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Hélène Le Cadre∗ Mathilde Didier†

Abstract

In a context of market coupling, we study analytically the impact of wind farm
concentration and of the uncertainty resulting from the introduction of renewable
energy on the procurement total cost, on the market welfare and on the ratio of
renewable procurements to conventional supplies. Markets having incomplete in-
formation on the quantities of renewable energy produced by the other markets, we
show that the providers have incentives to buy information regarding the variabil-
ity of the other markets’ productions. Provided this information could be certified
and sold by an external operator, we derive analytically the optimal price for such
certified information, depending on the required confidence level.

Keywords: Uncertainty ; Optimization ; Energy Markets ; Intermittent Sources

1 Introduction
Following energy market liberalization, market coupling, developed jointly by power
exchanges and transport operators, aims at improving the use of available cross-border
capacity and promises a greater harmonization of prices between countries. It creates a
unique platform for daily electricity transactions. It implicitly allocates interconnection
capacity in the day-ahead and spot timescales until a uniform market clearing price is
achieved or the available capacity is fully utilized. In this latter case i.e., when capacity
becomes limiting, a congestion rent is paid to the grid operator to give him incentives
to invest in capacity upgrading. The increasing introduction of renewable energy in
the energy mix, required by the governments, complexifies the coupling mechanisms,
due to their strong dependence on exogenous factors such as weather conditions. In
the following parts of the Introduction, we describe the major steps of the energy mar-
ket liberalization, the main challenges associated with the increasing penetration of
renewable energy and, finally, give some insights about existing coupling mechanisms.

Energy market liberalization: Energy markets, and especially electricity mar-
kets, were traditionally considered as natural monopolies, due to the huge investments
required and relatively low marginal costs, and hence they were managed by national
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firms that owned both production plants and distribution network. Some interconnec-
tions were created between the States, but only for adjustment purpose.

However, since the end of the 1990s the European Union (EU) decided to pro-
gressively liberalize energy markets, i.e., gas and electricity, and to create a global
competitive European market. To that purpose, the EU set three versions for the energy
packages. The last one, adopted in 2009, concerns:

First, the effective separation between transport network management, on the
one hand, and production and energy supply, on the other hand, in order to avoid
that any single firm took the control of the entire production, of the supply chain
and also, to promote the competition

Second, the regulation, especially through the creation of the Agency for the
Cooperation of Energy Regulators [25], in order to enhance the interconnections
between energy markets and to increase the security of the supply in case of
blackouts

Third, the cooperation between transmission system operators

In France, one consequence of the electricity market liberalization is that the differ-
ent activities that were handled by a sole national company, such as production, trans-
port, distribution and electricity selling, are now dispatched between several firms. Pre-
cisely, production and distribution are provided by private companies, whereas trans-
port remains a national regulated activity. Many actors are involved on each market:
producers, who sell energy on the market ; providers, who buy energy on the market
and distribute it to direct consumers ; direct consumers, which demand will be ag-
gregated ; transmission system operators who manage the transport network. Another
consequence is that the prices that were set by the State are now determined directly
by counterparts on long term contracts, or on liberalized pool markets, by equilibrium
between the demand and the supply.

These markets occur at different times, ranging from long terms (years or months)
to day-ahead and real time, also known as spot markets. In general, energy prices be-
come larger and capacities smaller when we come closer to real time [19]. Finally, the
exchanges between the different States are much larger than before, and the intercon-
nections can be easily congested because they were created for adjustment purpose and
not for trading purpose [9], [20].

The increasing penetration of renewable energy: In addition, the European
Commission has adopted in 2008 the EU Energy and Climate Package. Its two main
objectives are setting up a more sustainable common European energy policy and com-
bating climate change. More precisely, three targets have been set regarding the reduc-
tion by 20% of greenhouse gases, the increase of energy efficiency up to 20% and the
reaching of 20% of renewable energy in the total energy consumption in the EU, by
2020 [26].

The resulting increasing penetration of intermittent, unpredictable renewable en-
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ergy such as wind energy, induces significant challenges for markets1. Their erratic
generation makes them very difficult to forecast using conventional statistical approa-
ches since they rely on many exogenous factors such as weather conditions [15], [18].
This salient issue seriously threatens the constant equilibrium between supply and de-
mand, that is a guarantee for the efficient operation of the underlying grid. Modeling
renewable energy production as random individual sequences, requiring no underly-
ing stochastic assumptions, we studied the impact of distributed learning on the de-
mand and supply equilibrium in [15], [16]. In a multi-period market context, Nair
et al. explicitly characterized the impact of a growing renewable penetration on the
procurement policy by considering a scaling regime that models the aggregation of
unpredictable renewable sources [19]. They introduced a scaling regime for wind pen-
etration, which models the effect of aggregating the output of several wind generators.
A key feature of their model is that it allows to take into account the relative concen-
tration (or, inversely, scattering) of the intermittent energy sources being aggregated
[27]. Based on this scaling model, they studied how the optimal reserves, the amount
of conventional generation produced, as well as the cost of procurement, scale with
increasing wind penetration.

Market coupling: Competitiveness, sustainability and energy supply security are
essential issues in the pursuit of European energy market integration and the creation
of a single energy area. Energy markets were initially liberalized autonomously at a
national level, with domestic scope, but there has been a growing need for an opti-
mal management of cross-border transmissions and congestions. However, optimal
network governance of a centralized autority depends on the balance between differ-
ent interests accross countries [8]. Market functioning in terms of competition among
producers can be obstructed by limited transmission capacity at the borders of the in-
terconnected markets. Therefore two mechanisms have been put forward to solve the
allocation of such scarce-border capacity: the first is implicit auctioning, and the sec-
ond is coordinated explicit auctioning which has not been implemented yet. The latter
system will allow countries to keep their power exchanges running, but it is found to
be less efficient than the former system when uncoordinated [8]. The implicit auction
mechanism adopted in Europe is designed to include cross-border trades in the day-
ahead auction mechanisms on individual power exchanges, to avoid inefficiency. Dif-
ferent implementations of the implicit coupling mechanism exist such as no coupling,
volume coupling, one way price coupling, etc. The price coupling implementation,
which is the focus of this article, optimizes cross-border flows to reflect energy-only
price differences between the coupled markets. It implicitly allocates the interconnec-
tion capacity in the day-ahead and real timescales until a uniform market clearing price
is achieved or the available capacity is fully utilized [2]. Successful examples of im-
plicit auctioning with price coupling are those within the Nordic area, those between
Spain and Portugal, and those involving the Central Western European power markets
(CWE) i.e., the Netherlands, Belgium, France, Luxembourg and Germany electricity

1Other sources of renewable energy, more easily predictable, such as those coming from marine currents,
are still under study. Déporte et al. studied a way to collect it through a wavering membrane [6]. Although
this approach seems promising to overcome the uncertainties associated with renewable energy production,
much remains to be done.
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markets.
From a theoretical point of view, the study of market coupling using bottom-up

approaches is still in its infancy. Oggioni and Smeers analyzed and simulated market
coupling in a toy network and a two zone splitted market assuming different zonal
decompositions, coordination of transmission system operators, and a lack of strategic
behaviors. Implementing a Nash equilibrium and social welfare, they observed that
market coupling can be weak and proposed a benchmark for market efficiency using the
nodal pricing system developed in the US [13], [21]. A well-known issue which makes
the development of economic models challenging concerns the occurence of negative
price spikes at times when very low demand meets high supply [7], [8]. The negative
price spike frequency has increased with the introduction of renewable energy which
production is very difficult to predict and hence, barely impossible to adapt to sudden
changes in the demand. The occurence of negative price spikes cannot be deemed a
residual phenomenon [7], [8]. Such spikes can also be generated by factors contributing
to exceptional slumps in demand, limited flexibility of power plant operations, limited
transmission capacities, etc.

