.2.5 Frost Point Measurements and Procedures 

 

The equipment and procedures used for determining the frost points of the solid CO2 has 

been originally described by Longman et al. (2011). A stainless steel equilibrium cell, which 

is approximately 11 cm
3
 in volume, is submerged in an ethanol bath. The temperature of the 

ethanol is controlled by a thermostat (LAUDA Proline RP 1290) with a working temperature 

range 183 to 320 K and an accuracy of ±0.01 K. The ethanol is stirred continuously to 

maintain a homogeneous temperature distribution in the bath. The equilibrium cell 

temperature is measured by a platinum resistance thermometer located inside the equilibrium 

cell. The accuracy of the measured temperature is ±0.05 K. The temperature probe was 

calibrated against a Prema 3040 precision thermometer and checked by measuring the triple 



point of pure CO2. The equilibrium cell pressure is measured by a Quartzdyne pressure 

transducer. 

 

 

1.2.6 Materials 

 

Methane and hydrogen sulphide were purchased from Air Liquide with 99.995 vol% 

certified purity for methane and 99.5 vol% for hydrogen sulphide. Deionised water was used 

in all experiments. Carbon dioxide (CO2) has been purchased from BOC with a certified 

purity higher than 99.995 vol%. Compositions of the synthetic mixtures are given in Table 3. 

 
Table 1. Composition, mole% each component, of the multicomponent mixtures 

Components Synthetic Mix 1 

(from Hajiw et al., 2014) 

Synthetic Mix 2 

(from Chapoy et al., 2013) 
Synthetic Mix 3 

CO2 - Balance (89.83) Balance (69.99) 

H2S 20.0 - - 

Methane 80.0 - 20.02 (±0.11%) 

Ethane - - 6.612 (±0.034%) 

Propane - - 2.58 (±0.013%) 

i-Butane - - 0.3998 (±0.004%) 

n-Butane - - 0.3997(±0.004%) 

Nitrogen - 3.07(±0.04%) - 

Oxygen - 5.05(±0.01%) - 

Argon - 2.05(±0.06%) - 

Total 100 100 100 

 

 

1.3 Thermodynamic and Viscosity Modelling 
 

1.3.1 Fluid and Hydrate Phase Equilibria Model 

A detailed description of the original thermodynamic framework used in this work 

can be found elsewhere (Haghighi et al., 2009; Chapoy et al., 2014).  In summary, the 

thermodynamic model is based on the uniformity of fugacity of each component throughout 

all the phases.  The CPA-EoS or the SRK-EoS (if no water is present) is used to determine 

the component fugacities in fluid phases.  The hydrate phase is modelled using the solid 

solution theory of van der Waals and Platteeuw (1954) as developed by Parrish and Prausnitz 

(1972).  The CPA-EoS binary interaction parameters between components were determined 

using the group contribution method developed by Jaubert and co-workers. The model to 

calculate frost points was described by Longman et al. (2011). The developed model can 

predict accurately the distribution of water in the CO2 or H2S-rich phase and solubility of 

CO2 or H2S in the aqueous phase below and above the critical point of pure CO2 as shown in 

Figures 5 and 6. 
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Figure 5.  Pxy, Phase equilibria in the carbon dioxide + water system at 298.15 K 

left) and 423.15 K (right). Black Lines:  Model predictions. Left figure:  () Experimental 

data from Wiebe and Gaddy (1941); () Experimental data from Gillepsie and Wilson 

(1982) ; () Experimental data from Nakayama et al. (1987) ;  () Experimental data from 

King et al. (1992) ;  (): Experimental data from Hou et al. (2013) ; (): Experimental data 

from Valtz et al. (2004). Right figure: (): Experimental data from Takenouchi and Kennedy 

(1964); () Experimental data from Gillepsie and Wilson (1982); (): Experimental data 

from Tabasinejad et al. (2011) at 422.98 K ;(): Experimental data from Hou et al. (2013). 

(): calculated data Duan and Sun (2003) 
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Figure 6.  Pxy, Phase equilibria in the hydrogen sulphide + water system. Black 

Lines:  Model predictions. Left figure:  water content in the H2S rich phases. Right figure: 

H2S solubility in the aqueous phase. (): calculated data Duan et al. (2007) 

In this work, the molar volume for CO2 or a CO2-rich mixture, as calculated by the 

SRK-EoS, is corrected using the exact volume of pure CO2 at the given T and P. 

