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In a context of market coupling, we study analytically the impact of wind farm concentration and of the uncertainty resulting from the introduction of renewable energy on the procurement total cost, on the market welfare and on the ratio of renewable procurements to conventional supplies. Markets having incomplete information on the quantities of renewable energy produced by the other markets, we show that the providers have incentives to buy information regarding the variability of the other markets' productions. Provided this information could be certified and sold by an external operator, we derive analytically the optimal price for such certified information, depending on the required confidence level.

Introduction

Following energy market liberalization, market coupling, developed jointly by power exchanges and transport operators, aims at improving the use of available cross-border capacity and promises a greater harmonization of prices between countries. It creates a unique platform for daily electricity transactions. It implicitly allocates interconnection capacity in the day-ahead and spot timescales until a uniform market clearing price is achieved or the available capacity is fully utilized. In this latter case i.e., when capacity becomes limiting, a congestion rent is paid to the grid operator to give him incentives to invest in capacity upgrading. The increasing introduction of renewable energy in the energy mix, required by the governments, complexifies the coupling mechanisms, due to their strong dependence on exogenous factors such as weather conditions. In the following parts of the Introduction, we describe the major steps of the energy market liberalization, the main challenges associated with the increasing penetration of renewable energy and, finally, give some insights about existing coupling mechanisms.

Energy market liberalization: Energy markets, and especially electricity markets, were traditionally considered as natural monopolies, due to the huge investments required and relatively low marginal costs, and hence they were managed by national 1 firms that owned both production plants and distribution network. Some interconnections were created between the States, but only for adjustment purpose.

However, since the end of the 1990s the European Union (EU) decided to progressively liberalize energy markets, i.e., gas and electricity, and to create a global competitive European market. To that purpose, the EU set three versions for the energy packages. The last one, adopted in 2009, concerns:

First, the effective separation between transport network management, on the one hand, and production and energy supply, on the other hand, in order to avoid that any single firm took the control of the entire production, of the supply chain and also, to promote the competition Second, the regulation, especially through the creation of the Agency for the Cooperation of Energy Regulators [START_REF]European Parliament and of the Council of 13-th July 2009 establishing an Agency for the Cooperation of Energy Regulators[END_REF], in order to enhance the interconnections between energy markets and to increase the security of the supply in case of blackouts Third, the cooperation between transmission system operators In France, one consequence of the electricity market liberalization is that the different activities that were handled by a sole national company, such as production, transport, distribution and electricity selling, are now dispatched between several firms. Precisely, production and distribution are provided by private companies, whereas transport remains a national regulated activity. Many actors are involved on each market: producers, who sell energy on the market ; providers, who buy energy on the market and distribute it to direct consumers ; direct consumers, which demand will be aggregated ; transmission system operators who manage the transport network. Another consequence is that the prices that were set by the State are now determined directly by counterparts on long term contracts, or on liberalized pool markets, by equilibrium between the demand and the supply.

These markets occur at different times, ranging from long terms (years or months) to day-ahead and real time, also known as spot markets. In general, energy prices become larger and capacities smaller when we come closer to real time [START_REF] Nair | Energy Procurement Strategies in the Presence of Intermittent Sources[END_REF]. Finally, the exchanges between the different States are much larger than before, and the interconnections can be easily congested because they were created for adjustment purpose and not for trading purpose [START_REF] Hagspiel | Cost-Optimal Power System Extension under Flow-Based Market Coupling[END_REF], [START_REF] Neuhoff | Congestion Management in European Power Networks[END_REF].

The increasing penetration of renewable energy: In addition, the European Commission has adopted in 2008 the EU Energy and Climate Package. Its two main objectives are setting up a more sustainable common European energy policy and combating climate change. More precisely, three targets have been set regarding the reduction by 20% of greenhouse gases, the increase of energy efficiency up to 20% and the reaching of 20% of renewable energy in the total energy consumption in the EU, by 2020 [26].

The resulting increasing penetration of intermittent, unpredictable renewable en-ergy such as wind energy, induces significant challenges for markets 1 . Their erratic generation makes them very difficult to forecast using conventional statistical approaches since they rely on many exogenous factors such as weather conditions [START_REF] Cadre | Information Management in the Smart Grid: A Learning Game Approach[END_REF], [START_REF] Nagl | The costs of electricity systems with a high share of fluctuating renewables: a stochastic investment and dispatch optimization model for Europe[END_REF]. This salient issue seriously threatens the constant equilibrium between supply and demand, that is a guarantee for the efficient operation of the underlying grid. Modeling renewable energy production as random individual sequences, requiring no underlying stochastic assumptions, we studied the impact of distributed learning on the demand and supply equilibrium in [START_REF] Cadre | Information Management in the Smart Grid: A Learning Game Approach[END_REF], [START_REF] Cadre | Distributed Learning in Hierarchical Networks[END_REF]. In a multi-period market context, Nair et al. explicitly characterized the impact of a growing renewable penetration on the procurement policy by considering a scaling regime that models the aggregation of unpredictable renewable sources [START_REF] Nair | Energy Procurement Strategies in the Presence of Intermittent Sources[END_REF]. They introduced a scaling regime for wind penetration, which models the effect of aggregating the output of several wind generators.

A key feature of their model is that it allows to take into account the relative concentration (or, inversely, scattering) of the intermittent energy sources being aggregated [START_REF]The Windpower project, worldwide database about wind turbines and wind farms[END_REF]. Based on this scaling model, they studied how the optimal reserves, the amount of conventional generation produced, as well as the cost of procurement, scale with increasing wind penetration.

Market coupling: Competitiveness, sustainability and energy supply security are essential issues in the pursuit of European energy market integration and the creation of a single energy area. Energy markets were initially liberalized autonomously at a national level, with domestic scope, but there has been a growing need for an optimal management of cross-border transmissions and congestions. However, optimal network governance of a centralized autority depends on the balance between different interests accross countries [START_REF] Gianfreda | Quantitative analysis of energy markets[END_REF]. Market functioning in terms of competition among producers can be obstructed by limited transmission capacity at the borders of the interconnected markets. Therefore two mechanisms have been put forward to solve the allocation of such scarce-border capacity: the first is implicit auctioning, and the second is coordinated explicit auctioning which has not been implemented yet. The latter system will allow countries to keep their power exchanges running, but it is found to be less efficient than the former system when uncoordinated [START_REF] Gianfreda | Quantitative analysis of energy markets[END_REF]. The implicit auction mechanism adopted in Europe is designed to include cross-border trades in the dayahead auction mechanisms on individual power exchanges, to avoid inefficiency. Different implementations of the implicit coupling mechanism exist such as no coupling, volume coupling, one way price coupling, etc. The price coupling implementation, which is the focus of this article, optimizes cross-border flows to reflect energy-only price differences between the coupled markets. It implicitly allocates the interconnection capacity in the day-ahead and real timescales until a uniform market clearing price is achieved or the available capacity is fully utilized [START_REF] Baker | Capacity Markets and European Market Coupling: Can they Co-Exist?[END_REF]. Successful examples of implicit auctioning with price coupling are those within the Nordic area, those between Spain and Portugal, and those involving the Central Western European power markets (CWE) i.e., the Netherlands, Belgium, France, Luxembourg and Germany electricity markets.

