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Abstract

This paper describes the development of a numerical homogenization tool adapted to TATB-based pressed explosives. This
is done by combining virtual microstructure modeling and Fourier-based computations. The polycrystalline microstructure is
represented by a Johnson-Mehl tessellation model with Poisson random nucleation and anisotropic growth of grains. Several
calculations are performed with several sets of available data for the thermoelastic behavior of TATB. Good agreement is found
between numerical predictions and experimental data regarding the overall thermal expansion coef�cient. The results are
shown to comply with available bounds on polycrystalline anisotropic thermoelasticity. Finally, the size of the representative
volume element is derived for the bulk, shear and volumetric thermal expansion moduli.

I. Introduction

W
i thin the wide class of civil or military ener-
getic materials, pressed TATB-based explo-
sives occupy a special place. TATB (1,3,5-

triamino-2,4,6-trinitrobenzene) is an energetic molecu-
lar crystal combining high energetic performance and
very good thermal stability. By adding a small amount
of a polymer acting as a binder between TATB grains,
it is possible to obtain exceptionally safe explosives dis-
playing good mechanical properties. These explosives
exhibit a rate dependent quasi-brittle, concrete-like
thermomechanical behavior [ 1, 2]. They are almost
brittle under uniaxial tension, but undergo progressive
damage by microcracking under uniaxial compression.
As a result, the ratio between compressive and ten-
sile fracture stress is roughly comprised between 5
and 10. They also display so-called "ratchet growth",
i.e. irreversible dilatancy, under purely thermal load-
ing [ 3, 4, 5]. This phenomenon is believed to be linked

to the strongly anisotropic behavior of the TATB and
to the random orientation of TATB grains in the macro-
scopically isotropic explosive [6].

Hence, the irreversibility of the macroscopic ther-
momechanical behavior of TATB-based plastic-bonded
pressed explosives (PBXs) �nds its sources at the mi-
crostructural level, referred to as the mesoscopic scale
in the sequel. It is the authors' belief that signi�cant
progress in understanding and modeling such a behav-
ior should involve mesoscopic numerical simulations.
The development of a numerical thermomechanical
tool operating at the level of the microstructure was
therefore undertaken for a particular TATB based PBX.
This tool uses virtual microstructure modeling and a
Fourier-based numerical method.

The task is not simple, due to the complexity of the
microstructure, the multiple sources of irreversibility,
and the very limited available knowledge about the
behavior of constituents and interfaces. The feasability

� corresponding author
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of such a development was demonstrated in previous
reports [7, 8], in a simpli�ed context. The next steps
will consist in incorporating progressively the various
mechanisms responsible for non linear and irreversible
response, mainly microcracking, plasticity and possibly
viscoelasticity. Most of them being threshold phenom-
ena, should be activated in zones of maximum load.
Therefore, accurate predictions of the time and loca-
tion of plastic yielding or grain-binder debonding can
only be achieved within a realistic description of the
microstructure. This necessary step is the main objec-
tive of this paper, which focuses on a more realistic,
though still simpli�ed, treatment of the microstructure,
performed in this preparatory phase in the context of
linear thermoelasticity.

Section II presents the material, its microstructure
and macroscopic properties, the focus being put on
its nonlinear thermal expansion. Section III describes
the development of the virtual microstructure model.
Section IV gives the thermoelastic properties of the
TATB single crystal, as extracted from bibliography.
The main computational results are then given, the
emphasis being put on the concept of representative
volume element (RVE). The main �ndings are summa-
rized in Section V, which gives some insights about
future work.

II. The material

The initial TATB powder is �rst coated with a small
amount (less than 5% in mass) of an amorphous poly-
mer in a slurry process. After careful drying, the coated
powder is pressed under vacuum in an oil bath under
high pressure (several hundred MPa) and moderate
temperature.