Taking the end user point of view, market coupling should have a good influence on
his bill [22]: by maximizing the use of cross-border interconnection capacity, market
coupling increases the level of market integration and facilitates the access to low-cost
generation by consumers located in high-cost generation countries, such as Italy. How-
ever, the associated congestion management costs might tend to increase significantly
in the future given a higher share of intermittent renewable production and potential
divergences in the developments of transmission and generation infrastructure [13].

Article organization: The literature dealing with energy market economic models
can be roughly divided into two parts: market coupling mechanisms [2], [7], [8], [9],
[10], [20], [21], [22], as well as models for multi-period markets with uncertain sup-
ply [3], [11], [19]. In this article, we try to combine both approaches. We propose a
model taking into account the relative concentration of the intermittent energy sources
being aggregated. It is described in Section 2. Considering N ∈ N∗ coupled energy
markets, we first study how this scaling impacts the market optimal reserves, optimal
conventional energy productions, optimal prices on day ahead and spot markets in Sec-
tion 3. In practice, the markets do not communicate complete information on the value
of their reserve and renewable energy procurement to their neighboring markets [20].
This can be particularly disadvantageous for the providers seeking to minimize their to-
tal costs. Using numerical simulations, we show that, for each provider, the knowledge
of the other market renewable procurement forecast errors, minimizes his total cost.
Assuming that an external operator has the opportunity to certify such an information
according to a certain confidence level, we determine analytically the optimal price of
such a certified information in Section 4.

2 The model
We consider N ∈ N∗ neighboring energy markets. Each market i = 1, ..., N covers a
specific country. It is associated with a node and is interconnected to the other markets
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through lines managed by a transmission operator. The resulting graph constitutes the
underlying network, also known as the super grid. The market rules can be designed
in a decentralized manner provided each market maximizes selfishly its objective func-
tion, like in Germany for instance [13], or in a centralized manner where a central agent
rules the market. Each market i = 1, ..., N is composed of:

(i) Providers delivering energy to consumers characterized by their aggregated
demand

(ii) Conventional energy producers characterized by their aggregated cost func-
tion

(iii) Renewable (more specifically wind) energy producers characterized by their
aggregated production

Additionnally, we consider two time periods: tf , defining the occurence of the forward
market, and t0, defining the occurence of the real-time or spot market. The forward
market can take place the day before t0, in this case it will be called day-ahead market,
or it can take place months or years before t0. In this latter case, it is called long-term
market.

2.1 Description of the markets
2.1.1 Market i

It is defined by:

• di the end users’ total demand of energy at time t0

• wi the energy produced at time t0 by the market renewable energy producers.
This information is available to the market at t0 but not at tf . Furthermore,
we have: wi = ŵi − εi where ŵi is the forecast made at tf of the quantity
of renewable energy that market i producer will produce at t0. εi is a random
variable representing the forecast error, fεi its density function, with support
[Li;Bi] where Li ∈ {−∞} ∪ R and Bi ∈ R ∪ {+∞} and Fεi (resp. F εi =
1 − Fεi ) its direct (resp. complementary) cumulative distribution function. In
the rest of the article, the forecast generating density function will coincide with
a Gaussian distribution function centered in zero and of standard deviation σi.
More general distribution functions can, of course, be considered

• cfi (sfi ) = afi + bfi s
f
i (resp. c0i (s

0
i ) = a0

i + b0i s
0
i ) the marginal cost function of

conventional energy produced by market i and purchased at tf (resp. at t0). For
convenience, they are supposed to be linear in the supply [10], [14]. We assume
that a0

i > afi > 0 and that b0i > bfi > 0 guaranteeing that the marginal cost on
the spot market remains larger than on the day-ahead market

• qfi (resp. q0
i ) market i demand of conventional energy on forward (resp. spot)

markets
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• sfi (resp. s0
i ) market i supply of conventional energy on forward (resp. spot)

markets

The global market is characterized by the equilibrium between the supply and
the demand: qftot(N) =

∑
i=1,...,N

qfi =
∑

i=1,...,N

sfi (resp. q0
tot(N) =

∑
i=1,...,N

q0
i =∑

i=1,...,N

s0
i ) which is the global quantity of conventional energy exchanged on forward

(resp. spot) markets.
The amounts of energy purchased by market i at tf and at t0 are defined as follows:

qfi =
(
di − ŵi + ri

)
+

and q0
i =

(
di − wi − qfi

)
+

where ri is a reserve of energy

purchased on forward (lower cost) market because of uncertainty of supply at t0. Re-
serve ri is determined by the energy supplier on market i for the consumers’ demand
di to be satisfied at t0 at the lowest possible cost. Market i knows di and ŵi. Hence it
is equivalent for him to determine qfi or ri. The hypothesis that qfi > 0 holds as long
as the demand exceeds the average wind capacity. In the rest of the article, we will
assume that: qfi , di − ŵi + ri.

As usual in industrial organization theory [24], we make the assumption that the
prices pfi and p0

i paid by market i providers for the energy purchased at tf and t0
respectively equal the marginal costs2: pfi , cfi (sfi ) and p0

i , c0i (s
0
i ). As stated in the

Introduction, the fundamental idea behind market coupling is to create an integrated
energy market with uniform energy prices among the involved countries. Therefore, we
assume that a clearing price is reached at tf i.e., pfi = pfj , pf ,∀i, j = 1, ..., N, i 6=
j. Because the transfers are limited by the available transmission capacities, it will
be harder to align the market prices at t0: if there is equilibrium then p0

i = p0
j ,

p0,∀i, j = 1, ..., N, i 6= j ; otherwise there exists at least one market i ∈ {1, ..., N}
in which the provider pays p0

i 6= p0
j for j ∈ {1, ..., N} and j 6= i3. In the rest of

the article, we will make the hypothesis that, at tf , the markets are myopic and do not
anticipate the potential congestion of the lines. This implies that, at tf , they forecast
that the prices will be aligned at t0 on all the markets i.e., that no congestion occurs4.
Markets might learn sequentially the other market forecast errors and then, infer their
spot prices. However, such learning models are out of the scope of the present article.

2The coincidence of prices with marginal costs, even during periods of supply scarcity, can be justified
provided a capacity market [17] is deployed in one of the coupled markets, guaranteeing adequate levels of
capacity payment [2]. Alternative approaches for bid modeling can be found in [5].