From a theoretical point of view, the study of market coupling using bottom-up approaches is still in its infancy. Oggioni and Smeers analyzed and simulated market coupling in a toy network and a two zone splitted market assuming different zonal decompositions, coordination of transmission system operators, and a lack of strategic behaviors. Implementing a Nash equilibrium and social welfare, they observed that market coupling can be weak and proposed a benchmark for market efficiency using the nodal pricing system developed in the US [START_REF] Kunz | Improving congestion management: how to facilitate the integration of renewable generation in germany?[END_REF], [START_REF] Oggioni | Market failures of Market Coupling and Counter-Trading in Europe: an Illustrative Model Based Discussion[END_REF]. A well-known issue which makes the development of economic models challenging concerns the occurence of negative price spikes at times when very low demand meets high supply [START_REF] Fanone | The case of negative day-ahead electricity prices[END_REF], [START_REF] Gianfreda | Quantitative analysis of energy markets[END_REF]. The negative price spike frequency has increased with the introduction of renewable energy which production is very difficult to predict and hence, barely impossible to adapt to sudden changes in the demand. The occurence of negative price spikes cannot be deemed a residual phenomenon [START_REF] Fanone | The case of negative day-ahead electricity prices[END_REF], [START_REF] Gianfreda | Quantitative analysis of energy markets[END_REF]. Such spikes can also be generated by factors contributing to exceptional slumps in demand, limited flexibility of power plant operations, limited transmission capacities, etc.

Taking the end user point of view, market coupling should have a good influence on his bill [START_REF] Pellini | Measuring the impact of market coupling on the Italian electricity market[END_REF]: by maximizing the use of cross-border interconnection capacity, market coupling increases the level of market integration and facilitates the access to low-cost generation by consumers located in high-cost generation countries, such as Italy. However, the associated congestion management costs might tend to increase significantly in the future given a higher share of intermittent renewable production and potential divergences in the developments of transmission and generation infrastructure [START_REF] Kunz | Improving congestion management: how to facilitate the integration of renewable generation in germany?[END_REF].

Article organization: The literature dealing with energy market economic models can be roughly divided into two parts: market coupling mechanisms [START_REF] Baker | Capacity Markets and European Market Coupling: Can they Co-Exist?[END_REF], [START_REF] Fanone | The case of negative day-ahead electricity prices[END_REF], [START_REF] Gianfreda | Quantitative analysis of energy markets[END_REF], [START_REF] Hagspiel | Cost-Optimal Power System Extension under Flow-Based Market Coupling[END_REF], [START_REF] Huang | Analysis of Nash Equilibrium Considering Multi-commodity Trade in Coupled Constraint Electricity Markets[END_REF], [START_REF] Neuhoff | Congestion Management in European Power Networks[END_REF], [START_REF] Oggioni | Market failures of Market Coupling and Counter-Trading in Europe: an Illustrative Model Based Discussion[END_REF], [START_REF] Pellini | Measuring the impact of market coupling on the Italian electricity market[END_REF], as well as models for multi-period markets with uncertain supply [START_REF] Ben-Tal | Robust solutions of uncertain linear programs[END_REF], [START_REF] Jiang | Multi-period Optimal Procurement and Demand Responses in the Presence of Uncertain Supply[END_REF], [START_REF] Nair | Energy Procurement Strategies in the Presence of Intermittent Sources[END_REF]. In this article, we try to combine both approaches. We propose a model taking into account the relative concentration of the intermittent energy sources being aggregated. It is described in Section 2. Considering N ∈ N * coupled energy markets, we first study how this scaling impacts the market optimal reserves, optimal conventional energy productions, optimal prices on day ahead and spot markets in Section 3. In practice, the markets do not communicate complete information on the value of their reserve and renewable energy procurement to their neighboring markets [START_REF] Neuhoff | Congestion Management in European Power Networks[END_REF]. This can be particularly disadvantageous for the providers seeking to minimize their total costs. Using numerical simulations, we show that, for each provider, the knowledge of the other market renewable procurement forecast errors, minimizes his total cost. Assuming that an external operator has the opportunity to certify such an information according to a certain confidence level, we determine analytically the optimal price of such a certified information in Section 4.

The model

We consider N ∈ N * neighboring energy markets. Each market i = 1, ..., N covers a specific country. It is associated with a node and is interconnected to the other markets through lines managed by a transmission operator. The resulting graph constitutes the underlying network, also known as the super grid. The market rules can be designed in a decentralized manner provided each market maximizes selfishly its objective function, like in Germany for instance [START_REF] Kunz | Improving congestion management: how to facilitate the integration of renewable generation in germany?[END_REF], or in a centralized manner where a central agent rules the market. Each market i = 1, ..., N is composed of:

(i) Providers delivering energy to consumers characterized by their aggregated demand (ii) Conventional energy producers characterized by their aggregated cost function (iii) Renewable (more specifically wind) energy producers characterized by their aggregated production Additionnally, we consider two time periods: t f , defining the occurence of the forward market, and t 0 , defining the occurence of the real-time or spot market. The forward market can take place the day before t 0 , in this case it will be called day-ahead market, or it can take place months or years before t 0 . In this latter case, it is called long-term market.

Description of the markets 2.1.1 Market i

It is defined by:

• d i the end users' total demand of energy at time t 0

• w i the energy produced at time t 0 by the market renewable energy producers.

This information is available to the market at t 0 but not at t f . Furthermore, we have: w i = ŵii where ŵi is the forecast made at t f of the quantity of renewable energy that market i producer will produce at t 0 . i is a random variable representing the forecast error, f i its density function, with support [L i ; B i ] where L i ∈ {-∞} ∪ R and B i ∈ R ∪ {+∞} and F i (resp. F i = 1 -F i ) its direct (resp. complementary) cumulative distribution function. In the rest of the article, the forecast generating density function will coincide with a Gaussian distribution function centered in zero and of standard deviation σ i . More general distribution functions can, of course, be considered

• c f i (s f i ) = a f i + b f i s f i (resp. c 0 i (s 0 i ) = a 0 i + b 0 i s 0 i
) the marginal cost function of conventional energy produced by market i and purchased at t f (resp. at t 0 ). For convenience, they are supposed to be linear in the supply [START_REF] Huang | Analysis of Nash Equilibrium Considering Multi-commodity Trade in Coupled Constraint Electricity Markets[END_REF], [START_REF] Li | Agent-based modeling for trading wind power with uncertainty in the day-ahead wholesale electricity markets of single-sided auctions[END_REF]. We assume that a 0 i > a f i > 0 and that b 0 i > b f i > 0 guaranteeing that the marginal cost on the spot market remains larger than on the day-ahead market • q f i (resp. q 0 i ) market i demand of conventional energy on forward (resp. spot) markets

• s f i (resp. s 0 i ) market i supply of conventional energy on forward (resp. spot) markets

The global market is characterized by the equilibrium between the supply and the demand:

q f tot (N ) = i=1,...,N q f i = i=1,...,N s f i (resp. q 0 tot (N ) = i=1,...,N q 0 i = i=1,...,N
s 0 i ) which is the global quantity of conventional energy exchanged on forward (resp. spot) markets.