 
CEoSnew VVV             (1) 

Where EoSV is the molar volume obtained from the equation of state.  The correction 

of molar volume in the Eq. (2), cV , is defined as:   
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xi is the composition of component i in the phase in which the volume is calculated.  For CO2, 
c

iV  is defined by 
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For the other components, 
c

iV was set to 0.  The carbon dioxide density is computed from the 

MBWR equation in the form suggested by Ely et al. (1987): 
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1.3.2 Viscosity Model 

To model viscosity, our proposed model is a modification of the corresponding state viscosity 

model described in Pedersen and Christensen (2007).  According to the corresponding states 

principles applied to viscosity, the reduced viscosity, 
C

r

PT


 ),( , for two components at 

the same reduced pressure,
C

r P
PP  and reduced temperature, 

C
r T

TT   ,will be the same. 
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Based on the dilute gases considerations and kinetic theory, viscosity at critical point can be 

approximated as: 
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Where, M denotes the Molecular weight. Thus, the reduced viscosity can be expressed as: 
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For one component as a reference component if the function f in Eq. (5) is known, it is 

possible to calculate the viscosity of any other components, such as component i, at any 

pressure and temperature.  Thus, 





















































ic

co

ic

co

oc

ic

o

i

oc

ic

i
P

PP

T

TT

T

T

M

M

P

P

,,

0
6

1

,

,

2
1

3
2

,

,

,        (8) 

Where, 0 refers to the reference component.  Methane with the viscosity data published by 

Hanley et al. (1975) was selected as the reference fluid in the original Pedersen model.  In 

this work, CO2 with the viscosity data published by Fenghour et al. (1998) has been selected 

as the reference fluid as CO2 is the major constituent of the stream.  The viscosity of CO2 as a 

function of density at given T and P can be calculated from the following equation: 
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Where, η0(T) is the zero-density viscosity which can be obtained from the following 

equation: 
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In this equation, the zero-density viscosity is in units of Pa.s and temperature, T, in K.  The 

reduced effective cross section, )(  T , is represented by the empirical equation: 
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Where the reduced temperature, T
*
, is given by: 

T
*
=kT/ε          (12) 

 

And the energy scaling parameter, ε/k =251.196 K.  The coefficients ai are listed in Table 1.  

The second contribution in Eq. (9) is the excess viscosity, ),( T , which describes how the 

viscosity can change as a function of density outside of the critical region.  The excess 

viscosity term can be correlated as follows: 
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Where, the temperature is in Kelvin, the density in kg/m
3
 and the excess viscosity in Pa.s.  

The coefficients dij are shown in Table 2.  

 

Table 1. Values of Coefficients ai for CO2 in 

Eq. (11) 

Table 2. Values of coefficients dij in Eq. (13) 

i ai 

0 0.235156 

1 -0.491266 

2 5.211155 x 10
-2

 

3 5.347906 x 10
-2

 

4 -1.537102 x 10
-2

 
 

dij Value 

d11 0.4071119 x 10
-2

 

d21 0.7198037 x 10
-4

 

d64 0.2411697 x 10
-16

 

d81 0.2971072 x 10
-22

 

d82 -0.1627888 x 10
-22

 
 

 

The corresponding states principle expressed in Eq. (8) for the viscosity of pure components 

works well for mixtures.  Pedersen et al. (1984) have used the following expression to 

calculate the viscosity of mixtures at any pressure and temperature. 
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The critical temperature and pressure for mixtures, according to recommended mixing rules 

by Murad and Gubbins (1977), can be found from: 
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The mixture molecular weight is found from 

  nnwmix MMMM   303.2303.2410304.1       (18) 

 

Where wM and nM are the weight average and number average molecular weights, 

respectively. 






N

i
ii

N

i
ii

w

Mz

Mz

M

2

         (19) 


N

i

iin MzM          (20) 

The parameter  for mixtures in Eq. (14) can be found from: 
5173.0847.1310378.7000.1 mixrmix M        (21) 

 

Also,  for the reference fluid can be found from Eq. (21) by replacing the molecular weight 

of the mixture with that of the reference fluid, carbon dioxide.  The reduced density, ρr, is 

defined as: 

0

,,

0 ,
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mixc
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

         (22) 

The critical density of carbon dioxide, ρ0, is equal to 467.69 kg/m
3
.  The Modified Benedict–

Webb–Rubin (MBWR) equation of state has been applied for computing the reference fluid 

density, ρ0, at the desired pressure and temperature of 
mixc

co

P

PP

,

, 
mixc

co

T

TT

,

.   