3In case where p0i 6= p0j , a congestion rent CR = (p0i − p0j )t
0
j→i is paid to the transmission operator ;

t0j→i represents the traded flow of energy from market j to market i on spot market. CR is: positive if the
lower price market is exporting energy to the higher price market ; null if the interconnection line, binding
market i to market j, is not congested and p0i = p0j = p0 ; negative if the lower price market is importing
energy from the higher price market.

4Under this assumption, the congestion rent is expected to be null.
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2.2 Providers’ total cost, producers’ profits and social welfare
We define Ui, as the expected total cost, TCi, that the provider has to pay for his end
user energy consumption:

Ui = E
[
TCi

]
= qfi p

f + E
[
q0
i p

0
i

]
(1)

Then market i end users’ utility is inferred according to the relation: Ui0 − Ui where
Ui0 > 0 contains their net utility.

We let Πi be the profit of market i energy producer. It is defined as the difference
between the price paid by all the markets for the puchase of conventional energy and
the cost of the energy. We assume that all the supply is sold at each time. Then:

Πi = sfi p
f + E[s0

i p
0
i ]−

∫ sfi

0

cfi (s)ds− E
[ ∫ s0i

0

c0i (s)ds
]

(2)

Finally, we defineWi, the welfare of market i, as the difference between the producer’s
profit and the provider’s total cost:

Wi = Πi − Ui

The social welfare is defined as the sum of the welfares of all the involved agents:

W =
∑

i=1,...,N

Wi

2.3 Renewable energy modeling
For each market, its renewable wind energy production is a function of the number of
wind farms and of their concentration which is characterized by their spatial distribu-
tion over market i country. To determine the renewable energy procurement for market
i, we use Nair et al. model [19]. For market i, we introduce:

• αi the average production of a single wind farm

• γi the number of wind farms

• θi ∈ [ 1
2 ; 1] (resp. 1 − θi ∈ [0; 1

2 ]) a constant capturing the concentration (resp.
the scattering) of the wind farm locations over market i country. The more (resp.
the less) concentration, the more (resp. the less) correlation there is between the
wind farm production

We suppose that, at tf , αi is the best forecast of wind energy procurement of a wind
farm [19]. Then: ŵi(γi) = αiγi. The forecast error will depend on the wind penetra-
tion too, and we choose the coefficient θi so that εi(γi) = γθii ε̃i where ε̃i represents the
forecast error for the production of a single wind farm and σ̃i its standard deviation.
We propose the following interpretation for the scaling of θi: If the wind farms are
co-located they will all produce the same quantity of energy at the same time i.e., their
productions are strongly correlated. This is the case when θi = 1. This implies in turn
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that: εi = γiε̃i and that: ŵi = wi + γiε̃i. On the contrary, if they are spatially dis-
tributed so that their productions are independent from one another i.e., uncorrelated,
and under the assumption that the forecast errors are distributed according to Gaus-
sian distribution functions, the Central Limit Theorem tells us that: σi =

√
γiσ̃i [19].

Therefore, the wind farm productions are independent from one another if, and only if,
θi = 1

2 . Note that in case of more general forecast error distribution functions, it can be
interpreted as an approximation for γi large enough. Finally, in case where θi ∈] 1

2 ; 1[,
the wind farms are randomly located over the country and their spatial distribution is
intermediate between perfect independence and co-location.

With these notations, we obtain wi(γi) = ŵi(γi) − εi(γi) = γiαi − γθii ε̃i and
σi(γi) = γθii σ̃i.

In the next section, we will determine the optimal quantities of energy to be pur-
chased by the markets on the forward market, (qfi )i=1,...,N , or equivalently, their opti-
mal reserves, (ri)i=1,...,N . The optimization programs can be centralized by a supervi-
sor who determines the optimal reserves for all the markets or, it can be decentralized
provided each market optimizes its reserve selfishly. Furthermore, depending on the ac-
tors who take the decision and on the timing of the game, it can be relevant to minimize
the provider’s total cost or, to maximize the market welfare. Indeed, if we consider the
short term effect, the costs of the producers remain fixed and, in perfect concurrence,
they will bid at their marginal cost, so that the energy providers, who buy energy to the
producers, have most of the power decision and will try to minimize their own total
costs. But, if we consider longer term effects, the producers can choose to change their
costs, by investing in new technologies or by scaling their plant, in order to optimize
their own profits, so that the decision power is shared between the producers and the
providers. In this latter case, it is more appropriate to maximize the market welfare.

3 Providers’ total cost and social welfare optimization
We describe the solving of the provider’s total cost minimization in Subsection 3.1 and
of the market welfare maximization in Subsection 3.2, both under decentralized and
centralized management of the agents.

3.1 Optimization of the providers’ total costs
We start by determining the analytical expressions of the coupling prices for forward
and spot markets. Then substituting these values in the providers’ total costs, we derive
the optimal reserves under decentralized and centralized management.

3.1.1 Derivation of the coupling prices

We set: Af ,
∑

i=1,...,N

afi

bfi
and Bf ,

∑
i=1,...,N

1

bfi
. Furthermore, we make the assump-

tion that the marginal cost parameters at tf are chosen so that Bf 6= 0.
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Lemma 1. The coupling price for the forward market is: pf =

∑
i=1,...,N

qfi +Af

Bf
.

Proof of Lemma 1. Using the assumption of the supply and demand equilibrium
guaranteed by the market rules, we have:

qftot(N) =
∑

i=1,...,N

qfi =
∑

i=1,...,N

sfi

=
∑

i=1,...,N

pfi − a
f
i

bfi
under the assumption that pfi = cfi

=
∑

i=1,...,N

pf − afi
bfi

since the N markets are coupled at tf

= pf
( ∑
i=1,...,N

1

bfi

)
−

∑
i=1,...,N

afi

bfi

We infer from the following equations the forward price on the coupling zone: pf =∑
i=1,...,N

qfi +Af

Bf
.

We set: A0 ,
∑

i=1,...,N

a0
i

b0i
and B0 ,

∑
i=1,...,N

1

b0i
. Furthermore, we make the as-

sumption that the marginal cost parameters at t0 are chosen so that B0 6= 0. Using the
same principle as in Lemma 1 proof, we infer the spot price on the coupling zone:

Lemma 2. The N markets being coupled at time t0, the coupling price for the spot

market is: p0 =

∑
i=1,...,N

q0
i +A0

B0 .

3.1.2 Decentralized program

Each market i provider determines independently and simultaneously the quantity of
energy to purchase qfi or equivalently its reserve ri so as to minimize his procurement
total cost:

min
ri≥0

Ui = E
[
TCi

]
(3)

Market i provider determines the best answer, rBAi (r−i), where r−i is a N − 1 di-
mensional vector containing the reserves of all the providers except market i provider,
which minimizes its consumer total cost. The decentralized program output is a Nash
equilibrium, (rNEi )i=1,...,N , defined by: rNEi = rBAi (r−i),∀i = 1, ..., N.