The amounts of energy purchased by market i at t f and at t 0 are defined as follows:

q f i = d i -ŵi + r i + and q 0 i = d i -w i -q f i +
where r i is a reserve of energy purchased on forward (lower cost) market because of uncertainty of supply at t 0 . Reserve r i is determined by the energy supplier on market i for the consumers' demand d i to be satisfied at t 0 at the lowest possible cost. Market i knows d i and ŵi . Hence it is equivalent for him to determine q f i or r i . The hypothesis that q f i > 0 holds as long as the demand exceeds the average wind capacity. In the rest of the article, we will assume that:

q f i d i -ŵi + r i .
As usual in industrial organization theory [START_REF] Tirole | The Theory of Industrial Organization[END_REF], we make the assumption that the prices p f i and p 0 i paid by market i providers for the energy purchased at t f and t 0 respectively equal the marginal costs 2 :

p f i c f i (s f i ) and p 0 i c 0 i (s 0 i ).
As stated in the Introduction, the fundamental idea behind market coupling is to create an integrated energy market with uniform energy prices among the involved countries. Therefore, we assume that a clearing price is reached at t f i.e., p f i = p f j p f , ∀i, j = 1, ..., N, i = j. Because the transfers are limited by the available transmission capacities, it will be harder to align the market prices at t 0 : if there is equilibrium then p 0 i = p 0 j p 0 , ∀i, j = 1, ..., N, i = j ; otherwise there exists at least one market i ∈ {1, ..., N } in which the provider pays p 0 i = p 0 j for j ∈ {1, ..., N } and j = i 3 . In the rest of the article, we will make the hypothesis that, at t f , the markets are myopic and do not anticipate the potential congestion of the lines. This implies that, at t f , they forecast that the prices will be aligned at t 0 on all the markets i.e., that no congestion occurs 4 . Markets might learn sequentially the other market forecast errors and then, infer their spot prices. However, such learning models are out of the scope of the present article. 2 The coincidence of prices with marginal costs, even during periods of supply scarcity, can be justified provided a capacity market [START_REF] Cadre | Capacity Market: Nonsense or Necessity?[END_REF] is deployed in one of the coupled markets, guaranteeing adequate levels of capacity payment [START_REF] Baker | Capacity Markets and European Market Coupling: Can they Co-Exist?[END_REF]. Alternative approaches for bid modeling can be found in [START_REF] Crawford | Bidding asymmetries in multi-unit auctions: Implications of bid function equilibria in the British spot market for electricity[END_REF]. 3 In case where p 0 i = p 0 j , a congestion rent CR = (p 0 i -p 0 j )t 0 j→i is paid to the transmission operator ; t 0 j→i represents the traded flow of energy from market j to market i on spot market. CR is: positive if the lower price market is exporting energy to the higher price market ; null if the interconnection line, binding market i to market j, is not congested and p 0 i = p 0 j = p 0 ; negative if the lower price market is importing energy from the higher price market. 4 Under this assumption, the congestion rent is expected to be null. [START_REF] Déporte | Characterization of the behavior of a flexible membrane for current energy converter, 13-th days of hydrodynamic[END_REF] 2.2 Providers' total cost, producers' profits and social welfare

We define U i , as the expected total cost, T C i , that the provider has to pay for his end user energy consumption:

U i = E T C i = q f i p f + E q 0 i p 0 i (1) 
Then market i end users' utility is inferred according to the relation: U i0 -U i where U i0 > 0 contains their net utility.

We let Π i be the profit of market i energy producer. It is defined as the difference between the price paid by all the markets for the puchase of conventional energy and the cost of the energy. We assume that all the supply is sold at each time. Then:

Π i = s f i p f + E[s 0 i p 0 i ] - s f i 0 c f i (s)ds -E s 0 i 0 c 0 i (s)ds (2) 
Finally, we define W i , the welfare of market i, as the difference between the producer's profit and the provider's total cost:

W i = Π i -U i
The social welfare is defined as the sum of the welfares of all the involved agents:

W = i=1,...,N W i

Renewable energy modeling

For each market, its renewable wind energy production is a function of the number of wind farms and of their concentration which is characterized by their spatial distribution over market i country. To determine the renewable energy procurement for market i, we use Nair et al. model [START_REF] Nair | Energy Procurement Strategies in the Presence of Intermittent Sources[END_REF]. For market i, we introduce:

• α i the average production of a single wind farm

• γ i the number of wind farms

• θ i ∈ [ 1 2 ; 1] (resp. 1 -θ i ∈ [0; 1 2 
]) a constant capturing the concentration (resp. the scattering) of the wind farm locations over market i country. The more (resp. the less) concentration, the more (resp. the less) correlation there is between the wind farm production We suppose that, at t f , α i is the best forecast of wind energy procurement of a wind farm [START_REF] Nair | Energy Procurement Strategies in the Presence of Intermittent Sources[END_REF]. Then: ŵi (γ i ) = α i γ i . The forecast error will depend on the wind penetration too, and we choose the coefficient θ i so that i (γ i ) = γ θi i ˜ i where ˜ i represents the forecast error for the production of a single wind farm and σi its standard deviation. We propose the following interpretation for the scaling of θ i : If the wind farms are co-located they will all produce the same quantity of energy at the same time i.e., their productions are strongly correlated. This is the case when θ i = 1. This implies in turn that: i = γ i ˜ i and that: ŵi = w i + γ i ˜ i . On the contrary, if they are spatially distributed so that their productions are independent from one another i.e., uncorrelated, and under the assumption that the forecast errors are distributed according to Gaussian distribution functions, the Central Limit Theorem tells us that:

σ i = √ γ i σi [19].
Therefore, the wind farm productions are independent from one another if, and only if,

θ i = 1 2 .
Note that in case of more general forecast error distribution functions, it can be interpreted as an approximation for γ i large enough. Finally, in case where θ i ∈] 1 2 ; 1[, the wind farms are randomly located over the country and their spatial distribution is intermediate between perfect independence and co-location.