I. Thermal expansion experiments

Under thermal cycling, and provided that tempera-
ture exceeds a certain threshold, the speci�c volume of
the material increases after each cycle, and eventually
stabilizes after a number of cycles that depends upon
the nature of the binder (see [9] among others), hence
the denomination of "ratchet growth". Pressure tends
to inhibit [ 10] this time dependent [ 9] effect. Ratchet

growth is generally investigated above room tempera-
ture, and the glass transition of the binder is known to
play a strong role on the magnitude of dilatancy, and
on the temperature above which it manifests itself (see
for example [3]). It is nowadays considered that the
strongly anisotropic thermal expansion of TATB crys-
tals induces internal stresses in a randomly oriented
polycrystal [3, 6, 11].

Figure 1: Linear expansion recorded during two thermal cycles
above room temperature.

Fig. 1 shows the response of a 5� 5� 50 mm3 sam-
ple, at a heating/cooling rate of � 10� C per hour. Each
cycle is characterized by a linear response up to 70� C
approximately. After a strongly nonlinear transient
phase, a linear irreversible phase takes place, during
which dilatancy occurs. Note that the dilatancy of the
second cycle is much lower than that of the �rst one.
Note also that the two cooling responses can be super-
posed, to a very good accuracy, except for the vertical
shift corresponding to the dilatancy of the second cy-
cle. The following interpretation is proposed for this
response. From a free state of internal stresses at room
temperature, internal stresses grow during the heat-
ing phase, especially in the binder. The latter softens
progressively and relieves internal stresses, either by
yielding or more likely by debonding locally. Upon
cooling, opened microcracks tend to close partially,
down to the glass transition, below which the binder
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re-hardens. Note that, according to this scenario, the
free state of internal stresses is now at the re-hardening
temperature of the binder.

If this scenario is correct, internal stresses should
develop as well during cooling from room temperature.
To verify this, a second thermal expansion experiment
was performed at the same cooling/heating rate, but
below room temperature. The sample (same geome-
try) was submitted to three thermal cycles down to 0,
� 25 and � 50� C respectively. The result, displayed in
Fig. 2, con�rms the scenario. The �rst cycle is linear
and strictly reversible. For the other two, a linear phase
with the same thermal expansion coef�cient as in Fig. 1
takes place down to a temperature threshold below
which dilatancy occurs. Heating and re-cooling show
that the thermal expansion coef�cient has decreased,
and decreases once more during the third cycle. This
is a typical signature of a microcrack opening-closing
process in response to the thermal strain. Note that
upon returning to ambient temperature, the remaining
dilatancy is much lower than in the case of Fig. 1, but
that the coef�cient of thermal expansion has varied
irreversibly.

Therefore, the behavior of the binder appears as
crucial. As internal stresses grow in response to heat-
ing or cooling, they are not relieved in the same way
at high or low temperature. Above the glass transition,
the very soft binder deforms easily, and relaxes internal
strains by yielding, allowing grain reorganization and
subsequent dilatancy. Below the glass transition, the
very hard binder transmits internal stresses to grains,
that are likely to fail, thus providing extra internal
degrees of freedom and relaxing internal stresses by
internal free surface development, with subsequent
thermal expansion modulus variations, but little or no
dilatancy.

Figure 2: Linear expansion recorded during three thermal cycles
below room temperature.

II. Macroscopic thermoelastic properties

From tensile and compressive experiments (for details,
see [8]), the Young's modulus is 7.1 GPa, and the Pois-
son's coef�cient is 0.335. From these values, the bulk
modulus is 7.2 GPa and the shear modulus is 2.7 GPa.
From the thermal expansion experiments of Figs. 1
and 2, the volumetric thermal expansion modulus is
close to 1.5� 10� 4 K � 1.

Figure 3: Optical microscopy, re�ected polarized light. Black ar-
rows: binder-�lled intragranular porosity. White arrows:
deformation bands.
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III. Microstructure

After pressing, the resulting solid, slightly porous, can
be cut and polished by a standard metallographic-like
technique. Fig. 3 was obtained by optical microscopy
(re�ected polarized non analyzed light). The TATB
grains contain dark spots (black arrows), which are
the remnant of the porosity of the initial powder, and
were shown to be �lled with binder. The grains also
contain more or less straight bands (white arrows). Ab-
sent from the initial powder, these bands are thought
to be the witness of the plastic deformation of TATB
grains during pressing. The intergranular binder is not
resolved.