The procedure below should be followed to calculate the viscosity of CO2 systems with 

impurities by the proposed corresponding state principle model: 

1. Calculate the Tcmix, Pcmix and Mmix from Eq. (16), (17) and (18), respectively. 



2. Obtain the CO2 density at 
mixc

co

P

PP

,

, 
mixc

co

T

TT

,

 from the MBWR EOS and calculate the 

reduced density from Equation (22). 

3. The mixture parameter, mix, and 0 should be calculated from Eq. (21). 

4. The reference pressure and temperature, P0 and T0, should be calculated from 

Equation (15). 

5. Calculate the CO2 reference fluid, ),( 000 TP in Eq. (14) from Eq. (9). 

6. Calculate the mixture viscosity from Eq. (14). 

 

1.4 Results and Discussions 

 
All results were compared where possible with experimental values for pure methane, pure 

carbon dioxide, a synthetic CO2-rich fluid (CO2: 89.83 mole%; O2: 5.05 mole%; Ar: 2.05 

mole%; N2: 3.07 mole% from Chapoy et al., 2013) and a typical North Sea natural gas. 

For a model to predict accurately the hydrate phase behaviour or transport properties, 

it is essential that the phase behaviour is correctly predicted, i.e. the phase region, bubble and 

dew lines.  For example for hydrate calculation, the hydrate stability has very sharp 

temperature dependency above the bubble point, an error in estimating the saturation pressure 

will lead to high deviations in the hydrate phase behaviour.  Viscosity models are also 

dependant on good density predictions, if a vapour-liquid behaviour is predicted instead of a 

saturated liquid it will also lead to very high deviations in viscosities. As shown in Figure 7, 

the SRK-EoS model combined with the group contribution for kij can predict the phase 

envelope of the multicomponent systems with good accuracy. The predictions are of greater 

accuracy for the system containing less carbon dioxide. 
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Figure 7.  Experimental and predicted phase envelope of the CO2-rich mixture. (),Synthetic 

Mix 3. (), Synthetic Mix 2. Black lines:  bubble lines predictions using the SRK-EoS; 

Dotted black lines:  dew lines predictions using the SRK-EoS; Grey broken lines:  predicted 

vapour pressure of pure CO2 using the SRK-EoS.  
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Figure 8.  Experimental and predicted hydrate stability of CO2, H2S and methane in 

equilibrium with liquid water.  (), pure CO2 hydrate stability zone (Chapoy et al. 2011); 

(), pure H2S hydrate stability zone (Selleck et al. 1952); (): pure CH4 hydrate stability 

zone (Nixdorf and Oellrich, 1997) ;(), pure CH4 hydrate stability zone (Marshall et al. 

1964). 

 

Methane, carbon dioxide and hydrogen sulphide are well known structure I hydrate 

formers.  Hydrate phase equilibria of these systems have been extensively investigated and 

can be predicted with very high accuracy as seen in Figure 8. Multicomponent systems 

containing hydrogen sulphide are far scarcer. Hajiw et al. (2014) measured the hydrate 

dissociation conditions for a mixture of methane and hydrogen sulphide. Composition of the 

fluid is given in Table 1.  As the solubility difference between methane and hydrogen 

sulphide is of several order of magnitude, the hydrate stability zone of this mixture is highly 

dependent on the fluid to water ratio as seen in Figure 9. The model has also been evaluated 

with the methane + hydrogen sulphide + carbon dioxide hydrate data reported by Sun et al. 

(2003). Like methane, carbon dioxide and hydrogen sulphide, and all their mixtures are 

predicted to form structure I hydrate. For these systems, the thermodynamic model is in 

excellent agreement with these experimental data (within 0.5 K).  The ratio between the water 

mole fraction and the mixture fraction can have a large effect if the concentration of H2S and 

CO2 is in excess of 10 mole%.   

The experimental hydrate dissociation conditions for the synthetic mixtures 2 and 3 in 

equilibrium with water are plotted in Figure 11. Pure CO2, CH4 and synthetic mixture 2 form 

structure I hydrate whereas synthetic mixture 3 is predicted to form structure II because of the 

presence of larger hydrocarbon molecules (propane, i-butane and n-butane). It is also 

interesting to note that this system, depending on the water to gas ratio, should just enter the 

phase envelope of the system but displays at higher pressure a liquid like hydrate locus. The 

system is, over the full pressure range, more stable than pure CO2 or synthetic mixture, which 

form structure I. At low and intermediate pressure (P<14 MPa), the system is also more 

stable than pure CH4 hydrate, however at higher pressures where hydrates are in equilibrium 

with a denser supercritical fluid, pure CH4 hydrates are more stable. 
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Figure 9.  Experimental and predicted hydrate stability of 80 mole% CH4 + 20 mole% H2S 

system in equilibrium with liquid water.  (), pure H2S hydrate stability zone (Selleck et al. 