With these notations, we obtain

w i (γ i ) = ŵi (γ i ) -i (γ i ) = γ i α i -γ θi i ˜ i and σ i (γ i ) = γ θi i σi .
In the next section, we will determine the optimal quantities of energy to be purchased by the markets on the forward market, (q f i ) i=1,...,N , or equivalently, their optimal reserves, (r i ) i=1,...,N . The optimization programs can be centralized by a supervisor who determines the optimal reserves for all the markets or, it can be decentralized provided each market optimizes its reserve selfishly. Furthermore, depending on the actors who take the decision and on the timing of the game, it can be relevant to minimize the provider's total cost or, to maximize the market welfare. Indeed, if we consider the short term effect, the costs of the producers remain fixed and, in perfect concurrence, they will bid at their marginal cost, so that the energy providers, who buy energy to the producers, have most of the power decision and will try to minimize their own total costs. But, if we consider longer term effects, the producers can choose to change their costs, by investing in new technologies or by scaling their plant, in order to optimize their own profits, so that the decision power is shared between the producers and the providers. In this latter case, it is more appropriate to maximize the market welfare.

Providers' total cost and social welfare optimization

We describe the solving of the provider's total cost minimization in Subsection 3.1 and of the market welfare maximization in Subsection 3.2, both under decentralized and centralized management of the agents.

Optimization of the providers' total costs

We start by determining the analytical expressions of the coupling prices for forward and spot markets. Then substituting these values in the providers' total costs, we derive the optimal reserves under decentralized and centralized management.

Derivation of the coupling prices

We set:

A f i=1,...,N a f i b f i and B f i=1,...,N 1 b f i
. Furthermore, we make the assumption that the marginal cost parameters at t f are chosen so that B f = 0. Lemma 1. The coupling price for the forward market is:

p f = i=1,...,N q f i + A f B f
. Proof of Lemma 1. Using the assumption of the supply and demand equilibrium guaranteed by the market rules, we have:

q f tot (N ) = i=1,...,N q f i = i=1,...,N s f i = i=1,...,N p f i -a f i b f i under the assumption that p f i = c f i = i=1,...,N p f -a f i b f i since the N markets are coupled at t f = p f i=1,...,N 1 b f i - i=1,...,N a f i b f i
We infer from the following equations the forward price on the coupling zone:

p f = i=1,...,N q f i + A f B f . We set: A 0 i=1,...,N a 0 i b 0 i and B 0 i=1,...,N 1 b 0 i
. Furthermore, we make the assumption that the marginal cost parameters at t 0 are chosen so that B 0 = 0. Using the same principle as in Lemma 1 proof, we infer the spot price on the coupling zone:

Lemma 2. The N markets being coupled at time t 0 , the coupling price for the spot market is:

p 0 = i=1,...,N q 0 i + A 0 B 0 .

Decentralized program

Each market i provider determines independently and simultaneously the quantity of energy to purchase q f i or equivalently its reserve r i so as to minimize his procurement total cost:

min ri≥0 U i = E T C i (3) 
Market i provider determines the best answer, r BA i (r -i ), where r -i is a N -1 dimensional vector containing the reserves of all the providers except market i provider, which minimizes its consumer total cost. The decentralized program output is a Nash equilibrium, (r N E i ) i=1,...,N , defined by: r

N E i = r BA i (r -i ), ∀i = 1, ..., N.
Proposition 3. There exists a unique Nash equilibrium solution of Program 3.

Proof of Proposition 3. We let:

C 0 i j=1,...,N,j =i E ( j -r j )| j ≥ r j + A 0 B 0 and 
C f i j=1,...,N,j =i (d j -ŵj + r j ) + A f B f
. The Lagrangian function associated to Program 3 is: L U i (r i , µ 1 ) = U i -µr i where µ ∈ R + is a Lagrange multiplier. According to the Karush-Kühn-Tucker (KKT) conditions, at the optimum in r i :

∂L U i (ri,µ) ∂ri = 0, r i = 0 or µ = 0.
We make the assumption that market i reserve is positive i.e., r i > 0. Therefore: µ = 0. Going back to the definition of the provider's total cost, as defined in Equation [START_REF] Agard | Estimates and confidence intervals of a Gaussian distribution standard deviation and of the mean of an Exponential distribution[END_REF], it can be rewritten by substituting the coupling price expressions derived in Lemmas 1 and 2:

U i = d i -ŵi + r i j=1,...,N d j -ŵj + r j + A f B f + E ( i - r i ) + j=1,...,N ( j -r j ) + + A 0 B 0
. Differentiating U i with respect to r i , we obtain:

∂U i ∂r i = j=1,...,N (d j -ŵj + r j ) + A f B f + 1 B f (d i -ŵi + r i ) + C 0 i ∂ ∂r i E ( i -r i )| i ≥ r i + 1 B 0 ∂ ∂r i E ( i -r i ) 2 | i ≥ r i (4) 
But:

∂ ∂ri E ( i -r i )| i ≥ r i = -F i (r i ) and ∂ ∂r i E[( i -r i ) 2 | i ≥ r i ] = ∂ ∂r i +∞ ri (x i -r i ) 2 f i (x i )dx i = 2r i +∞ ri f i (x i )dx i -2 +∞ ri x i f i (x i )dx i = 2r i F i (r i ) -2E i | i ≥ r i
By substitution in ∂Ui ∂ri expression, we obtain the simplified expression:

∂Ui ∂ri = 2 B f d i -ŵi + r i + C f i + 2ri B 0 -C 0 i F i (r i ) -2 B 0 E i | i ≥ r i . Differentiating twice U i with respect to r i we obtain: ∂ 2 Ui ∂r 2 i = 2 B f + C 0 i -2ri B 0 f i (r i ) + 2 B 0 F i (r i ) +

Centralized program

A supervisor determines the N market reserves (r i ) i=1,...,N minimizing the sum of the providers' total costs over the N markets:

min (ri) i=1,...,N U = E i=1,...,N T C i s.t. r i ≥ 0, ∀i = 1, ..., N (5) 
Proposition 4. There exists a unique global optimum minimizing function U .

Proof of Proposition 4. The Lagrangian function associated to Program 5 is:

L U (r i ) i , μ = U -i=1,...,N μi r i where μ = (μ i ) i=1,...,N ∈ R N
+ are Lagrange multipliers. According to KKT conditions, at the optimum in (r i ) i :

∂L U (ri)i,μ ∂rj = 0, ∀j = 1, ..., N , r i = 0 or μi = 0, ∀i = 1, ..., N.
We make the assumption that all the reserves are positive i.e., r i > 0, ∀i = 1, ..., N. Going back to the definition of U , we obtain:

U = E i=1,...,N T C i = i=1,...,N E T C i = i=1,...,N U i .
The differentiation of U with respect to r i gives us:

∂U ∂r i = 1 B f d i -ŵi + r i + j=1,...,N d j -ŵj + r j B f + C f i -F i (r i ) j=1,...,N,j =i E ( j -r j ) B 0 | j ≥ r j + 2r i B 0 -C 0 i F i (r i ) - 2 B 0 E i | i ≥ r i (6) 
Differentiating twice U with respect to r i we obtain:

∂ 2 U ∂r 2 i = 2 B f + C 0 i + j=1,...,N,j =i E[( j -r j )| j ≥ r j ] B 0 f i (r i ) + 2 B 0 F i (r i ) ≥ 0
and for any j = 1, ..., N, j = i:

∂ 2 U ∂ri∂rj = 2 B f + 2 B 0 F i (r i ) F j (r j ) ≥ 0.
Hence, the Hessian matrix associated to U is non-negative. This implies that function U is convex with respect to each of its component. Therefore, the minimization of U over R N + admits a unique global optimum.