Proposition 3. There exists a unique Nash equilibrium solution of Program 3.
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Proof of Proposition 3. We let: C0
i ,

∑
j=1,...,N,j 6=i

E
[
(εj − rj)|εj ≥ rj

]
+A0

B0 and

Cfi ,

∑
j=1,...,N,j 6=i

(dj − ŵj + rj) +Af

Bf
. The Lagrangian function associated to Pro-

gram 3 is: LUi (ri, µ1) = Ui − µri where µ ∈ R+ is a Lagrange multiplier. According

to the Karush-Kühn-Tucker (KKT) conditions, at the optimum in ri:
∂LUi (ri,µ)

∂ri
= 0,

ri = 0 or µ = 0.
We make the assumption that market i reserve is positive i.e., ri > 0. Therefore:

µ = 0. Going back to the definition of the provider’s total cost, as defined in Equa-
tion (1), it can be rewritten by substituting the coupling price expressions derived in

Lemmas 1 and 2: Ui =
(
di − ŵi + ri

) ∑
j=1,...,N

(
dj − ŵj + rj

)
+Af

Bf
+ E

[
(εi −

ri)+

∑
j=1,...,N

(εj − rj)+ +A0

B0

]
. Differentiating Ui with respect to ri, we obtain:

∂Ui
∂ri

=

∑
j=1,...,N

(dj − ŵj + rj) +Af

Bf
+

1

Bf
(di − ŵi + ri)

+ C0
i

∂

∂ri
E
[
(εi − ri)|εi ≥ ri

]
+

1

B0

∂

∂ri
E
[
(εi − ri)2|εi ≥ ri

]
(4)

But: ∂
∂ri

E
[
(εi − ri)|εi ≥ ri

]
= −F̄εi(ri) and

∂

∂ri
E[(εi − ri)2|εi ≥ ri] =

∂

∂ri

∫ +∞

ri

(xi − ri)2fεi(xi)dxi

= 2ri

∫ +∞

ri

fεi(xi)dxi − 2

∫ +∞

ri

xifεi(xi)dxi

= 2riF̄εi(ri)− 2E
[
εi|εi ≥ ri

]
By substitution in ∂Ui

∂ri
expression, we obtain the simplified expression: ∂Ui

∂ri
=

2
Bf

(
di − ŵi + ri

)
+ Cfi +

(
2ri
B0 − C0

i

)
F̄εi(ri) − 2

B0E
[
εi|εi ≥ ri

]
. Differentiating

twice Ui with respect to ri we obtain: ∂
2Ui
∂r2i

= 2
Bf

+
(
C0
i − 2ri

B0

)
fεi(ri)+ 2

B0 F̄εi(ri)+
2
B0 rifεi(ri) = 2

Bf
+ C0

i fεi(ri) + 2
B0 F̄εi(ri) ≥ 0. This proves that r−i being fixed,

functionUi is convex with respect to ri. This implies that r−i being fixed, the optimiza-
tion Program 3 admits a unique best answer, for every market i = 1, ..., N . Therefore,
it admits a unique Nash equilibrium.
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3.1.3 Centralized program

A supervisor determines theN market reserves (ri)i=1,...,N minimizing the sum of the
providers’ total costs over the N markets:

min
(ri)i=1,...,N

U = E
[ ∑
i=1,...,N

TCi

]
s.t. ri ≥ 0,∀i = 1, ..., N (5)

Proposition 4. There exists a unique global optimum minimizing function U .

Proof of Proposition 4. The Lagrangian function associated to Program 5 is:
LU
(

(ri)i, µ̃
)

= U −
∑
i=1,...,N µ̃iri where µ̃ = (µ̃i)i=1,...,N ∈ RN+ are Lagrange

multipliers. According to KKT conditions, at the optimum in (ri)i:
∂LU

(
(ri)i,µ̃

)
∂rj

=

0,∀j = 1, ..., N , ri = 0 or µ̃i = 0,∀i = 1, ..., N.
We make the assumption that all the reserves are positive i.e., ri > 0,∀i = 1, ..., N.

Going back to the definition ofU , we obtain: U = E
[ ∑
i=1,...,N

TCi

]
=

∑
i=1,...,N

E
[
TCi

]
=

∑
i=1,...,N

Ui. The differentiation of U with respect to ri gives us:

∂U

∂ri
=

1

Bf

(
di − ŵi + ri

)
+

∑
j=1,...,N

dj − ŵj + rj
Bf

+ Cfi

− F̄εi(ri)
∑

j=1,...,N,j 6=i

E
[ (εj − rj)

B0
|εj ≥ rj

]
+
(2ri
B0
− C0

i

)
F̄εi(ri)

− 2

B0
E
[
εi|εi ≥ ri

]
(6)

Differentiating twice U with respect to ri we obtain:

∂2U

∂r2
i

=
2

Bf
+
(
C0
i +

∑
j=1,...,N,j 6=i

E[(εj − rj)|εj ≥ rj ]
B0

)
fεi(ri) +

2

B0
F̄εi(ri) ≥ 0

and for any j = 1, ..., N, j 6= i: ∂2U
∂ri∂rj

= 2
Bf

+ 2
B0 F̄εi(ri)F̄εj (rj) ≥ 0. Hence, the

Hessian matrix associated to U is non-negative. This implies that function U is convex
with respect to each of its component. Therefore, the minimization of U over RN+
admits a unique global optimum.
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3.2 Optimization of the welfare
Substituting the coupling prices derived in Lemmas 1 and 2 in market i producer’s
profit Πi defined in Equation (2), we obtain:

Πi = sfi

∑
j=1,...,N

(
dj − ŵj + rj

)
+Af

Bf
+ s0

iE
[ ∑
j=1,...,N

(εj − rj)+ +A0

B0

]
− afi s

f
i − b

f
i

(sfi )2

2
− a0

i s
0
i − b0i

(s0
i )

2

2
(7)

3.2.1 Optimal conventional energy procurement

The conventional energy procurement can be optimized before the market takes place
i.e., at tf and t0. It should be optimized so as to maximize the producer profit at tf and
at t0. It is straightforward to observe, judging by Equation (7), that market i producer’s
profit at tf (resp. t0) is concave in sfi (resp. s0

i ) since it is a second order polynomial

equation in sfi (resp. s0
i ) with a negative highest order coefficient: −b

f
i

2 (resp. −b
0
i

2 ).

Proposition 5. Over market i, the supply of conventional energy at time tf maximizing

the producer’s profit is: sf∗i = 1

bfi

{ ∑
j=1,...,N

(dj − ŵj + rj) +Af

Bf
− afi

}
and, at time

t0: s0∗
i = 1

b0i

{ ∑
j=1,...,N

E[(εj − rj)|εj ≥ rj ] +A0

B0 − a0
i

}
.

Proof of Proposition 5. Before market takes place at tf , the producer optimizes
his conventional energy procurement so as to maximize his profit: Πi. But, as already
mentioned, Πi is a second order polynomial equation in sfi with a negative highest

order coefficient: − b
f
i

2 . Therefore Πi admits a unique maximum in sfi . It is obtained as
solution of ∂Πi

∂sfi
= 0. The producer uses the same principle to determine s0

i just before
market occurs at t0.