In order to better reveal the polycrystalline nature
of the explosive, SEM images are taken, after having
etched the surface with a solvant of the binder. Fig. 4
clearly shows the grain boundaries, together with some
intragranular microcracks (solid arrows). The etch-
ing process removes the binder from the intragranular
porosity, which appears very clearly. In Fig. 4, triple
points (open arrows) can be seen as voids, contrarily to
the optical micrograph of Fig. 3, taken approximately
at the same magni�cation. This means that the etch-
ing process is also likely to have removed some of the
smallest grains located at triple points, or even perhaps
along grain boundaries. This should be kept in mind
when evaluating grain size distributions.

Figure 4: Scanning electron microscopy after etching. Solid ar-
rows: microcracks. Open arrows: voids at triple points,
probably induced by the etching process.

In what follows, binder-�lled pores, intragranular

microcracks and deformation bands will be discarded,
to consider the polycrystalline character of the material
only. For this purpose, a large mosaic of SEM images
is taken, and segmented manually, by drawing a line
of width 1 pixel around each grain. The result, with
borders widened, is displayed in Fig. 5. The �eld is
50002 pixels, and the resolution is 0.134µm per pixel.
The manually segmented image is the main source of
morphological data used in this work.

Figure 5: The polycrystalline microstructure after manual segmen-
tation. Binder-�lled porosity, deformation bands and
microcracks have been removed.

Globally, the microstructure is isotropic (not shown,
see [8]). Fig. 6 shows the distribution of grain areas
P(a), de�ned as the proportion of grains with given
area a. It exhibits two peaks, centered at 1023and 1, 4
µm2 approximately, corresponding to equivalent disk
radii of 18 and 0.67µm respectively. The grain size dis-
tribution measured by a succession of morphological
openings [8] and the distribution of grain eccentric-
ity (not shown) will be used in Section III. Also note
that the grains are generally not convex, sometimes
strongly, and have elongated shapes.
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Figure 6: Distribution of grain areas.

III. V irtual microstructure modeling

In this Section, a model of virtual microstructure is de-
veloped to mimic the real one and on which to perform
thermomechanical simulations. This will be sought in
the form of three-dimensional tessellations of space,
by a nucleation and growth process. This approach
is known to be suf�ciently �exible to expect a rea-
sonably realistic result (see for instance [12, 13, 14]),
although the real material involves a completely differ-
ent manufacturing process. The prototype of random
tessellation models is the Poisson-Voronoï one, which
involves simultaneous random nucleation and uniform
growth. This model is not convenient for the present
purpose [8], since it displays planar grain boundaries,
far from the image of Fig. 5.

For this reason, previous work [ 8] envisaged mod-
els derived from the so-called Johnson-Mehl one, which
involves progressive nucleation and uniform growth.
It was shown that a two-parameter accelerated nucle-
ation model was necessary to mimic reasonably well
the grain size distribution of the image of Fig. 5. The
resulting model afforded curved grain boundaries, and
therefore a certain non-convexity of grains. However, it
did not reproduce their elongated character. In order to
improve this aspect, a Johnson-Mehl-like model, involv-
ing progressive nucleation and uniform but anisotropic
growth (see e.g. [13]), is implemented.

The nucleation process is assumed to follow a space-
time Poisson distribution. The spatial and temporal co-
ordinates of grain nuclei are thus chosen at random in
the interval [0,L]3 � [0,T] where L is the spatial dimen-
sion of the simulated volume, and T the duration of the
nucleation process. The Poisson process is character-
ized by its intensity q, namely the (statistical) average
of grain nuclei per unit volume and time ( µm � 3.s� 1).
Growth begins as soon as a new nucleus appears, and
proceeds until adjacent grains meet, hence de�ning
their boundaries. As a general rule, for Voronoï and
Johnson-Mehl-like tessellations, a grain Gi is de�ned
as the in�uence zone of the i-th nucleus by:

Gi = f x; jx � xi j + v0t i < jx � xi j + v0t j ; i 6= jg (1)

where j.j is the distance function, xi and t i (respectively
xj and t j ) are the spatial and temporal coordinates of
nucleus labeled i (resp. j), and v0 is the growth rate of
the grains, assumed as uniform. In fact, the parame-
ter v0 acts as a spatio-temporal scaling parameter, and
will be �xed arbitrarily as v0 = 1 µm.s� 1 in the sequel.
In order to introduce anisotropic growth [ 14], let the
distance function be de�ned as follows:

jxj = kx � xik + ( K2 � 1)

[R1 cosf sin y + R2 sin f sin y + R3 cosy ]
(2)

where k.k is the Euclidean distance, q and f are the
Euler angles of the local anisotropic principal direction,
K the anisotropy factor, and R1, R2 and R3 are the com-
ponents of the vector linking the point x to germ xi .
This de�nition reduces to the Euclidean distance when
K = 1.

Therefore, the model is de�ned by the intensity q of
the nucleation process, by the anisotropy factor K, and
by the distribution of anisotropy directions, which are
taken uniformly on the unit sphere in the absence of
precise knowledge. Those two parameters are sought in
the following way. In previous work [ 8], the (isotropic
growth) models were identi�ed by matching the grain
size distribution predicted by the model with that mea-
sured on the image of Fig. 5. In the present anisotropic
case, the grain size distribution is complemented by a
measurement of the elongation of the grains.

Those data are �rst measured on the segmented im-
age (Fig. 5). Then, for each couple of parametersq and
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K, several realizations of the virtual microstructure are
generated. For each realization, a series of planar sec-
tions are extracted, used for the grain size and elonga-
tion measurements, and the results are averaged. The
difference between predicted and experimental grain
size and elongation data are then minimized by a sim-
plex optimization algorithm [ 15]. The optimal couple
of parameters is found to be q = 5 � 10� 7 µm � 3.m � 1

and K = 2.24, and is illustrated in Fig. 7, to be com-
pared with Fig. 5. This microstructure is discretized
on a volume of 5123 voxels, and contains about 31, 500
germs. See [16] for details on the anisotropic Johnson-
Mehl model and its optimization. The microstructure is
periodized consistently with the boundary conditions
applied in the FFT method, which is detailed hereafter.

Figure 7: A planar slice of a realization of the optimum microstruc-
ture.

IV. Computations

I. Brief overview of the Fourier-based
method

The FFT-based computational method �rst proposed by
Moulinec and Suquet [ 17] is chosen here, �rst because

it needs no structured meshing and operates directly
on voxels, and second because it is not demanding in
computational resources. Besides, its accuracy has been
shown to be comparable to that of the �nite element
method (see [18] for example). For room saving, the
method will only be outlined here.

In brief, this full-�eld homogenization method
deals with quasi-static problems under periodic bound-
ary conditions, by seeking the solution in the form
of Fourier series. The spatial average, non-�uctuating
part of any �eld is considered as a macroscopic entity.
Therefore, if macroscopic strains are prescribed, for in-
stance, the method provides full stress and strain �elds,
and the spatial average of stresses is the macroscopic
response to the prescribed strains. In the following, the
so-called "accelerated scheme" FFT algorithm [19, 20]
is used, together with the modi�ed Green operator
proposed in [21].

Although not being as mature, by far, as �nite ele-
ments, the method is quite versatile, and has been used
to solve electrical and thermal conductivity problems,
as well as �uid �ow through porous media, among
others. Originally developed for elastic problems [ 17],
it was recently adapted to thermoelasticity [ 8, 22], and
works in the nonlinear �eld as well, including plasticity
and even fracture (see for example [23, 24]).

II. Microscopic thermoelastic properties of
TATB

As discussed above, the present work is restricted to
thermoelasticity, and discards the binder, considering
the grain boundaries as rigid with in�nite strength.
From [27, 28], it is known that the thermal expansion
of TATB is reasonably linear between -50 and 100� C.
The dependence of elastic moduli on temperature is
not known at present, but will be assumed negligible
in the sequel.