Optimization of the welfare

Substituting the coupling prices derived in Lemmas 1 and 2 in market i producer's profit Π i defined in Equation ( 2), we obtain:

Π i = s f i j=1,...,N d j -ŵj + r j + A f B f + s 0 i E j=1,...,N ( j -r j ) + + A 0 B 0 -a f i s f i -b f i (s f i ) 2 2 -a 0 i s 0 i -b 0 i (s 0 i ) 2 2 (7)

Optimal conventional energy procurement

The conventional energy procurement can be optimized before the market takes place i.e., at t f and t 0 . It should be optimized so as to maximize the producer profit at t f and at t 0 . It is straightforward to observe, judging by Equation [START_REF] Fanone | The case of negative day-ahead electricity prices[END_REF], that market i producer's profit at t f (resp. t 0 ) is concave in s f i (resp. s 0 i ) since it is a second order polynomial equation in s f i (resp. s 0 i ) with a negative highest order coefficient:

-b f i 2 (resp.
-b 0 i 2 ). Proposition 5. Over market i, the supply of conventional energy at time t f maximizing the producer's profit is:

s f * i = 1 b f i j=1,...,N (d j -ŵj + r j ) + A f B f -a f i
and, at time

t 0 : s 0 * i = 1 b 0 i j=1,...,N E[( j -r j )| j ≥ r j ] + A 0 B 0 -a 0 i .
Proof of Proposition 5. Before market takes place at t f , the producer optimizes his conventional energy procurement so as to maximize his profit: Π i . But, as already mentioned, Π i is a second order polynomial equation in s f i with a negative highest order coefficient: -b f i 2 . Therefore Π i admits a unique maximum in s f i . It is obtained as solution of ∂Πi ∂s f i = 0. The producer uses the same principle to determine s 0 i just before market occurs at t 0 .

Decentralized program

Each market i determines independently and simultaneously its reserve, r i , so as to maximize its welfare:

max ri≥0 W i (8) 
Proposition 6. Program 8 admits a Nash equilibrium if, and only if, there exists r i ≥ 0

such that ∂Ui ∂ri = s f i B f - s 0 i B 0 F i (r i ) and s 0 i B 0 -C 0 i f i (r i ) ≤ 2 1 B f + 1 B 0 F i (r i ) . Furthermore, if s 0 i B 0 -C 0 i f i (r i ) ≤ 2 1 B f + 1 B 0 F i (r i )
, ∀r i ≥ 0, it admits a unique Nash equilibrium.

Proof of Proposition 6. We start by assuming that market i reserve is positive. To solve Program 8, we need to determine the zeros of the differentiate of W i with respect to r i :

∂W i ∂r i = - ∂U i ∂r i + s f i B f - s 0 i B 0 F i (r i ) (9) 
Differentiating twice W i with respect to r i , we obtain:

∂ 2 Wi ∂r 2 i = -2 B f + s 0 i B 0 - C 0 i f i (r i )-2 B 0 F i (r i ).
Therefore W i admits a minimum in r i if, and only if, ∂Wi ∂ri = 0 and ∂ 2 Wi ∂r 2

i ≤ 0. Furthermore, W i is concave if, and only if,

s 0 i B 0 -C 0 i f i (r i ) ≤ 2 1 B f + 1 B 0 F i (r i ) , ∀r i ∈ R + . If W i is concave in r i
, it admits a unique maximum in r i i.e., a unique best answer to r -i . Therefore, the resulting Nash equilibrium defined, for each market, as the best answer to the other markets' reserves, is unique.

Centralized program

A supervisor determines the N market reserves (r i ) i maximizing the sum of the market welfares i.e., the social welfare:

max (ri)i W = i=1,...,N W i s.t. r i ≥ 0, ∀i = 1, ..., N (10) 
Proposition 7. Program 10 admits a global optimum if, and only if there exists (r i

) i ∈ R N + such that ∂U ∂ri = j=1,...,N s f j B f - s 0 j B 0 F i (r i ) and j=1,...,N s 0 j B 0 f i (r i ) ≤ ∂ 2 U ∂r 2 i . Furthermore, if j=1,...,N s 0 j B 0 f i (r i ) ≤ ∂ 2 U ∂r 2 
i , ∀r i ≥ 0, ∀i = 1, ..., N , it admits a unique global optimum.

Proof of Proposition 7. Assuming that all the reserves are positive, to solve Program 10, we need to determine the zeros of the differentiate of W with respect to r i , ∀i = 1, ..., N :

∂W ∂r i = - ∂U ∂r i + j=1,...,N s f j B f - j=1,...,N s 0 j B 0 F i (r i ), ∀i = 1, ..., N (11) 
Differentiating twice W with respect to r i , we obtain:

∂ 2 W ∂r 2 i = - ∂ 2 U ∂r 2 i + j=1,...,N s 0 j B 0 f i (r i )
and with respect to r j , j = i: 

∂ 2 W ∂ri∂rj = -∂ 2 U ∂ri∂rj ≤ 0.
s 0 j B 0 f i (r i ) ≤ ∂ 2 U ∂r 2 
i , ∀r i ∈ R + , ∀i = 1, ..., N .

Algorithm implementation

In practice, we distinguish two cases for the optimization of the reserve of market i = 1, 2:

Case 1: market i provider has no a priori about the beliefs of market j = 1, 2, j = i provider. In that case, market i provider will assume that market j provider has the same beliefs as him and he will optimize his reserve through a joint gradient descent algorithm with market j

Case 2: market i provider knows that market j provider is making an error about his demand and offer parameters σ i , d i or ŵi . In that case, market i provider will optimize his reserve through a two step game where market j provider optimizes his reserve first and market i provider reacts with his true parameters. This second case will be described more formally in Subsections 4.1 and 4.2.

We now describe the algorithms used for each case.

In Case 1, the idea behind the gradient descent algorithm is to find the optimal reserves by following the direction of the gradient of the total costs for all the markets. Different variations of the gradient descent algorithm exist but we have chosen the Fletcher and Reeves one [START_REF] Charon | An Introduction to non linear optimization[END_REF]. It is robust, converges quite fast and does not require to calculate the Hessian of the utilities.