1952); (): 80 mole % + 20 mole% H2S;(), pure CH4 hydrate stability zone (Marshall et 

al. 1964). Predictions for the mixtures were performed for the reported aqueous mole 

fraction. 
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Figure 10.  Experimental and predicted hydrate stability of the ternary CH4 +  H2S +CO2 

system in equilibrium with liquid water.  (), pure H2S hydrate stability zone (Selleck et al. 

1952); (), pure CH4 hydrate stability zone (Marshall et al. 1964); () 75.48 mole% CH4 + 

6.81 mole% CO2 + 17.71 mole% H2S (Sun et al., 2003); ():87.65 mole% CH4 + 7.4 mole% 

CO2 + 4.95 mole% H2S (Sun et al., 2003); ():82.45 mole% CH4 + 10.77 mole% CO2 + 

6.78 mole% H2S (Sun et al., 2003) ); ():82.91 mole% CH4 + 7.16 mole% CO2 + 9.93 

mole% H2S (Sun et al., 2003) ; ():75.48 mole% CH4 + 6.81 mole% CO2 + 17.71 mole% 

H2S (Sun et al., 2003). 
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Figure 11.  Experimental and predicted hydrate stability of some selected acid gas systems in 

equilibrium with liquid water.  (), pure CO2 hydrate stability zone (Chapoy et al. 2011); 

(): pure CH4 hydrate stability zone (Nixdorf and Oellrich, 1997) ;(), pure CH4 hydrate 

stability zone (Marshall et al. 1964). (), Natural gas hydrate stability zone (Chapoy and 

Tohidi, 2011). 

 

Hydrate dissociation measurements in absence of a free water phase (dry systems) are 

difficult to measure by conventional techniques; the alternative is to measure the water 

content in the fluid phase in equilibrium with hydrates. Unfortunately data for acid gas 

systems are limited and the few data references available are not in agreement. Experimental 

data on water contents for CO2 in equilibrium with hydrates from 223.15 to 263.15 K up to 

10 MPa have been measured by Burgass et al. (2014). Chapoy et al. (2013) have reported 

water content at 15 MPa from 233.15 to 288.15 K.  Song and Kobayashi have reported 

measurements of water content in presence of CO2.  However, the reliability of these studies 

has been recently questioned as seen in Figure 12, some of the data reported by Song and 

Kobayashi (1984) show large deviations with the developed models and the available 

literature data. 

For multicomponent acid gas mixtures at low temperatures, only data from our 

laboratory are available. Experimental water content data in equilibrium with hydrates for 

pure CO2 and 2 multi-component systems (synthetic mixtures 2 & 3) are plotted along with 

predictions of the thermodynamic model in Figure 12.  As can be seen from the figure the 

experimental and predicted data are in good agreement with some deviation (AAD≈ 5%). As 

expected, less water can be dissolved in the multicomponent systems than in pure CO2, 

because the amount of water that can be dissolved in hydrocarbons is lower than liquid CO2 

at the same temperature and pressure.   As seen in this figure, the water contents for the 

synthetic mixtures are between the water contents of pure CO2 and pure CH4, with the water 

content in mixture 3 (lower CO2 content) closer to pure CH4. 
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Figure 12.  Water content of CO2-rich fluids. Figure on the left: Water content of CO2 in 

equilibrium with hydrates at 13.79 MPa and different temperatures. (): Chapoy et al. 

(2011); (): data from Song and Kobayashi (1984). Figure on the right: Experimental water 

content data and predictions for the water content of pure CH4, pure CO2   and synthetic 

mixures 2 &3 at 15 MPa and different temperatures. 

 

The experimental and modelling results for the viscosity of the synthetic mixtures are 

plotted in Figures 13 and 14.  All experiments for the streams were conducted at pressures 

above saturation or in the supercritical region and then at low pressures, i.e., in the single gas 

phase region.  The viscosity of each conducted test was calculated using the modified 

Pedersen model.  As can be seen from the figure, the model predictions and experimental 

data are in good agreement.  Both in the liquid and the supercritical regions, the viscosity is 

increasing with pressure and decreasing with temperature.  In the vapour region, pressure has 

a weak effect on viscosity and the viscosity is increasing with temperature as expected for 

low pressure gaseous systems. Viscosities of a “typical” natural gas (low CO2 concentration) 

were also added in Figure 14 for comparison purposes (data from Kashefi et al., 2013).  The 

viscosities of both the multi-component systems (synthetic mixtures 2 and 3) fall between the 

viscosities of pure CO2 and of the natural gas from Kashefi et al. (2013). 

