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SUMMARY

The polymer cast film process consists in stretching a molten polymer film between a flat die and a drawing 
roll. Drawing instabilities are often encountered and represent a drastic limitation to the process. Newtonian 
fluid film stretching stability is investigated using two numerical strategies. The first one is a “tracking” 
method which consists in solving Stokes equations in the whole fluid area (extrusion die and stretching path) 
by finite elements. The interface is determined to satisfy a kinematic equation. A domain decomposition 
meshing technique is used in order to account for a flow singularity resulting from the change in the boundary 
conditions between the die flow region and the stretching path region. A linear stability method is then 
applied to this transient kinematic equation in order to investigate the stability of the stationary solution. 
The second method is a direct finite element simulation in an extended area including the fluid and the 
surrounding air. The time dependent interface is captured by solving an appropriate level-set function. The 
agreement between the two methods is fair. The influence of the stretching parameters (Draw ratio and 
drawing length) is investigated. For a long stretching distance, a critical Draw ratio around 20 delimitating 
stable and unstable drawing conditions is obtained and this agrees well with the standard membrane models 
which have been developed 40 years ago. When decreasing the stretching distance, the membrane model is 
no more valid. The 2D models presented here point out a significant increase of the critical Draw ratio and 
this is consistent with experimental results.

KEY WORDS: cast-film; tracking strategy; capturing strategy; draw resonance; domain decomposition
technique.

1. INTRODUCTION

The cast-film process is commonly used to produce polymer films or coatings, especially for
packaging applications. It consists in extruding a molten polymer in a flat die (gap2h0 ∼ 1 mm,
extrusion velocityu0 ∼ 1cm/s; width W ∼ 1m) and then stretching the polymer sheet by a chill
roll whose linear velocity can reachuf = 1m/s, to produce a polymer film of thickness2hf (of the
order of10 µm). The stretching distanceL between the die and the roll is generally of the order of
severalcm (see Figure1) [1]. When the hot polymer film (temperature around200◦C) is in contact
with the cold roll (temperature around20◦C), it is cooled down rapidly due to its very thin thickness
in such a way that stretching is really imposed on the distanceL.

The key parameters of this cast film process are the Draw ratioDr = uf/u0 and the shape factor
A = L/2h0. Due to the high viscosity of molten polymers (η= 103Pa.s) the final gap of the die
2h0 needs to be sufficiently large to limit the pressure required to deliver the appropriate extrusion



Figure 1. Typical cast film process and leading parameters visualization

velocity u0. It is thus necessary to impose a high Draw ratio to produce the target film thickness
2hf = 10µm and this results in several processing problems.

First, the film width will shrink during stretching which limits the film thickness reduction
(hf/h0 < 1/Dr). In addition, this “neck-in” phenomenon will result in an inhomogeneous final film
thickness even if the initial sheet thickness at die exit is homogeneous. The resulting localized over-
thicknesses on each side of the film (commonly called “dog-bone” phenomenon) make it necessary
to trim the lateral borders of the film and this will again reduce the width of the produced film. Both
phenomena are amplified when the Draw ratio or/and the stretching distance increase. One can try
to reduce the stretching distance but this induces complex technological problems and generally the
shape factor is higher than10 (L > 1cm).

Moreover, periodic instabilities on both the film width and the film thickness are observed as soon
as the Draw ratio is higher than a critical value (Dr > Drc) (see Figure2).

Figure 2. Typical width and thickness periodic instabilities in cast film processing [2]

These defects represent obvious limitations for the productivity of the process and a lot
of scientific and technological effort has been devoted to limit the “necking” and “dog-bone”



phenomena and to postpone the development of periodic instabilities. Increasing the drawing
distanceL and applying an appropriate cooling air jet along this drawing distance allow to increase
the critical Draw ratioDrc but at the same time both “necking” and “dog-bone” phenomena are
enhanced. One can try to reduce these defects by reducing the stretching distance and it was
speculated that the critical Draw ratio would remain constant or even decrease (which means that
periodic instabilities would appear at a lower stretching velocity) but surprisingly, the opposite was
experimentally observed. This paper aims at understanding these observations.