We let:

U v = U 1 U 2 T
be the vector containing the total costs of markets 1 and

2 and DU v = ∂U1 ∂r1 ∂U2 ∂r2
T be the vector of the differentiates of the total costs with respect to the market reserves. In practice, we start with initial reserves r 0 i = 10 for all i = 1, ..., N and with initial gradient direction d 1 i = -∂Ui ∂ri (r 0 ) for all i = 1, ..., N . Then, at each step k ≥ 1, we define:

• r k = r k-1 + s k d k where s k is chosen such that U i (r k ) is maximal • d k+1 = -DU v (r k ) + DUv(r k ) 2 DUv(r k-1 ) 2 d k
Then, the sequence r k converges towards the optimal reserves. This optimum can be a local optimum. We use a simple criterion to check if the sequence has converged: if r k -r k-1 ≤ ε we stop the algorithm loop. In our case, we have fixed ε = 10 -4 .

To choose the optimum s k at each step k in the previous algorithm, we use a dichotomia algorithm. The objective is to find the point where the differentiate of U v (r k-1 + sd k ) in s equals 0. We start off by locating a first point where this differentiate is negative. We start off with h 1 = 1 and we double the value i.e., h k = 2h k-1 , until ∂Uv(r k-1 +sd k ) ∂s | s=h k ≤ 0. Then, we select x min = h k-1 and x max = h k . We know that the optimum is located between x min and x max . Then, we divide this bounding interval by two, at each step, by calculating ∂Uv(r k-1 +sd k ) ∂s | s= x min +xmax 2 and update the values of x min and x max depending on the sign of the result. We stop when the difference between x min and x max is inferior to ε.

In Case 2, if market i knows that market j is mistaking regarding its demand and renewable energy procurement parameters: d i , σ i or ŵi , all happens as if market j would optimize its reserve first and market i would react. More precisely, i assumes that market j selects its optimal reserve r j as the solution of Case 1, described above, with its biased beliefs about market i. Then market i reacts by selecting its optimal reserve with the reserve of j fixed to r j and its demand and offers parameters fixed to their true values. In our case, we select the point where the differentiate of U i in r i equals 0, all other values being fixed.

To find this optimum, we use, once more, a dichotomia algorithm. We start off by locating a first point where this differentiate is negative. We start with h 1 = 1 and, at each iteration k, we double the value i.e., h k = 2h k-1 , until ∂Ui(ri,r j ) ∂ri

| ri=h k ≤ 0. Then we select x min = h k-1 and x max = h k . We know that the optimum is located between x min and x max . Then, we divide this bounding interval by two, at each step, by calculating ∂Ui(ri,r j ) ∂ri

| ri= x min +xmax 2
and update the values of x min and x max depending on the sign of the result. We stop when the difference between x min and x max is inferior to ε.

Numerical illustrations

Analytical expressions of the forecast errors

Expressions of the providers' total costs, of the market welfares and of their differentiates cannot be used in the forms obtained in Subsections 3.1 and 3.2 to perform numerical simulations since they contain terms such as

E i | i ≥ r i , E ( i -r i )| i ≥ r i and E ( i -r i ) 2 | i ≥ r i .
However, since the forecast errors i are distributed according to Gaussian distribution functions centered in 0 and of standard deviation σ i , it is possible to express the above conditional expectations as functions of the incomplete gamma function. We recall the expression of the incomplete gamma function with lower bound: P (a, x) = 1 Γ(a) +∞ x t a-1 exp(-t)dt where x ∈ R + is the non-negative lower bound of the integral, a ∈ R + and Γ(a) is the Gamma function evaluated in a. After a change of variables, the above mentioned conditional expectations can be rewritten:

E i | i ≥ r i = σi √ 2π Γ(1)P (1,
r 2 i 2σ 2 i ) E ( i -r i )| i ≥ r i = σi √ 2π Γ(1)P (1,
r 2 i 2σ 2 i ) -r i F i (r i ) E ( i -r i ) 2 | i ≥ r i = σ 2 i √ π Γ( 3 2 )P ( 3 2 , r 2 i 2σ 2 i ) -σi √ 2π Γ(1)P (1,
r 2 i 2σ 2 i ) + r 2 i
By substitution in the providers' total costs, in the market welfares and in their differentiates, we obtain expressions that are computationally tractable.

Numerical simulations are run for N = 3, α = 1,

a f i = 1 N , b f i = 10 -2 a f i , a 0 i = 10 a f i , b 0 i = a f i , ∀i = 1, .
.., N and homogeneous demands: d i = 100, ∀i = 1, ..., N.

3.4.2 Impact of the intermittent source number and concentration and of their production variability on the utilities and on the welfares

Assuming that all the N = 3 markets have identical number of wind farms and concentration, we capture the impact of these parameters on the optimal reserves, on the sum of the providers' total costs U and on the social welfare W in Figures 1 (a) and (b).

We observe in Figure 1 (a) that, at the optimum, the reserve purchased by each market increases as a function of the number of wind farms hold by the market and of their concentration. Going back to the forecast error definition introduced in Subsection 2.3, we check analytically that the larger the number of wind farms γ i and their concentration θ i are, the higher the uncertainty associated with wind energy procurement. Therefore, the increase of γ i and θ i forces the market to increase its level of reserve at time t f . Moreover, juding by Figure 1 (a), we observe that reserves are larger under welfare maximization than under total cost minimization, for the same set of parameters.

As already mentioned, the forecast error relies on the wind farm concentration, θ i . Therefore, depending on θ i , market i might over-estimate or, on the contrary, underestimate its renewable energy production. In case of over-estimation, more conventional energy has to be bought at time t 0 causing the total procurement cost to increase. On the contrary, in case of under-estimation, the market realizes at time t 0 that too much energy has been bought at time t f , which represents a waste of money. In both cases, the total cost U i (resp. welfare W i ) should be increasing (resp. decreasing) as functions of θ i . This coincides with the observations in Figure 2 (a). The same variations are observed for the sum of the providers' total costs U (resp. the social welfare W ) in Figure 1 (b). The impact of γ i on U and W is less straightforward. Three trends can be observed in Figure 1 (b):

• If θ i < 0.8, U (resp. W ) is decreasing (resp. increasing) as a function of γ i • If θ i > 0.9, U (resp. W ) is increasing (resp. decreasing) as a function of γ i • If 0.8 ≤ θ i ≤ 0.9, U (resp. W ) is constant in γ i
An increase of the number of wind farms and hence, of average renewable procurement, leads to a global decrease of the quantity of conventional energy which has to be bought by each market, on the pool markets. This is a plausible explanation for the welfare increase as a function of γ i .

To better understand the impact of γ i on each market, we concentrate on its specific effect on each market in Figure 2 (b), for spatially independent (θ = 1 2 ) and co-located (θ = 1) wind farms. If renewable sources are located over the country so that their productions are independent of one another, we observe that U i (resp. W i ) is a decreasing (resp. increasing) function of γ i . An increase of γ i causes a decrease of conventional energy to be purchased by market i on the pool markets and hence a decrease of the clearing price which, in turn, leads to a decrease of the other markets total cost U j , j = i and an increase of the welfare W j , j = i of the other markets. On the contrary, if wind farms are nearly co-located, the total cost U i (resp. the welfare W i ) of market i is an increasing (resp. decreasing) function of the number of wind farms γ i : the forecast error being so large, due to a large θ, and still increasing in the number of wind farms, it has the dominant effect over the cost reduction caused by the renewable production increase. On the other markets, the increase of U j , j = i and decrease of W j , j = i are consequences of variations of the clearing prices and renewable energy procurement.