3.2.2 Decentralized program

Each market i determines independently and simultaneously its reserve, ri, so as to
maximize its welfare:

max
ri≥0

Wi (8)

Proposition 6. Program 8 admits a Nash equilibrium if, and only if, there exists ri ≥ 0

such that ∂Ui
∂ri

=
sfi
Bf
− s0i

B0 F̄εi(ri) and
(
s0i
B0 − C0

i

)
fεi(ri) ≤ 2

(
1
Bf

+ 1
B0 F̄εi(ri)

)
.

Furthermore, if
(
s0i
B0 − C0

i

)
fεi(ri) ≤ 2

(
1
Bf

+ 1
B0 F̄εi(ri)

)
,∀ri ≥ 0, it admits a

unique Nash equilibrium.
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Proof of Proposition 6. We start by assuming that market i reserve is positive. To
solve Program 8, we need to determine the zeros of the differentiate of Wi with respect
to ri:

∂Wi

∂ri
= −∂Ui

∂ri
+
sfi
Bf
− s0

i

B0
F̄εi(ri) (9)

Differentiating twice Wi with respect to ri, we obtain: ∂2Wi

∂r2i
= − 2

Bf
+
(
s0i
B0 −

C0
i

)
fεi(ri)− 2

B0 F̄εi(ri). ThereforeWi admits a minimum in ri if, and only if, ∂Wi

∂ri
= 0

and ∂2Wi

∂r2i
≤ 0. Furthermore, Wi is concave if, and only if,

(
s0i
B0 − C0

i

)
fεi(ri) ≤

2
(

1
Bf

+ 1
B0 F̄εi(ri)

)
,∀ri ∈ R+. IfWi is concave in ri, it admits a unique maximum in

ri i.e., a unique best answer to r−i. Therefore, the resulting Nash equilibrium defined,
for each market, as the best answer to the other markets’ reserves, is unique.

3.2.3 Centralized program

A supervisor determines theN market reserves (ri)i maximizing the sum of the market
welfares i.e., the social welfare:

max
(ri)i

W =
∑

i=1,...,N

Wi

s.t. ri ≥ 0,∀i = 1, ..., N (10)

Proposition 7. Program 10 admits a global optimum if, and only if there exists (ri)i ∈

RN+ such that ∂U
∂ri

=
∑

j=1,...,N

( sfj
Bf
−

s0
j

B0

)
F̄εi(ri) and

∑
j=1,...,N

s0
j

B0
fεi(ri) ≤

∂2U

∂r2
i

.

Furthermore, if
∑

j=1,...,N

s0
j

B0
fεi(ri) ≤

∂2U

∂r2
i

,∀ri ≥ 0,∀i = 1, ..., N , it admits a unique

global optimum.

Proof of Proposition 7. Assuming that all the reserves are positive, to solve Pro-
gram 10, we need to determine the zeros of the differentiate of W with respect to
ri,∀i = 1, ..., N :

∂W

∂ri
= −∂U

∂ri
+

∑
j=1,...,N

sfj
Bf
−

∑
j=1,...,N

s0
j

B0
F̄εi(ri),∀i = 1, ..., N (11)

Differentiating twice W with respect to ri, we obtain:

∂2W

∂r2
i

= −∂
2U

∂r2
i

+
∑

j=1,...,N

s0
j

B0
fεi(ri)

and with respect to rj , j 6= i: ∂2W
∂ri∂rj

= − ∂2U
∂ri∂rj

≤ 0. Therefore,W admits a minimum

in (ri)i if, and only if, ∂W
∂ri

= 0 and ∂2Wi

∂r2i
≤ 0,∀i = 1, ..., N. Futhermore, W is

13



concave in (ri)i if, and only if,
∑

j=1,...,N

s0
j

B0
fεi(ri) ≤

∂2U

∂r2
i

,∀ri ∈ R+,∀i = 1, ..., N .

3.3 Algorithm implementation
In practice, we distinguish two cases for the optimization of the reserve of market
i = 1, 2:

Case 1: market i provider has no a priori about the beliefs of market j =
1, 2, j 6= i provider. In that case, market i provider will assume that market
j provider has the same beliefs as him and he will optimize his reserve through
a joint gradient descent algorithm with market j

Case 2: market i provider knows that market j provider is making an error about
his demand and offer parameters σi, di or ŵi. In that case, market i provider
will optimize his reserve through a two step game where market j provider opti-
mizes his reserve first and market i provider reacts with his true parameters. This
second case will be described more formally in Subsections 4.1 and 4.2.

We now describe the algorithms used for each case.
In Case 1, the idea behind the gradient descent algorithm is to find the optimal

reserves by following the direction of the gradient of the total costs for all the markets.
Different variations of the gradient descent algorithm exist but we have chosen the
Fletcher and Reeves one [4]. It is robust, converges quite fast and does not require to
calculate the Hessian of the utilities.

We let: Uv =
(
U1 U2

)T
be the vector containing the total costs of markets 1 and

2 and DUv =
(
∂U1

∂r1
∂U2

∂r2

)T
be the vector of the differentiates of the total costs with

respect to the market reserves. In practice, we start with initial reserves r0
i = 10 for

all i = 1, ..., N and with initial gradient direction d1
i = −∂Ui∂ri

(r0) for all i = 1, ..., N .
Then, at each step k ≥ 1, we define:

• rk = rk−1 + skd
k where sk is chosen such that Ui(rk) is maximal

• dk+1 = −DUv(r
k) + ‖DUv(rk)‖2

‖DUv(rk−1)‖2 d
k

Then, the sequence rk converges towards the optimal reserves. This optimum can be
a local optimum. We use a simple criterion to check if the sequence has converged: if
‖rk − rk−1‖ ≤ ε we stop the algorithm loop. In our case, we have fixed ε = 10−4.

To choose the optimum sk at each step k in the previous algorithm, we use a
dichotomia algorithm. The objective is to find the point where the differentiate of
Uv(r

k−1 + sdk) in s equals 0. We start off by locating a first point where this differ-
entiate is negative. We start off with h1 = 1 and we double the value i.e., hk = 2hk−1,
until ∂Uv(rk−1+sdk)

∂s |s=hk ≤ 0. Then, we select xmin = hk−1 and xmax = hk. We
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know that the optimum is located between xmin and xmax. Then, we divide this bound-
ing interval by two, at each step, by calculating ∂Uv(rk−1+sdk)

∂s |
s=

xmin+xmax
2

and up-
date the values of xmin and xmax depending on the sign of the result. We stop when
the difference between xmin and xmax is inferior to ε.

In Case 2, if market i knows that market j is mistaking regarding its demand and
renewable energy procurement parameters: di, σi or ŵi, all happens as if market j
would optimize its reserve first and market i would react. More precisely, i assumes
that market j selects its optimal reserve r?j as the solution of Case 1, described above,
with its biased beliefs about market i. Then market i reacts by selecting its optimal
reserve with the reserve of j fixed to r?j and its demand and offers parameters fixed to
their true values. In our case, we select the point where the differentiate of Ui in ri
equals 0, all other values being fixed.