Therefore, all is needed is the thermoelastic behav-
ior of TATB. However, data are scarce in the literature.
Concerning full anisotropic elastic constants of TATB,
the only available reference to the authors' knowledge
is the molecular dynamics work of Bedrov and co-
workers [ 25]. They give the following values of the
fully triclinic anisotropic elastic tensor in the Voigt
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notation (values given in GPa):

C =

0

B
B
B
B
B
B
@

65.7 18.5 4.0 � 0.2 � 1.0 1.0
62.0 5.0 0.6 � 0.5 1.0

18.3 0.2 � 0.4 � 0.4
1.4 0.1 0.3

sym 0.68 0.4
21.6

1

C
C
C
C
C
C
A

The elastic tensor is expressed here in the(e1, e2, e3)
coordinate system for which e1 is parallel to the a di-
rection of the crystal, e2 lies in the (a, b) plane, and
e3 is chosen so as to form a direct orthonormal basis.
Valenzano and co-workers [26] provide partial values
of the elastic tensor ot TATB, derived by an analogous
method. Their values are somewhat 20% higher than
those of Bedrov and co-workers.

Concerning the thermal expansion tensor, two
sources are available, giving quite different values.
Kolb and co-authors [ 27] perform X-ray diffraction
experiments on TATB single crystals between � 50 and
140� C, and follow the evolution of the six crystal cell
parameters with temperature. From these data, it is
possible to compute the components of the (linear) ther-
mal expansion tensor (see the appendix of ref. [8]) in
the same coordinate system as above, expressed here in
normal tensorial notations (values given in 10� 6 K � 1) :

a =

0

@
8.28 1.67 13.07

29.04 0.2
sym 264.7

1

A

Sun and co-workers [28] provide the same data, but
seemingly using powder diffraction, between 20 and
240� C. They �nd the quite different following results
(same units, same coordinate system):

a =

0

@
12.29 � 0.95 19.41

9.022 � 37.39
sym 166.2

1

A

III. Predicted overall properties

Calculations are performed on three different virtual
microstructures, namely Voronoï, Johnson-Mehl and
the above-described anisotropic Johnson-Mehl tessella-
tions. For every grain of each microstructure, the ori-
entations of the anisotropic axes are chosen at random,

and the elastic and thermal expansion tensors are ro-
tated with respect to the laboratory frame. This is done
with the elastic data of Bedrov and co-workers [ 25],
and with both the thermal expansion data of Kolb and
co-workers [27] and of Sun and co-workers [ 28]. Avail-
able data being more than scarce in the literature about
the correlation between crystallographic and morpho-
logical grain preferred directions, we choose here to
keep them uncorrelated.

If a calculation is done by applying #11 = 1,
#12 = #22 = #13 = #23 = #33 = 0, and DT = 0 to the
volume, where the overbars denote macroscopic quan-
tities, then C11 = s11, C12 = s12, and so on. Therefore,
the components of the elastic and thermal expansion
overall tensors can be obtained by performing seven
suitably chosen calculations. The apparent elastic ten-
sor is symmetric at convergence of the FFT algorithm
and nearly isotropic for large-enough volume sizes. For
instance, for the anisotropic, 5123-voxels Johnson-Mehl
model, all elastic components Ci j differ from less than
0.8% from that of an isotropic elastic tensor. The macro-
scopic bulk, shear and volumetric thermal expansion
moduli are derived and listed in Table 1.

K m a (10� 4 K � 1)
microstructure (GPa) (GPa) Kolb Sun

Voronoï 17.24 6.72 2.33 1.38
Johnson-Mehl 17.03 6.92 2.53 1.42

anisotropic 17.08 6.69 2.44 1.39
experimental 7.1 2.7 1.5

Table 1: Predicted macroscopic thermoelastic properties vs. eperi-
mental data. FFT results on the TATB volumetric thermal
expansiona are computed using data from either Kolb et
al. [27] or Sun et al. [28] for the monocrystal.