Renewable energy penetration

In this subsection, we consider a single scenario for wind energy procurement over each market using the relation introduced in Subsection 2.3: w i = α i γ ii . We generate a single realization for the forecast error i according to the Gaussian density function centered in 0 and of standard deviation σ i . We assume that all the markets have the same parameters i.e., σi = 1.1, γ i = 20, θ i = 0.65.

Renewable energy penetration is measured as the ratio between the wind energy production over the sum of conventional supplies at times t 0 , t f and renewable production i.e., i=1,...,N

q 0 i + q f i + w i .
We suppose to be in the case where the amount of energy purchased by the markets at t 0 is positive i.e., d i -w i -q f i > 0 and that the N = 3 markets share identical parameters: σ, γ, θ. The assumption of positivity of q 0 i implies that the renewable energy penetration ratio can be simplified to give: 

d i ; + √ N σi i=1,...,N d i ⇔ -γ θ σ √ N d ; γ θ σ √ N d .
We check in Figures 3 (a), (b), (c) that the sampled renewable penetration rate varies around the expected average renewable penetration rate and that the standard deviation values framed it by higher and by inferior values. Furthermore, the number of wind farms makes the expected penetration rate increase. Their concentration and the forecast error standard deviation largely impact the variation of this rate around its expected value. 

The price of information

In this section, we restrict to the case N = 2 markets. According to Equations ( 4), to compute their optimal reserves in case of decentralized total cost minimization, the provider on each market needs to know the optimal reserves and the standard deviations of the forecast errors on all the other markets. In Section 3, we have assumed that, on each market, reserves and forecast error standard deviations were public knowledge. However, the providers may have incentives to hide these informations provided the resulting biases, introduced in the other providers' optimal reserves, enable them to decrease their total cost [START_REF] Neuhoff | Congestion Management in European Power Networks[END_REF].

We introduce a Principal, who can be assimilated with a server, centralizing all the information regarding the producers' forecast error standard deviations. In practice, the providers report the forecast error standard deviations of their producer, to the Principal, who makes them public knowledge. We let σi ∈ R + be the report made by market i provider, to the Principal, regarding his producer's forecast error standard deviation. This report can be biased implying that: σi = σ i or unbiased in which case: σi = σ i .

The market provider then optimizes his reserve using as input his information regarding the other market producer's forecast error standard deviation. If the other market producer's forecast error standard deviation is private, the provider will need to use the report that the other market provider has made to the Principal.

We distinguish between two cases. First, in Subsection 4.1, market 2 has full access to the information i.e., he knows σ 1 , σ 2 whereas market 1 has only access to its own producer's forecast error standard deviation: σ 1 . In this first case, the information is asymmetric. The second case, described in Subsection 4.2, coincides with symmetric private information i.e., on each market, the provider has only access to his own producer's forecast error standard deviation and not to the other producers' ones.

In many industries, it has become common practice to sell and buy access to the private information of one's competitors or of targeted consumers. Such information might be collected through surveys, sensors deployed on a communication network, measurements performed in electricity production parks, etc. These investigations are usually performed by a certification operator who certifies the delivered information according to a certain confidence level.

The accuracy of the information depends on the importance of the deployed investigation means: if a survey is used, more accurate information can be gathered provided a larger sample is questionned or provided more relevant questions are added to the survey ; in case of decentralized measurements, more sensors can be deployed over the communication network to measure the load of the links where the traffic flows of a rival provider are routed, etc. Of course, these improvements should increase the information price. Usually, it is the certification operator who sets the price depending on the accuracy of his information. The aim of Subsection 4.3 will be to determine the optimal price of information on the other market producer's forecast error standard deviation as a function of the expected confidence level. that market 1 provider has incentives to know the true standard deviation of market 2 producer since his total cost is minimal in this value. However, market 2 provider has no incentives to report his true standard deviation since his total cost is decreasing in the standard deviation. Therefore, he will most probably exaggerate his forecast error standard deviation when reported to the Principal.

Private information Decentralized Reserve Optimization with Private Information

Agents: Market 1 and market 2 providers Information:

-σ1 known by market 1 solely -σ2 known by market 2 solely -σ1 market 1 provider's reported standard deviation on his producer's forecast error -σ2 market 2 provider's reported standard deviation on his producer's forecast error (i) Market 1 provider determines r1(σ1, σ2) as solution of Program 3 (resp. 8) in σ1, σ2 assuming that market 2's optimal reserve is r2(σ2, σ1) obtained solution of Program 3 (resp. 8) in σ2, σ1.

(ii) Simultaneously and independently, market 2 provider determines r2(σ1, σ2) as solution of Program 3 (resp. 8) in σ1, σ2 assuming that market 1's optimal reserve is r1(σ1, σ2) obtained solution of Program 3 (resp. 8) in σ1, σ2.

In Figure 5, we have represented each market producer's total cost, the sum of the market producers' total costs and the difference of the market producers' total costs. The forecast error standard deviations which stand for private information are: σ 1 = σ 2 = 90. We observe that on each market, the provider's total cost is minimum when the producer knows the other market producers' true standard deviation and biases by lower value his own standard deviation when reported to the certification operator. However, if both producers agree to cooperate they minimize the sum of their total costs by revealing their private information. Furthermore, the resulting minimum is lower than the sum of the minimum obtained when each market provider minimizes selfishly his total cost by deciding wich information to reveal.

The price of information

We take the point of view of market i producer.

To obtain an estimate of market j, j = i producer's forecast error standard deviation, the certification operator needs to perform a sequence of n observations: j (k), k = 1, ..., n of market j producer forecast error. We let σj be an estimate of market j producer forecast error standard deviation, obtained through a second order moment estimation. According to Agard [START_REF] Agard | Estimates and confidence intervals of a Gaussian distribution standard deviation and of the mean of an Exponential distribution[END_REF], we have a probability C(δ) = 0, also called confidence level, that, with n large enough, σj = σ j belongs to the interval - . C(δ) coincides the probability that the random variable distributed according to a Gaussian density function centered in 0 and of standard deviation 1 belongs to the interval [-δ; +δ] [START_REF] Agard | Estimates and confidence intervals of a Gaussian distribution standard deviation and of the mean of an Exponential distribution[END_REF]. Therefore, it can be rewritten as follows: C(δ) = F N (0;1) (δ) -F N (0;1) (-δ) where F N (0;1) is the cumulative distribution function associated to the Gaussian distribution centered in 0 and of standard deviation 1.