2. STATE OF THE ART

Due to the industrial importance of the cast film process, a large range of models exists (see
for example [3]) and the goal here is not to give an exhaustive description for each ofthem
but to underline the main common features connected with this study. The different models deal
principally with one or several of the following difficulties:

• behaviour of the molten polymer (Newtonian or viscoelastic),
• description of “necking” and “dog-bone” phenomena,
• determination of the critical Draw ratio,
• description of the transition from a shear flow to a stretching flow.

The first model is a simple but interesting 1D membrane model [4]. It assumes a constant width
and a Newtonian behaviour. If variablesx andt denote respectively stretching direction and time, the
unknown functionsh(t, x) andu(t, x) denote respectively the half thickness of the web and the mean
value of the velocity in thexdirection over the thickness. The steady model has an analytical solution
which obviously does not account for “necking” and “dog-bone” phenomena. Stability of the steady
flow is studied using linear stability analysis. It consists in calculating the dominant eigenvalue (two
complex conjugates eigenvalues) of the stationary solution. This Newtonian isothermal constant
width situation leads to the well known critical Draw ratioDrc = 20.2 below which all eigenvalues
have a negative real part which means that any flow perturbation will decrease and finally vanish as
a function of time [5]. Let us mention that forDr > Drc, a Hopf bifurcation occurs: the steady flow
becomes unstable when a time-periodic solution appears. This elegant and rapid stability analysis
has been then applied to more realistic and complex situations (viscoelastic constitutive equations,
non isothermal flow) in the case of fiber spinning which is basically governed by the same system
of equations (see [3] for a detailed bibliography). Of particular interest, this approach points out that
increasing the drawing distance and introducing film cooling will stabilize the process (leading to
a higher critical Draw ratio) and this is consistent with experiments. The drawback of this method
is that computing the time dependent solution is tedious and possible only in a small neighborhood
of the critical Draw ratio. Let us point out that, as the transition from a shear flow in the flat
die to a stretching flow between the die and the chill roll is neglected, the critical Draw ratio is
overestimated: this is easily understood having in mind that swelling (in they direction) occuring at
the die exit is neglected.

The following are membrane models using mean values of velocity componentsu(t, x, z) and
v(t, x, z) in the x and z directions respectively (stretching and shrinking directions) as well as
thicknesse(t, x, z) ([6]; [7]; [8]; [9 ]; [10]). The important contribution of these 2D membrane
models is a description of “necking” and “dog-bone” phenomena. They were first developed based
on a Newtonian behaviour but they were then extended to account for viscoelastic fluids. In this
case, the stability of the steady flow is determined using transient simulations and a convenient
time-space numerical scheme. Growth or decay of a small perturbation of the steady flow can be
observed. It was found that the critical Draw ratio depends on the initial film width2W0 and the
stretching distanceL (see Figure1).

A difficult point is to take into account the transition from a shear flow in the flat die to a stretching
flow between die and chill roll (Figure3). This can be done for large initial width by assuming a
constant width of the web and considering a 2D Stokes free boundary problem in the(x, y) plane
of Figure1 ([11]; [12]). For instance, since the thickness of the polymer film and the stretching



distanceare negligeable comparing to the width, it is possible to assume that the flow is invariant
according toz (the position in the transverse direction). Generalization to a viscoelastic fluid remains
challenging.

Figure 3. Geometry of the 2D flow domain (only one half of the flow domainis considered)

In this paper, two complementary methods for the 2D problem in the(x, y) plane will be proposed
and compared, first for a long stretching distance (A≫ 1) to check the validity of the results with
the existing membrane models, and then for a short distance (A∼ 1) which corresponds to a new
development.