To find this optimum, we use, once more, a dichotomia algorithm. We start off by
locating a first point where this differentiate is negative. We start with h1 = 1 and,
at each iteration k, we double the value i.e., hk = 2hk−1, until

∂Ui(ri,r
?
j )

∂ri
|ri=hk ≤ 0.

Then we select xmin = hk−1 and xmax = hk. We know that the optimum is located
between xmin and xmax. Then, we divide this bounding interval by two, at each step, by
calculating

∂Ui(ri,r
?
j )

∂ri
|
ri=

xmin+xmax
2

and update the values of xmin and xmax depending
on the sign of the result. We stop when the difference between xmin and xmax is inferior
to ε.

3.4 Numerical illustrations
3.4.1 Analytical expressions of the forecast errors

Expressions of the providers’ total costs, of the market welfares and of their differenti-
ates cannot be used in the forms obtained in Subsections 3.1 and 3.2 to perform numer-
ical simulations since they contain terms such as E

[
εi|εi ≥ ri

]
, E
[
(εi − ri)|εi ≥ ri

]
and E

[
(εi− ri)2|εi ≥ ri

]
. However, since the forecast errors εi are distributed accord-

ing to Gaussian distribution functions centered in 0 and of standard deviation σi, it is
possible to express the above conditional expectations as functions of the incomplete
gamma function. We recall the expression of the incomplete gamma function with
lower bound: P (a, x) = 1

Γ(a)

∫ +∞
x

ta−1 exp(−t)dt where x ∈ R+ is the non-negative
lower bound of the integral, a ∈ R+ and Γ(a) is the Gamma function evaluated in
a. After a change of variables, the above mentioned conditional expectations can be
rewritten:

E
[
εi|εi ≥ ri

]
= σi√

2π
Γ(1)P (1,

r2i
2σ2
i
)

E
[
(εi − ri)|εi ≥ ri

]
= σi√

2π
Γ(1)P (1,

r2i
2σ2
i
)− riF̄εi(ri)

E
[
(εi − ri)2|εi ≥ ri

]
=

σ2
i√
π

Γ( 3
2 )P ( 3

2 ,
r2i

2σ2
i
)− σi√

2π
Γ(1)P (1,

r2i
2σ2
i
) + r2

i

By substitution in the providers’ total costs, in the market welfares and in their differ-
entiates, we obtain expressions that are computationally tractable.
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Numerical simulations are run for N = 3, α = 1, afi = 1
N , b

f
i = 10−2 afi , a

0
i =

10 afi , b
0
i = afi ,∀i = 1, ..., N and homogeneous demands: di = 100,∀i = 1, ..., N.

3.4.2 Impact of the intermittent source number and concentration and of their
production variability on the utilities and on the welfares

Assuming that all theN = 3 markets have identical number of wind farms and concen-
tration, we capture the impact of these parameters on the optimal reserves, on the sum
of the providers’ total costs U and on the social welfare W in Figures 1 (a) and (b).
We observe in Figure 1 (a) that, at the optimum, the reserve purchased by each market
increases as a function of the number of wind farms hold by the market and of their con-
centration. Going back to the forecast error definition introduced in Subsection 2.3, we
check analytically that the larger the number of wind farms γi and their concentration
θi are, the higher the uncertainty associated with wind energy procurement. Therefore,
the increase of γi and θi forces the market to increase its level of reserve at time tf .
Moreover, juding by Figure 1 (a), we observe that reserves are larger under welfare
maximization than under total cost minimization, for the same set of parameters.

As already mentioned, the forecast error relies on the wind farm concentration, θi.
Therefore, depending on θi, market i might over-estimate or, on the contrary, under-
estimate its renewable energy production. In case of over-estimation, more conven-
tional energy has to be bought at time t0 causing the total procurement cost to increase.
On the contrary, in case of under-estimation, the market realizes at time t0 that too
much energy has been bought at time tf , which represents a waste of money. In both
cases, the total cost Ui (resp. welfare Wi) should be increasing (resp. decreasing) as
functions of θi. This coincides with the observations in Figure 2 (a). The same varia-
tions are observed for the sum of the providers’ total costs U (resp. the social welfare
W ) in Figure 1 (b). The impact of γi on U and W is less straightforward. Three trends
can be observed in Figure 1 (b):

• If θi < 0.8, U (resp. W ) is decreasing (resp. increasing) as a function of γi

• If θi > 0.9, U (resp. W ) is increasing (resp. decreasing) as a function of γi

• If 0.8 ≤ θi ≤ 0.9, U (resp. W ) is constant in γi

An increase of the number of wind farms and hence, of average renewable procure-
ment, leads to a global decrease of the quantity of conventional energy which has to
be bought by each market, on the pool markets. This is a plausible explanation for the
welfare increase as a function of γi.

To better understand the impact of γi on each market, we concentrate on its spe-
cific effect on each market in Figure 2 (b), for spatially independent (θ = 1

2 ) and
co-located (θ = 1) wind farms. If renewable sources are located over the country so
that their productions are independent of one another, we observe that Ui (resp. Wi) is
a decreasing (resp. increasing) function of γi. An increase of γi causes a decrease of
conventional energy to be purchased by market i on the pool markets and hence a de-
crease of the clearing price which, in turn, leads to a decrease of the other markets total
cost Uj , j 6= i and an increase of the welfare Wj , j 6= i of the other markets. On the
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contrary, if wind farms are nearly co-located, the total cost Ui (resp. the welfareWi) of
market i is an increasing (resp. decreasing) function of the number of wind farms γi:
the forecast error being so large, due to a large θ, and still increasing in the number of
wind farms, it has the dominant effect over the cost reduction caused by the renewable
production increase. On the other markets, the increase of Uj , j 6= i and decrease of
Wj , j 6= i are consequences of variations of the clearing prices and renewable energy
procurement.

3.4.3 Renewable energy penetration

In this subsection, we consider a single scenario for wind energy procurement over
each market using the relation introduced in Subsection 2.3: wi = αiγi − εi. We
generate a single realization for the forecast error εi according to the Gaussian density
function centered in 0 and of standard deviation σi. We assume that all the markets
have the same parameters i.e., σ̃i = 1.1, γi = 20, θi = 0.65.

Renewable energy penetration is measured as the ratio between the wind energy
production over the sum of conventional supplies at times t0, tf and renewable pro-

duction i.e.,
∑

i=1,...,N

(
q0
i + qfi + wi

)
.