The results are almost insensitive to the details of
the microstructure, at least at constant granulometry,
as usually observed for linear behavior. The bulk and
shear moduli show little variations but, not surpris-
ingly, the volumetric thermal expansion modulus ap-
pears very sensitive to the thermal expansion input
data. It is dif�cult to compare the present predictions
to experimental data, because the binder has been ne-
glected in the present calculations. However, it was
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observed in previous work [ 8] that including the effect
of binder induced strong variations of the bulk and
shear moduli, but had little effect on the thermal ex-
pansion modulus. This is consistent with the present
�ndings, since a rather good match is observed be-
tween the present predictions involving the data of
Sun and co-workers [28] and experimental �ndings
(see Figs. 1 and 2).

Figure 8: Predicted volumetric thermal expansion modulus vs the
theoretical bounds of Gibiansky and Torquato [29]. The
calculations involving the input data of Kolb and co-
workers [27] are given in blue, and those involving the
input data of Sun and co-workers [28] are given in red.

As a partial veri�cation of the validity of the com-
putational method, the present results are compared
to existing theoretical bounds. For anisotropic poly-
crystals, Gibiansky and Torquato [ 29] provide an upper
and a lower bound to the volumetric thermal expansion
modulus as a function of the bulk modulus. The re-
sults of Table 1 are compared to those bounds in Fig. 8,
which shows the computational results to lie within
the bounds. In this �gure, the two vertical lines are the
Hill-Reuss bound, obtained for uniform applied strain,
and the Hill-Voigt one, obtained for uniform applied
stress.

Although not being a de�nite validation of the com-
putational method, this lends some con�dence to the
results. Besides, note the general trend indicated by
the bounds. The thermal expansion modulus decreases

as the bulk modulus increases, hence illustrating the
growth of internal stresses and their effect on thermal
expansion.

IV. Representative volume element

Since calculations are necessarily performed on �nite
size volumes, it is legitimate to examine the issue of
representativeness. The computation volume can be
said to be representative when no statistical �uctua-
tion of overall properties are recorded, in other words
when the volume is suf�ciently large and ergodicity
is reached. Strictly speaking, this can only be the case
for in�nite systems. Therefore, following Kanit and
co-workers [30], the volume will be said to be repre-
sentative when statistical �uctuations, i.e. variance
of the overall property of interest will stay below a
given threshold. Observe that there is a priori no rea-
son why the size of the representative volume element
(RVE) should be identical for different properties, and
that morphological and mechanical RVE are distinct
concepts. In practice, this is done in the following
way [ 8]. A single set of seven computations are per-
formed on one large volume, here 5123 voxels, provid-
ing a three-dimensional chart of the thermomechanical
�elds used to derive the selected property. This chart is
then divided into eight non overlapping sub-volumes,
on which the selected property can again be deter-
mined. The variance of this property can be estimated
from the eight sub-volumes results. The procedure is
performed again on sub-subvolumes, and so on until
voxel sized volumes are reached. In this context, any
property of interest Z, here the bulk, shear or thermal
expansion modulus, can be considered as a random
variable. Then, it can be shown [31] that when V � AZ

3 ,
the following rule applies:

D2
Z (V )
D2

Z

=
AZ

3
V

(3)

where D2
Z (V ) is the (volume dependent) variance of Z,

D2
Z its point variance. Eqn. 3 de�nes the integral range

AZ
3 . Then, following [ 8, 30], the size of the RVE is given

by:

VRVE =
4D2

Z AZ
3

h2Z2 (4)
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where h is the selected relative precision on Z.

Figure 9: VariancesD2
a,k,m(V ) of the apparent thermal and elastic

moduli as a function of the volume sizeV. Dashed-lines:
�ts D2

a,k,m(V ) � 1/ V for largeV (see 4). The green
and blue dashed lines almost coincide.