• A front-tracking method is first developed. A stationary solution is computed in the polymer
flow domain (Figure3). The interface with air is determined to satisfy the kinematic interface
steadyequation. The linear stability method is then applied to this interface location in order
to predict onset of Draw resonance.

• For the direct numerical simulation, both polymer flow and the surrounding air are considered
and the time dependent interface, between polymer and air, is captured by solving a suitable
transport equation for a level-set function.

The front-tracking method coupled with a linear stability analysis is able to determine the onset of
Draw resonance at a low computational cost for various processing conditions. Scilab programming
language is used and it results in a computation code that runs in few minutes on a laptop computer.

3. FRONT-TRACKING METHOD

The two dimensional stretching flow of a (highly viscous) Newtonian fluid is considered. As this
flow presents an unknown interface with air, the classical and well posed Stokes problem is coupled
with a kinetic interface equation allowing to determine the air-polymer interface at each time step.
This interface becomes unstable at high stretching rates. Let us point out that as the Reynolds
number is small (Re≪ 1), this instability is not inertial. The development of instability at high
values of the Draw ratio is due to the nonlinear terms of the kinematic interface equation. The finite
element computation of the steady flow is first described. The linear stability is studied in section
4 by introducing the time dependency in the kinetic interface equation. The comparisonof linear
stability results to a time dependent simulation using a capturing method will be detailed in section
5.



3.1. Governing equations for the steady flow

The considered fields are velocityU , rate of strain tensoṙǫ, stress tensorσ and pressurep:

U =

[
u
v

]
; ǫ̇ =

1

2

(
∇U +∇U t

)
; σ =

[
σxx σxy

σxy σyy

]

As the objective is to describe the transition from a purely shearing flow in the flat die to a purely
stretching flow (Figure3), the considered geometry includes the final part of the flat die and the
stretching area till take up. The change of boundary conditions at die exit induces a geometric
singularity which is responsible for computational difficulties. Let us note2h0 the gap of the flat
die. Extrusion occurs atx = 0. The flow in the die is considered on a lengthh0 (from x = −h0 to
x = 0) and the contact of the fluid with the wall is sticky. After extrusion the liquid is stretched by
imposing atx = L a take-up velocityuL largely greater than the mean extrusion velocityu0. The
flow domainΩ and its boundaries are presented on Figure3. Let us precise the boundary conditions:

• The velocity components vanish on the upper wallΓ1 of the flat die.
• A plane Poiseuille flow is imposed onΓ2.
• On the symmetry axisΓ3, the normal component of the velocity vanishes (v= 0) as well as

the shear component of the stress tensor (σxy = 0).
• On Γ4 (take up), the x-component of the velocity is imposed (u = uL) and the shear

components of the stress tensor vanishes (σxy = 0).
• The interface with airH is described as the graphy = h(x). On this part, the interface balance

equation writes:σ−→n = 0 .

The stress tensorσ for a Newtonian behaviour reads (ηp is the polymer viscosity) :

σ = 2ηp ǫ̇− p Id (1)

Due to the large value ofηp, gravity and inertia are neglected, and the balance equation becomes :

∇ · σ = 0 (2)

Finally, as the fluid is incompressible, mass conservation holds:

∇ · U = Tr
(
ǫ̇
)
= 0 (3)

Equations (1)-(3) form the classical Stokes problem which is well posed with the previously
described boundary conditions on∂Ω for a given air-polymer interface (i.e for a given function
y = h(x)). A finite element strategy is used to compute velocity componentsu, v and pressure
p (see paragraph3.2). Let us point out that as inertia is neglected, the considered equations are
unchanged if the time dependency is introduced.