We suppose to be in the case where the amount of energy purchased by the markets
at t0 is positive i.e., di − wi − qfi > 0 and that the N = 3 markets share identi-
cal parameters: σ̃, γ, θ. The assumption of positivity of q0

i implies that the renewable

energy penetration ratio can be simplified to give:

∑
i=1,...,N

(ŵi − εi)∑
i=1,...,N

di
. The expecta-

tion of the ratio taken with respect to (εi)i is:

∑
i=1,...,N

ŵi∑
i=1,...,N

di
= αγ

d since E[εi] = 0

by assumption and its variance: Nσ2
i( ∑

i=1,...,N

di

)2 since the (εi)i are independent from

one another by assumption. It is straightforward to infer the ratio standard deviation:{
−

√
Nσi∑

i=1,...,N

di
; +

√
Nσi∑

i=1,...,N

di

}
⇔
{
− γθσ̃√

Nd
; γθσ̃√

Nd

}
.

We check in Figures 3 (a), (b), (c) that the sampled renewable penetration rate
varies around the expected average renewable penetration rate and that the standard
deviation values framed it by higher and by inferior values. Furthermore, the number
of wind farms makes the expected penetration rate increase. Their concentration and
the forecast error standard deviation largely impact the variation of this rate around its
expected value.
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(a)

(b)

Figure 1: For these plots, we have assumed that there are N = 3 markets sharing the same
parameters (γi, θi) and centrally managed. We have set: σ̃i = 1, 1, ∀i = 1, 2, 3. In (a), we
have represented the optimal reserves as functions of the number of wind farms and of their con-
centration. Whereas in (b), we have captured the number of wind farms and their concentration
impact on the social welfare W and on the sum of the providers’ utilities U .
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(a)

(b)

Figure 2: For these plots, we have assumed that there are N = 3 markets sharing the same
forecast error standard deviation σ̃i = 1.1, ∀i = 1, 2, 3 and centrally managed. Additionnally,
the number of wind farms and their concentration are identical on markets 2 and 3 i.e.: γ2 =
γ3, θ2 = θ3. We have represented the welfare W1 and the total cost U1 of market 1 as functions
of the number of wind farms in (a) and of their concentration in (b), on each market.

19



(a)

(b)

(c)

Figure 3: We have represented the expectation of the renewable penetration rate with an in-
terval of variation corresponding to the associated standard deviation, and a sampled renewable
penetration rate. The following conventions are used: ŵtot ,

∑
i ŵi and dtot ,

∑
i di.
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4 The price of information
In this section, we restrict to the case N = 2 markets.

According to Equations (4), to compute their optimal reserves in case of decentral-
ized total cost minimization, the provider on each market needs to know the optimal
reserves and the standard deviations of the forecast errors on all the other markets. In
Section 3, we have assumed that, on each market, reserves and forecast error standard
deviations were public knowledge. However, the providers may have incentives to hide
these informations provided the resulting biases, introduced in the other providers’ op-
timal reserves, enable them to decrease their total cost [20].

We introduce a Principal, who can be assimilated with a server, centralizing all the
information regarding the producers’ forecast error standard deviations. In practice, the
providers report the forecast error standard deviations of their producer, to the Princi-
pal, who makes them public knowledge. We let σ̄i ∈ R+ be the report made by market
i provider, to the Principal, regarding his producer’s forecast error standard deviation.
This report can be biased implying that: σ̄i 6= σi or unbiased in which case: σ̄i = σi.

The market provider then optimizes his reserve using as input his information re-
garding the other market producer’s forecast error standard deviation. If the other mar-
ket producer’s forecast error standard deviation is private, the provider will need to use
the report that the other market provider has made to the Principal.

We distinguish between two cases. First, in Subsection 4.1, market 2 has full ac-
cess to the information i.e., he knows σ1, σ2 whereas market 1 has only access to its
own producer’s forecast error standard deviation: σ1. In this first case, the information
is asymmetric. The second case, described in Subsection 4.2, coincides with symmet-
ric private information i.e., on each market, the provider has only access to his own
producer’s forecast error standard deviation and not to the other producers’ ones.

In many industries, it has become common practice to sell and buy access to the
private information of one’s competitors or of targeted consumers. Such information
might be collected through surveys, sensors deployed on a communication network,
measurements performed in electricity production parks, etc. These investigations are
usually performed by a certification operator who certifies the delivered information
according to a certain confidence level.

The accuracy of the information depends on the importance of the deployed investi-
gation means: if a survey is used, more accurate information can be gathered provided
a larger sample is questionned or provided more relevant questions are added to the
survey ; in case of decentralized measurements, more sensors can be deployed over
the communication network to measure the load of the links where the traffic flows
of a rival provider are routed, etc. Of course, these improvements should increase the
information price. Usually, it is the certification operator who sets the price depending
on the accuracy of his information. The aim of Subsection 4.3 will be to determine
the optimal price of information on the other market producer’s forecast error standard
deviation as a function of the expected confidence level.
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4.1 Information asymmetry
First, we assume that market 1 provider has access to his own producer’s standard
deviation σ1 but needs to forecast the other market producer’s standard deviation: σ2

while market 2 has access to the whole information.

Decentralized Reserve Optimization with Information Asymmetry

Agents: Market 1 and market 2 providers

Information:

– σ1 known by market 1 and by market 2

– σ2 known by market 2 solely

– σ̄2 market 2’s reported standard deviation on its producer’s forecast error

(i) Market 1 provider determines r1(σ1, σ̄2) as solution of Program 3 (resp. 8) in σ1, σ̄2

assuming that market 2’s optimal reserve is r2(σ̄2, σ1) obtained solution of Program 3
(resp. 8) in σ̄2, σ1.

(ii) Simultaneously and independently, market 2 provider determines r2(σ1, σ2) as so-
lution of Program 3 (resp. 8) in σ1, σ2 assuming that market 2’s optimal reserve is
r1(σ1, σ̄2) obtained solution of Program 3 (resp. 8) in σ1, σ̄2.

Figure 4: Evolution of the reserve and utilities as functions of market 2 producer’s reported
standard deviation.

In Figure 4, we have represented the optimal reserves and utilities for both pro-
ducers. The true forecast error standard deviations are: σ1 = σ2 = 50. We observe
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that market 1 provider has incentives to know the true standard deviation of market 2
producer since his total cost is minimal in this value. However, market 2 provider has
no incentives to report his true standard deviation since his total cost is decreasing in
the standard deviation. Therefore, he will most probably exaggerate his forecast error
standard deviation when reported to the Principal.

4.2 Private information

Decentralized Reserve Optimization with Private Information

Agents: Market 1 and market 2 providers

Information:

– σ1 known by market 1 solely

– σ2 known by market 2 solely

– σ̄1 market 1 provider’s reported standard deviation on his producer’s forecast error

– σ̄2 market 2 provider’s reported standard deviation on his producer’s forecast error

(i) Market 1 provider determines r1(σ1, σ̄2) as solution of Program 3 (resp. 8) in σ1, σ̄2

assuming that market 2’s optimal reserve is r2(σ̄2, σ̄1) obtained solution of Program 3
(resp. 8) in σ̄2, σ̄1.

(ii) Simultaneously and independently, market 2 provider determines r2(σ̄1, σ2) as so-
lution of Program 3 (resp. 8) in σ̄1, σ2 assuming that market 1’s optimal reserve is
r1(σ̄1, σ̄2) obtained solution of Program 3 (resp. 8) in σ̄1, σ̄2.

