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Fig. 1. Superpixels illustration

ABSTRACT

Many sophisticated segmentation algorithms rely on a first
low-level segmentation step where an image is partitioned
into homogeneous regions with enforced compactness and
adherence to object boundaries. These regions are called “su-
perpixels”. While the marker controlled watershed transfor-
mation should in principle be well suited for this type of ap-
plication, it has never been seriously tested in this setup, and
comparisons to other methods were not made with the best
possible settings.

Here, we provide a scheme for applying the watershed
transform for superpixel generation, where we use a spatially
regularized gradient to achieve a tunable trade-off between
superpixel regularity and adherence to object boundaries. We
quantitatively evaluate our method on the Berkeley segmenta-
tion database and show that we achieve comparable results to
a previously published state-of-the art algorithm, while avoid-
ing some of the arbitrary postprocessing steps the latter re-
quires.

Index Terms— Superpixels, watershed, segmentation

1. INTRODUCTION

“Superpixels” (SP) are homogeneous regions resulting from
a low-level segmentation of an image and typically acting as
primitives for further analysis such as detection, segmentation
and classification of objects.

Superpixels should have the following properties:

1. homogeneity: pixels of a given SP should present sim-
ilar colors or gray levels;

2. connected partition: each SP is made of a single con-
nected component; SP do not overlap;

3. adherence to object boundaries: object boundaries
should be included in SP boundaries;

4. regularity: SPs should form a regular pattern on the
image. This property is often desirable as it makes
the SP more convenient to use for subsequent analysis
steps.

It is clear, that in practice, properties (3) and (4) are some-
what contradictory and consequently a good solution typi-
cally aims at finding a compromise between these two re-
quirements.

Low-level segmentations have been used for a long time
as first step towards segmentation [1, 2]. The term superpixel
was coined much later [3] in this context, albeit in a more
constrained framework. This approach has raised increasing
interest since then.

Various methods exist to compute SP, most of them based
on graphs, geometrical flows or k-means (see [4], [5], [6] and
[7]).

In principle, the watershed transformation is well suited
for SP generation: first because it gives a good adherence
to object boundaries when computed on the gradient of the
image, second because it allows to control the number and
spatial arrangement of the resulting regions by the choice of
markers and third because it offers linear complexity with the
number of pixels in the image. Indeed, it has been used to
produce low-level segmentations in several applications, in-
cluding computation intensive 3D applications [8, 9], in par-
ticular when shape regularity of the elementary regions was
not required.

Previous publications claimed that the watershed transfor-
mation does not allow for the generation of spatially regular
SP [4, 7]. Here, we show that on the contrary, a correctly used
watershed can lead to efficient SP computation. We name this
method of generating SP “waterpixels”.



2. WATERPIXELS GENERATION METHOD

Let f : D → V be an image, whereD is a bounded connected
subset of Z2, and V a set of values, typically {0, . . . , 255}
when f is a grey level image, or {0, . . . , 255}3 for colour
images.

As any watershed based segmentation, waterpixels are
based on two principles: the definition of markers, from
which the flooding starts, and the definition of a gradient (the
image to be flooded), as illustrated in Figure 2.

2.1. The markers and the gradient

First, we choose a set ofN points {vi}1≤i≤N inD, called cell
centers. As we want some degree of spatial regularity, they
can be placed on the vertices of a square or hexagonal grid.
Given a distance on D, we denote by σ the distance between
closest points, which is linked to N . It is worth noting that
the distance does not have to be Euclidean.

A Voronoi tesselation allows to associate to each vi a
Voronoi cell (see Fig.2.c). For each such cell, a homothety
centered on vi with factor ρ (0 < ρ ≤ 1) leads to the compu-
tation of the final cellCi. This last step allows for the creation
of a margin between neighbouring cells, in order to avoid the
selection of minima too close from each other.

As each cell is meant to correspond to the generation of a
unique waterpixel, our method, through the choice of cell cen-
ters, offers total control over the number of SP, with a strong
impact on their size and shape if desired.

Second, a gradient image g is computed from f (see re-
spectively Fig.2.a and Fig.2.b as an example). The choice
of the gradient operator depends on the image type, e.g. for
grey level images we might choose a morphological gradi-
ent. Within each cell, a single minimun of g will be used
as marker. If several minima are present, then the one with
the highest volume extinction value [10] is used (see Fig.2.d).
If no minimum is present, the center of the cell is used as
marker. Final selection of the markers is illustrated in Fig.2.g.

2.2. Spatial regularization of the gradient

When directly flooding the gradient image g from the selected
minima, the resulting region often suffers from irregular bor-
ders. Here, we propose to control this irregularity by using a
spatially regularized gradient (see Fig.2.e):

greg = g + k
2d

σ
(1)

where d is the above introduced distance function to the
cell centers, i.e. d(p) is the distance of pixel p to the clos-
est cell center, and k is the spatial regularization parameter,
which takes its values within <+. Note that d is normalized
with the grid radius, in order to make k independent from the
choice of σ. Resulting waterpixels are presented in Fig.2.f.

The choice of k is application dependent: when k equals
zero, no regularization of the gradient is applied; when k →
∞, we approach the regular grid. This behaviour is illustrated
in Fig. 2.h, 2.i and 2.j, for k equal to 0, 4 and 10 respectively.