At this step, a supplementary condition is needed to determine the steady interfaceH. As the
non-miscibility condition writes for a steady flowU · −→n = 0 [11], we have:

uh

∂h

∂x
= vh

with uh(x) = u(x, h(x)) andvh(x) = v(x, h(x)).
The non-miscibility condition leads to a highly non linear equation forh, namely :

F (h) = −uh

∂h

∂x
+ vh = 0 (4)

An iterative process is used to solve this equation. First, the interface position is initialized by

the analytical solution of the 1D membrane modelh(x) = h0Dr
−

x

L [13]. Then, several fixed-
point iterations allow to make the interface position closer to the solution and thus ensure an
easy convergence. Finally, the steady-state interface is obtained by successive Newton-Raphson’s
iterations.



3.2. The finite elements strategy

For a given air-polymer interface, the Stokes problem is classically written as a mixed problem:
FindU ∈ V andp ∈ Q such that:

a(U, V ) + b(V, p) = 0 ∀ V ∈ V (5a)

b(U, q) = 0 ∀ q ∈ Q (5b)

with

a(U, V ) = 2

∫

Ω

ηp ǫ (U) : ǫ (V ) and b(U, p) = −

∫

Ω

p div (U)

The spacesVh andQh of test functions are convenient subspaces of Sobolev spacesV ⊂
(
H1 (Ω)

)2
andQ ⊂ L2 (Ω) [14]. The finite element approximation of problem (5) leads to a linear system for
nodal values ofU andp of the following form:

[
A B⊤

B 0

] [
U

P

]
=

[
FU

0

]
(6)

In this matrix equation,U andP are the unknown vectors of nodal values for the velocity and
pressure whereas the right hand side partFU of the equation contains Dirichlet conditions for
velocity. Due to Korn inequality, the bilinear forma(., .) is coercive and hence matrixA is positive
definite. However, the linear system (6) is not invertible for all choices of the finite element pairs
for interpolating velocity and pressure. The finite element pairP+

1 − P1 (Mini-element, [15])which
satisfies the Babushka-Brezzi-Ladysenskaia (BBL) condition is used here for velocity components
and pressure. According to this choice, every triangular elementK is divided in three sub-triangles
having as a common vertex the element’s center of gravity and the discrete velocity space is enriched
by a bubble function defined as the test function associated to the center of gravity of the element.
This bubble function is continuous, linear on each sub-triangle and vanishes on the boundary ofK.
The supplementary velocity component degrees of freedom introduced by the bubble function are
removed thanks to the so-called static condensation strategy which consists in writing the discrete
equations of (5a) with the bubble as test function on each velocity component. Assembling on the
three sub-triangles allows to compute nodal values of velocity at the center of each element as a
function of nodal values of velocity and pressure at the vertices of the element. It thus leads to the
following linear system : [

Â B̂⊤

B̂ Ĉ

] [
U

P

]
=

[
F̂U

F̂p

]
(7)

In the following sections,̂A, B̂, Ĉ, F̂U andF̂p will be simply denoted byA, B, C, FU andFp.

3.3. Flow domain, meshing and domain decomposition technique

The flow domain between the extrusion die and the take-up is restricted by the position of the
interfaceH which is defined by a piecewise linear interpolation of functionh :

hi = h(xi) with x0 = 0 and xN = L

whereh0 is half of the flat die thickness and the seth1 · · ·hN is unknown. Since it is required to
determine the onset of Draw resonance, for various processing conditions, relatively quickly (few
minutes) and at a low computational cost, a direct and simple strategy is considered. For example,
structured meshes are used to easily control node numbers at the air-polymer interface. Moreover, a
reference domainΩref = [−h0, L]× [0, h0] is defined and a meshing of domainΩ is then obtained
by applying the following transformation, between die exit and take-up, to a meshing ofΩref :

(x, y) 7−→

(
x, y

h(x)

h0

)
for x ≥ 0



In addition, mesh refinement at die exit is required to deal with the pressure singularity resulting
from the change of boundary conditions at die exit (sticky contact at the wallΓ1 in the die and
vanishing normal stress onH).As the effect of this geometrical singularity is well known for the
so calledstick-slip flow(in this case velocity and stress tensor behave respectivily asr

1

2Φ(θ) and
r−

1

2Ψ(θ)) and in order to avoid the use of an adaptative method, the mesh of the reference domain
Ωref is radially refined in the neighborhood of extrusion die exit (x = 0 andy = h0). Figure (4)
shows the mesh refinement of the resulting flow domain. The suitability of this mesh refinement
was checked since it allowed to capture the19% die swelling when no draw ratio is imposed [16].