Densities of the multi-component systems were measured at different pressures and 

temperatures in gas, liquid and supercritical regions.  Both experimental and modelling 

results with density correction are plotted in Figure 15 for the synthetic mixture 2.  By 

employing the density correction and the SRK-EoS the absolute average deviation is 1.7%. It 

is interesting to note the peculiar behaviour of density at temperatures above the critical 

temperature compared to the density of pure CO2 as shown in Figure 16 in which the 

difference between the density of the two multicomponent mixtures and pure CO2 is plotted 

at about 423.15 K.  For the CO2 mixture at the stated temperature, a maximum reduction in 

density from that of pure CO2 occurs at a certain pressure. The maximum reductions for the 

multicomponent systems 2 and 3 are 180 and 300 kg/m
3
 at a pressure of around 12 and 

14 MPa, respectively (i.e., 35 % and 60% reduction). 

Frost point measurements were carried out for the synthetic mixture 2. The 

experimental data for the system is plotted together with the predicted solid CO2 phase 

boundary of the mixture and the pure CO2 phase diagram in Figure 17.  As seen in the figure, 

for this system the thermodynamic model using the group contribution kij tuned on VLE data 

is in good agreement with the new experimental data. 
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Figure 13.  Predicted and experimental 

viscosity of synthetic mixture 2. Black 

lines: Predictions using CSP model. Black 

Dotted lines:  Predictions using CSP model 

at the bubble and dew pressures of the 

system. Data inside the grey box are plotted 

in Fig. 9. This work: (), T = 243.15 K  

(), T = 253.15 K (), T = 273.15 K (), 

T = 283.15 K (), T = 298.15 K (), T = 

323.15 K (), T = 373.15 K (), T = 

423.15 K 

Figure 14.  Predicted and experimental 

viscosity of synthetic mixtures 2 and 3 at 

323.15 K. Black and dotted lines: Predictions 

using the modified CSP model. Grey lines: 

pure CO2 viscosity. Grey broken lines: 

Predictions using the original CSP model. 

(), synthetic mixture 2; (),synthetic 

mixture 3; () data from Kashefi et al. (2013) 

 for a Natural gas (in mole% C1: 88.83; C2: 

5.18; C3:1.64; iC4: 0.16; nC4: 0.27; iC5: 0.04; 

CO2: 2.24; N2: 1.6) 
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Figure 15.  Predicted and experimental 

density of synthetic mixture 2. Black lines: 

Predictions using the corrected SRK-EoS 

model. Black Dotted lines:  Predictions 

using the corrected SRK-EoS model at the 

bubble and dew pressures of the 

system.(), T = 273.26 K (), T = 283.31 

K (), T = 298.39 K (), T = 323.48 K 

(), T = 373.54 K  (), T = 423.43 K. 

 

Figure 16.  Predicted and experimental 

density difference ρ= ρ
MIX

 –ρ
CO2

, between 

synthetic mixture 2 (),synthetic mixture 3 

()and pure CO2 density at 323.15 K. Lines: 

Predictions using the corrected SRK-EoS 

model (Grey line is for methane).  
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Figure 17.  Experimental and predicted phase envelope of the synthetic mixture 2. (), bubble/dew 

points. (), Frost points. Black lines:  bubble lines predictions using the SRK-EoS; Dotted black 

lines:  dew lines predictions using the SRK-EoS; Grey broken lines:  phase diagram of pure CO2. 

 

 

1.5 Conclusions 

 
Knowledge on the phase behaviour and thermophysical properties of CO2-rich and acid gas 

systems is of great importance for CCS and developing sour gas reservoirs, as well as testing 

predictive models.  However, limited published data sets are available for such systems.  In 

this communication the phase behaviour and some properties of different acid gas streams 

have been studied, such as the phase envelope, the hydrate stability, dehydration requirement, 

viscosity and density of the mixture. Models have been developed to calculate and predict 

these properties. 

 

Future work will concentrate on the determination/measurement and modelling of properties 

for other types of natural gases (different CO2 concentrations, impact of H2S, etc.). 
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