The integral range, point variances and relative pre-
cision are computed using various stress �elds and ap-
propriate macroscopic strain and thermal loading. For
the bulk modulus k, we use the �eld sm(x) = 1

3skk(x)
with applied strain loading #11 = 1 and #i j = 0
for ( i, j) 6= ( 1, 1). For the shear modulus m, use is
made of the �eld s12(x) with applied strain loading
#12 = #21 = 1 and other components set to zero. For
the thermal expansion coef�cient, we use the �eld
sm(x) with thermal loading DT = 1 and strain load-
ing #i j = 0. Calculations are performed on a 5123-
voxels anisotropic Johnson-Mehl microstructure made
of about 3, 000grains, with local thermal expansion
tensor given by [ 27]. The variances D2

a,k,m(V ) are repre-
sented in Fig. (9) for increasing subvolume size V. This
provides the respective integral ranges of AK

3 = 373

voxels (483 µm3), Am
3 = 343 voxels (443 µm3), and

Aa
3 = 343 voxels (453 µm3) for the bulk, shear and ther-

mal expansion moduli respectively. This corresponds,
for this volume size, to respective relative precisions
of 1.1, 1.8 and 1.4%. Conversely, a volume containing
approximately 360, 000grains would be necessary to
compute the bulk modulus with a relative precision

of 0.1%. The slightly weaker integral range observed
for the shear modulus is probably the result of a rela-
tively low contrast between the shear moduli of grains
showing different crystallographic orientations, which
induces �uctuations of �elds at a small scale only.

V. Local �elds

Up to now, only the overall properties have been stud-
ied. Fig. 10 displays an example of the pressure �eld
if the volume is submitted to a temperature increase
of 1 K and zero strains. Since the local behavior is
linear, the pressure can also be read as pressure unit
per K. This pressure map illustrates the strongly het-
erogenous nature of the �eld, especially across grain
boundaries. This is expected to become crucial when
nonlinear processes will be at stake.

Figure 10: Example of pressure �eld under applied temperature
increase of1 K and zero strains. Color scale: minimum
(red) is � 5.1 MPa or MPa.K� 1, maximum (blue) is
� 3.6MPa or MPa.K� 1,

In order to get a more precise overview of the
heterogeneity of the �elds, Fig. 11 shows the strain
histograms corresponding to the same calculation as
above. It has been checked that the latter are nearly

9
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identical at 2-times smaller discretization (not shown).
The ordinate axis indicates the normalized probability
(or equivalently the normalized number of voxels) of
�nding a strain value of #i j . As expected, the shear
strains are centered around a zero value; #m is the
mean strain and #eq is the von Mises equivalent strain.

Figure 11: Strain histograms for the same calculation as in Fig. 10.

FFT results indicate that the �eld histograms for the
strain and stress components are almost identical for
the Voronoï, standard and anisotropic Johnson-Mehl
models (not shown). This lack of sensitivity with re-
spect to the microstructure has been noticed in other
works in linear elasticity [ 32]. In the present material,
this is explained by the moderate contrast between elas-
tic moduli. For instance, the Young's moduli in the in-
plane and out-of-plane directions are about 64 and 18
GPa. Stronger effect of the microstructure is expected
in highly nonlinear regimes.

V. Conclusion and future work

The work presented here constitutes the second step of
the development of a numerical homogenization tool
dedicated to a class of TATB-based polymer-bonded
explosives. It involves an improved representation
of the microstructure, and can already deliver some
thermoelastic predictions. The predicted volumetric
thermal expansion coef�cient is close to experimen-

tal data whereas the elastic moduli are signi�cantly
overpredicted. However, it suffers from neglecting
the presence of thin layers of intergranular polymeric
binder, already shown to have pronounced effects on
the macroscopic elastic properties of the explosive. Ac-
counting for this binder is clearly the next step of the
development. Numerical results indicate that the pres-
ence of a soft interphase located inbetween crystals
signi�cantly reduces the elastic moduli. Surprisingly,
the thermal expansion modulus is apparently not af-
fected [7, 8]. This effect is not clearly understood, and
requires a dedicated study. Nevertheless, additional
work is required to account for the binder. The lat-
ter is a key constituent, as it controls partly the levels
of stresses imposed to the TATB grains as well as the
grain boundaries. The role of a weakened interphase is
equally important in nonlinear regimes (see e.g. [ 33]).
A sensible investigation into sub-macroscopic scale
physical processes cannot be undertaken unless the
local role of the binder is accurately understood and
described.
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