Figure 4. Structured mesh transformation

Obviously, in the flow region located immediately after die exit (about half a thickness after
die exit), shear components which were dominant inside the die, vanish progressively whereas
elongation components become largely dominant along the stretching path. In the remaining part
of the flow, the velocity componentv and its gradient become negligeable with respect to the
velocity componentu and its gradient respectively. Therefore, in this part of the domain, it is
required to refine the mesh only in thex direction. Thus a domain decomposition approach, allowing
to adapt the meshes to the features of the solution in the flow domain, is adopted [17]. Indeed,
it allows to obtain a convenient solution at low computational cost. Classical approaches when
dealing with nonconforming finite approximations are the mortar element method ([18];[19]) and
the discontinuous Galerkin method. See also [20] and the references therein for more details on
discretization methods for fluid problems and their theoretical analysis in complex geometries.
The scope here is mostly confined to a very simple coupling approach which neither introduces
additional difficulties (such as complicated function spaces or new variational terms depending
on parameters to set) nor alters the significant features of the solution (such as stability, flow rate
distribution) even if the coupling is not optimal with respect to the consistency error. The rule of
mesh-conformity (i.e., two elements of the mesh sharing either nothing, or a vertex or a whole edge)
constrains mesh refinement to propagate from the die exit singularity up to the end of the domain.
To by-pass this difficulty, two meshes that do not match on the connection lineγ are used as shown
in Figure4. The coupling technique used to link components ofU and P associated to nodes on
γ for the two meshes is described in the following. The flow domainΩ is decomposed into two
non-overlapping sub-domainsΩk, k = 1, 2:

Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅, Ω1 ∩ Ω2 = γ, (8)

such thatΩ1 contains the die exit singularity andΩ2 the final part of the polymer film. The
connection lineγ is vertical and located after die exit, for example atxγ = h0 where neither the
pressure nor the velocity present too strong variations in they direction. Then two different families
of triangulationsT1 andT2 are used onΩ1 andΩ2 respectively. Let us denote byUk andP k the
vectors of nodal values forU andP on meshTk, k = 1, 2. After the assembling on each local mesh,
one obtains matricesAk, Bk andCk. Let us point out that, since the nodes ofT1 andT2 do not in
general coincide onγ, the continuity conditions

U1(x) = U2(x) ; p1(x) = p2(x) ; for x ∈ γ (9)



have to be restored at the discrete level. This is done by interpolation. For the final linear algebraic
system, unknown values onT1 andT2 are split. We setU = [U1,U2]⊤ andP = [P 1,P 2]⊤ with

U
1 = [U1

I ,U
1
γ ]

⊤, U
2 = [U2

γ ,U
2
I ]

⊤, P
1 = [P 1

I ,P
1
γ ]

⊤, P
2 = [P 2

γ ,P
2
I ]

⊤,

whereUk
I (resp.P k

I ) denotes the vector of unknown values for velocity (resp. pressure) associated
to nodesxj ∈ Tk with xj /∈ γ andUk

γ (resp.P k
γ) the one of unknowns for velocity (resp. pressure)

associated to nodesxj ∈ Tk ∩ γ. With the chosen ordering, we have :

A1 =

[
A1

II A1
Iγ

A1
γI A1

γγ

]
, and A2 =

[
A2

γγ A2
γI

A2
Iγ A2

II

]