In Figure 5, we have represented each market producer’s total cost, the sum of the
market producers’ total costs and the difference of the market producers’ total costs.
The forecast error standard deviations which stand for private information are: σ1 =
σ2 = 90. We observe that on each market, the provider’s total cost is minimum when
the producer knows the other market producers’ true standard deviation and biases
by lower value his own standard deviation when reported to the certification operator.
However, if both producers agree to cooperate they minimize the sum of their total
costs by revealing their private information. Furthermore, the resulting minimum is
lower than the sum of the minimum obtained when each market provider minimizes
selfishly his total cost by deciding wich information to reveal.

4.3 The price of information
We take the point of view of market i producer.

To obtain an estimate of market j, j 6= i producer’s forecast error standard devia-
tion, the certification operator needs to perform a sequence of n observations: εj(k), k =
1, ..., n of market j producer forecast error. We let σ̂j be an estimate of market j pro-
ducer forecast error standard deviation, obtained through a second order moment esti-
mation. According to Agard [1], we have a probability C(δ) 6= 0, also called confidence
level, that, with n large enough, σ̂j = σj belongs to the interval

[
− δσj√

n
1
2

{√
πΓ( 5

2 )

Γ2( 3
2 )
−
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Figure 5: From left to right and top to bottom, we have represented Market 1 provider’s total
cost, Market 2 provider’s total cost, the sum of the market providers’ total costs and the difference
of their total costs as functions of their reported forecast error standard deviation. The demand
on each market is defined as: d1 = 100 and d2 = 40.

1
} 1

2

;
δσj√
n

1
2

{√
πΓ( 5

2 )

Γ2( 3
2 )
− 1
} 1

2
]
. C(δ) coincides the probability that the random variable

distributed according to a Gaussian density function centered in 0 and of standard de-
viation 1 belongs to the interval [−δ; +δ] [1]. Therefore, it can be rewritten as follows:
C(δ) = FN (0;1)(δ) − FN (0;1)(−δ) where FN (0;1) is the cumulative distribution func-
tion associated to the Gaussian distribution centered in 0 and of standard deviation 1.

It is straightforward to observe that the increase of C(δ) makes this interval increase
but that the accuracy of the forecast decreases which implies in turn that the information
price should decrease. Therefore, for a confidence level C(δ), we define the information
price as: Φ(δ, σ̄j) ≥ 0 and φ(δ, σ̄j)→ 0 when δ → +∞.

Proposition 8. Market j producer having reported σ̄j as forecast error standard de-
viation and the confidence level being set to C(δ), the price of the information is:

Φ(δ, σ̄j) = 1
B0

exp(−
r2j

2σ̃2
j

)

√
2π

[1 +
r2j

2
√

2π
1
σ̃2
j
]
(

max{σ̄j ; σ̂j} − min{σ̄j ; σ̂j}
)

where σ̃j ∈

[min{σ̄j ; σ̂j}; max{σ̄j ; σ̂j}] is such that: 1
B0

exp(−
r2j

2σ̃2
j

)

√
2π

[1 +
r2j

2
√

2π
1
σ̃2
j
] =

Ui(σ̂j)−Ui(σ̄j)
σ̂j−σ̄j

and σ̂j =
δσj√
n

1
2

{√
πΓ( 5

2 )

Γ2( 3
2 )
− 1
} 1

2

.

Proof of Proposition 8. We introduce the opportunity cost for market i producer
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to buy information. It is defined as the difference between the benefit resulting from
the knowledge of the private standard deviation of the other market producer and the
expected price of information depending on the required confidence level C(δ). There-
fore, the opportunity cost for market i producer to buy information is:{

Ui(σ̄j)− Ui(σ̂j)
}

︸ ︷︷ ︸
Benefit resulting from the knowledge of σj

−Φ(δ, σ̄j). We observe that the producer will buy in-

formation provided his opportunity cost remains non-negative and that the certification
operator will propose the highest admissible price. Hence, we infer the analytic expres-
sion for the optimal expected information price: Φ(δ, σ̄j) =

{
Ui(σ̄j)−Ui(σ̂j)

}
.Using

the Finite Increment Theorem, we infer that there exists σ̃j ∈ [min{σ̄j ; σ̂j}; max{σ̄j ; σ̂j}]
such that ∂Ui(σj)∂σj

|σj=σ̃j =
Ui(σ̂j)−Ui(σ̄j)

σ̂j−σ̄j . But, using the definition of the incomplete

gamma function, Ui can be rewritten: Ui =
(
di−ŵi+ri

)∑
j

(dj − ŵj + rj) +Af

Bf
+

1
B0

∑
j 6=i

[ σj√
2π

exp(−
r2
j

2σ2
j

)− rjF̄εj (rj)
][ σi√

2π
exp(− r2

i

2σ2
i

)− riF̄εi(ri)
]

+
A0

B0

[ σi√
2π

exp(− r2
i

2σ2
i

)−riF̄εi(ri)
]

+
1

B0

[ σ2
i√
π

Γ(
3

2
)P (

3

2
,
r2
i

2σ2
i

)−2ri
σi√
2π

Γ(1)P (1,
r2
i

2σ2
i

)+r2
i

]
.

Assuming that the information price is paid a posteriori i.e., after the estimate σ̂j

has been delivered to market i provider, we obtain: ∂Ui
∂σj

= 1
B0

exp(−
r2j

2σ2
j

)

√
2π

[1 +
r2j√
2π

1
σ2
j
]

which differentiate with respect to σj is always increasing. Therefore, the linear coef-
ficient of the information price is increasing in σ̃j .

5 Conclusion
In this article, we aim at studying the impact of renewable energy on N ∈ N∗ coupled
electricity markets. More precisely, we study how the scaling of the relative concen-
tration of the intermittent sources being aggregated, impacts the coupled markets op-
timal reserves, optimal conventional energy productions, prices on day ahead and spot
markets. In a context of incomplete information on the values of the reserves and re-
newable energy productions, we show, using numerical simulations, that markets have
incentives to buy information regarding the other markets’ variability of renewable
production. The optimal price at which this information should be certified is derived
analytically. It depends on the associated confidence level.

In extensions of our article, it might be interesting to take into account the available
transmission capacity constraints and also, not only the concentration of the wind farms
but also their spatial locations using appropriate databases. However, this would limit
the analytical derivations and require the extensive use of simulations. Another point
that needs to be mentioned concerns the wind energy procurement which relies heav-
ily on the density which generates the forecast error. Alternative approaches, based
on stochastic programming, were wind energy procurement could be associated with
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a random variable generated according to an unknown density function might be en-
visaged [12], [23]. Monte Carlo sampling could be of interest to provide an accurate
estimation of the stochastic programming problem. Futhermore, the opportunity to as-
sociate accurate probabilities to the scenario occurence would enable the improvement
of the algorithm performance [23] ; potentially using online observations. Finally, the
existence of polynomial time algorithms providing robust solutions to uncertain linear
programming problems has been proven under some assumptions about the uncertainty
set geometry [3] ; extensions to our problem would be relevant for practical applica-
tions.
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