3. APPLICATION TO THE BERKELEY
SEGMENTATION DATABASE

In order to evaluate the proposed strategy, we have applied it
to the Berkeley segmentation database [11], and compared it
with a state-of-the art method.

3.1. Implementation

We have found (data not shown) that it is beneficial to pre-
process the images from the database using an area opening
followed by an area closing, both of size σ2/16. This opera-
tion efficiently removes details which are clearly smaller than
the expected waterpixel area and which should therefore not
give rise to a superpixel contour. The Lab-gradient is adopted
here in order to best reflect our visual perception of color dif-
ferences and hence the pertinence of detected objects. The
cell centers correspond to the vertices of a square regular grid
of step σ. A square grid has been chosen to make comparison
with SLIC (see next section), which is also based on a square
grid, easier. For the distance map, we have used the distance
metric d(x, y) = ‖x − y‖∞ which corresponds to the place-
ment of markers on a rectangular grid. The margin parameter
ρ is set to 2/3.

Note that the gradient images have integer values, which
enables to use a fast implementation of the watershed trans-
formation based on a hierarchical queue.

3.2. Evaluation criteria

Superpixel methods produce an image partition. In order to
compute the superpixels borders, we use a morphological gra-
dient. Note that the resulting contours are two pixels wide. To
this set, we add the image contours. The final set is denoted
C. A ground truth image GT corresponds to contours of the
objects to be segmented.

In order to quantitatively assess the quality of our super-
pixels, we have used two evaluation criteria:

• Boundary-recall (BR), which measures adherence to
boundaries without penalizing over-segmentation, and
is defined as the percentage of ground-truth contour
pixels GT which fall within less than 3 pixels from
superpixel boundaries:

BR =
|{p ∈ GT, d(p, C) < 3}|

|GT |
(2)
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Fig. 2. Illustration of waterpixels generation: (a): gradient of the original image (b); (c): regular grid with square cells
and step σ=50 pixels; (d) process for selecting one minimum of (a) per cell of (c) - final markers set is presented in (g); (e):
regularized gradient (k=10); (d) Resulting waterpixels obtained by applying the watershed transformation on (e) with markers
of (g). Impact of the spatial regularization on the regularity of resulting waterpixels : (h) k=0, (i) k=4 and (j) k=10.

• Contour density (CD), which measures the irregularity
of the partition, and is defined as the ratio between the
number of contour pixels of SP and the total number
|D| of pixels in the image:

CD =
|C|
|D|

(3)

The proposed method is benchmarked against the state-
of-the-art method simple linear iterative clustering. SLIC [7]
is a method based on k-means which offers a linear complex-
ity with respect to the number of pixels in the image. The
properties of the SP can be controlled by two parameters: n
(number of SP) and m which influences the distance metric
used and thereby the spatial regularity. SLIC is currently con-
sidered as one of the best methods to compute regular SP in
terms of quality as well as computation time, but has a ma-
jor drawback as it needs post-processing to treat disconnected
superpixels.

Both methods have been applied on the subset “train” of
the Berkeley segmentation database, containing 300 images
of sizes 321 × 481 or 481 × 321 pixels. Approximately 6
human-annotated ground-truth segmentations are given for
each image. These ground-truth images correspond to manu-
ally drawn contours.

3.3. Benchmark

Results for boundary-recall and contour density, expressed as
a function of the number of superpixels in the image, and av-
eraged over the whole database, are shown in figure 3. Blue
and red curves correspond to varying regularization parame-
ters k and m respectively for waterpixels and SLIC.

From figure 3 (a) and (b) we see that the working points
tested for the two algorithms were different in most cases.
In order to make a fair comparison, we choose a pair of pa-
rameters (m, k) such that they show similar boundary recall
and compare their behavior for contour density, e.g. m =
20, k = 4. We see that the results for contour density are in-
deed very similar. We therefore conclude that both methods
achieve comparable results.

4. DISCUSSION

While results are comparable, there is one major difference
in the construction of the algorithm: the SLIC approach does
not impose any connectivity constraint. The resulting super-
pixels are therefore not necessarily connected, which requires
some ad hoc postprocessing step. In contrast, waterpixels are
connected by definition, and the connectivity constraint is ac-
tually implemented in the distance used.

Furthermore, waterpixels offer a nice perspective to effi-
ciently build hierarchical partitions based on superpixels. In-
deed, the computation of the watershed naturally produces a
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Fig. 3. Benchmark: performance comparison of Waterpixels to SLIC

region adjacency graph. The same graph can be used to build
waterpixels at different resolutions, or to fuse waterpixels in
order to obtain a high-level segmentation.

5. CONCLUSION AND PERSPECTIVES

We have proposed a general strategy to build superpixels
based on the watershed segmentation method. We have
shown that it performs as well as state-of-the-art methods on
the Berkeley segmentation database. Its theoretical complex-
ity is also linear with respect to the number of image pixels,
as for SLIC.

The current implementation of our method, as other su-
perpixel methods, depends on two main parameters σ and
k. However, two “hidden” parameters, linked to minima
selection, need to be tuned: the cells margins and the pre-
processing area parameter. On the other hand, we have not
yet fully exploited the main degree of freedom the method
proposes which consists in the placement of markers. We
are therefore currently investigating the possibility to place
markers optimally, such that the preprocessing steps might
become unnecessary.
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