δσj √ n 1 2 √ πΓ( 5 2 ) Γ 2 ( 3
It is straightforward to observe that the increase of C(δ) makes this interval increase but that the accuracy of the forecast decreases which implies in turn that the information price should decrease. Therefore, for a confidence level C(δ), we define the information price as: Φ(δ, σj ) ≥ 0 and φ(δ, σj ) → 0 when δ → +∞. Proposition 8. Market j producer having reported σj as forecast error standard deviation and the confidence level being set to C(δ), the price of the information is: Proof of Proposition 8. We introduce the opportunity cost for market i producer to buy information. It is defined as the difference between the benefit resulting from the knowledge of the private standard deviation of the other market producer and the expected price of information depending on the required confidence level C(δ). Therefore, the opportunity cost for market i producer to buy information is:

Φ(δ, σj ) = 1 B 0 exp(-
U i (σ j ) -U i (σ j )

Benefit resulting from the knowledge of σj -Φ(δ, σj ). We observe that the producer will buy information provided his opportunity cost remains non-negative and that the certification operator will propose the highest admissible price. Hence, we infer the analytic sion for the optimal expected information price: Φ(δ, σj ) = U i (σ j )-U i (σ j ) . Using the Finite Increment Theorem, we infer that there exists σj ∈ [min{σ j ; σj }; max{σ j ; σj }] such that . But, using the definition of the incomplete gamma function, U i can be rewritten:

U i = d i -ŵi +r i j (d j -ŵj + r j ) + A f B f + 1 B 0 j =i σ j √ 2π exp(- r 2 j 2σ 2 j 
) -r j F j (r j ) )+r 2 i . Assuming that the information price is paid a posteriori i.e., after the estimate σj has been delivered to market i provider, we obtain: ∂Ui ∂σj = 1 B 0 exp(-

σ i √ 2π exp(- r 2 i 2σ 2 i ) -r i F i (r i ) + A 0 B 0 σ i √ 2π exp(- r 2 i 2σ 2 i )-r i F i (r i ) + 1 B 0 σ 2 i √ π Γ( 3 2 
r 2 j 2σ 2 j ) √ 2π [1 + r 2 j √ 2π 1 σ 2 j ]
which differentiate with respect to σ j is always increasing. Therefore, the linear coefficient of the information price is increasing in σj .

Conclusion

In this article, we aim at studying the impact of renewable energy on N ∈ N * coupled electricity markets. More precisely, we study how the scaling of the relative concentration of the intermittent sources being aggregated, impacts the coupled markets optimal reserves, optimal conventional energy productions, prices on day ahead and spot markets. In a context of incomplete information on the values of the reserves and renewable energy productions, we show, using numerical simulations, that markets have incentives to buy information regarding the other markets' variability of renewable production. The optimal price at which this information should be certified is derived analytically. It depends on the associated confidence level.

In extensions of our article, it might be interesting to take into account the available transmission capacity constraints and also, not only the concentration of the wind farms but also their spatial locations using appropriate databases. However, this would limit the analytical derivations and require the extensive use of simulations. Another point that needs to be mentioned concerns the wind energy procurement which relies heavily on the density which generates the forecast error. Alternative approaches, based on stochastic programming, were wind energy procurement could be associated with a random variable generated according to an unknown density function might be envisaged [START_REF] Kall | Stochastic Programming[END_REF], [START_REF] Shapiro | Lectures on Stochastic Programming: Modeling and Theory[END_REF]. Monte Carlo sampling could be of interest to provide an accurate estimation of the stochastic programming problem. Futhermore, the opportunity to associate accurate probabilities to the scenario occurence would enable the improvement of the algorithm performance [START_REF] Shapiro | Lectures on Stochastic Programming: Modeling and Theory[END_REF] ; potentially using online observations. Finally, the existence of polynomial time algorithms providing robust solutions to uncertain linear programming problems has been proven under some assumptions about the uncertainty set geometry [START_REF] Ben-Tal | Robust solutions of uncertain linear programs[END_REF] ; extensions to our problem would be relevant for practical applications.
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 123 Figure1: For these plots, we have assumed that there are N = 3 markets sharing the same parameters (γi, θi) and centrally managed. We have set: σi = 1, 1, ∀i = 1, 2, 3. In (a), we have represented the optimal reserves as functions of the number of wind farms and of their concentration. Whereas in (b), we have captured the number of wind farms and their concentration impact on the social welfare W and on the sum of the providers' utilities U .
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 5 Figure 5: From left to right and top to bottom, we have represented Market 1 provider's total cost, Market 2 provider's total cost, the sum of the market providers' total costs and the difference of their total costs as functions of their reported forecast error standard deviation. The demand on each market is defined as: d1 = 100 and d2 = 40.
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  max{σ j ; σj } -min{σ j ; σj } where σj ∈ [min{σ j ; σj }; max{σ j ; σj }] is such that:

  ∂Ui(σj) ∂σj | σj =σj = Ui(σj )-Ui(σj ) σj -σj

  

  

  

  Therefore, W admits a minimum in (r i ) i if, and only if, ∂W ∂ri = 0 and ∂ 2 Wi ∂r 2

i ≤ 0, ∀i = 1, ..., N. Futhermore, W is concave in (r i ) i if, and only if, j=1,...,N

Other sources of renewable energy, more easily predictable, such as those coming from marine currents, are still under study. Déporte et al. studied a way to collect it through a wavering membrane[START_REF] Déporte | Characterization of the behavior of a flexible membrane for current energy converter, 13-th days of hydrodynamic[END_REF]. Although this approach seems promising to overcome the uncertainties associated with renewable energy production, much remains to be done.

B 0 r i f i (r i ) = 2 B f + C 0 i f i (r i ) + 2 B 0 F i (r i ) ≥ 0.This proves that r -i being fixed, function U i is convex with respect to r i . This implies that r -i being fixed, the optimization

Program 3 admits a unique best answer, for every market i = 1, ..., N . Therefore, it admits a unique Nash equilibrium.

Information asymmetry

First, we assume that market 1 provider has access to his own producer's standard deviation σ 1 but needs to forecast the other market producer's standard deviation: σ 2 while market 2 has access to the whole information.

Decentralized Reserve Optimization with Information Asymmetry

Agents: Market 1 and market 2 providers Information:

-σ1 known by market 1 and by market 2 -σ2 known by market 2 solely -σ2 market 2's reported standard deviation on its producer's forecast error (i) Market 1 provider determines r1(σ1, σ2) as solution of Program 3 (resp. 8) in σ1, σ2 assuming that market 2's optimal reserve is r2(σ2, σ1) obtained solution of Program 3 (resp. 8) in σ2, σ1.

(ii) Simultaneously and independently, market 2 provider determines r2(σ1, σ2) as solution of Program 3 (resp. 8) in σ1, σ2 assuming that market 2's optimal reserve is r1(σ1, σ2) obtained solution of Program 3 (resp. 8) in σ1, σ2. In Figure 4, we have represented the optimal reserves and utilities for both producers. The true forecast error standard deviations are: σ 1 = σ 2 = 50. We observe 

Contact