(similarly for Bk andCk). The right-hand side vectorsF k
U andF k

p have the same block structure
as the one ofUk andP k. For the discrete continuity condition onγ, it is decided to considerΩ1 as
the (master) subdomain that passes the information to the (slave) subdomainΩ2 at γ. This choice
is motivated by the fact thatT1 is finer thanT2 on γ in the y-direction (see figure4). Let us first
describe this master-slave strategy for the pressure (a scalar field). The continuity condition (9) is
imposed by interpolation onγ and it induces that the coefficientsp2i , i = 1,m2

γ , associated to nodes
(xγ , y

2
i ) ∈ T2 ∩ γ verify :

p2i =
∑

j=1,m1
γ

p1j ϕ
1
j (xγ , y

2
i ), i = 1,m2

γ .

whereϕ1
j is the piecewise linear Finite Element function associated to node(xγ , y

1
j ) on meshT1.

Herem1
γ andm2

γ are respectively the number of nodes onγ for T1 andT2.
In matrix form, we thus obtain

P
2
γ = QP

1
γ , with Qij = ϕ1

j (xγ , y
2
i ), 1 ≤ i ≤ m2

γ , 1 ≤ j ≤ m1
γ . (10)

This can be written as follows:



P
1
I

P
1
γ

P
2
γ

P
2
I




= Q̃




P
1
I

P
1
γ

P
2
I




with Q̃ =



Id 0 0
0 Id 0
0 Q 0
0 0 Id




If the block matrixC̃ has the structure

C̃ =




C1 0

0 C2


 =




C1
II C1

Iγ 0 0

C1
γI C1

γγ 0 0

0 0 C2
γγ C2

γI

0 0 C2
Iγ C2

II


 (11)

according to the set of unknown[P 1
I ,P

1
γ ,P

2
γ ,P

2
I ]

⊤, the matrixCr for the reduced set of unknowns
[P 1

I ,P
1
γ ,P

2
I ]

⊤ is then given by:

Cr = Q̃⊤C̃ Q̃ (12)

Let us note that if nodes ofT1 andT2 coincide onγ, equation (12) achieves the assembly of triangles
of T1 andT2 having nodes onγ.



The same strategy is applied for nodal values of the velocity components using matricesQ2 and
Q̃2. They are built as follows:

U
2
γ = Q2 U

1
γ and hence




U
1
I

U
1
γ

U
2
γ

U
2
I




= Q̃2




U
1
I

U
1
γ

U
2
I




with Q̃2 =



Id 0 0
0 Id 0
0 Q2 0
0 0 Id




MatricesÃ andB̃ are defined similarly to equation (11) by:

Ã =




A1 0

0 A2


 and B̃ =




B1 0

0 B2




Then, the reduced matricesAr andBr and the reduced vectorsF r,U andF r,p are defined by:

Ar = Q̃T
2 Ã Q̃2, Br = Q̃⊤ B̃ Q̃2, FU,r = Q̃⊤

2 FU F p,r = Q̃⊤
F p

With this notation, the final reduced system for the solution of the Stokes problem writes:
(

Ar B⊤

r

Br Cr

)(
Ur

Pr

)
=

(
FU,r

F p,r

)
(13)

where
Ur = [U1

I ,U
1
γ ,U

2
I ]

⊤, Pr = [P 1
I , P

1
γ , P

2
I ]

⊤

The domain decomposition technique secures a good compromise between reducing the number
of elements in the final film thickness and preserving a structured mesh. Thus, it helps optimizing
the mesh by refining it locally only in the flow regions or in the directions where refinement is
needed. Moreover, this technique improves the condition number of the global matrix compared to
the classical mono-domain technique.

3.4. Numerical computation of the interface steady-state solution

The interface-tracking is used in the computation of flow problems with unknown interface. It
requires meshes that “track” the interface and are updated at each iteration [21]. To this end, the
interface is represented by several connected marker pointsh1 · · ·hN across the stretching direction.
At steady-state, these marker points must satisfy the kinematic interface equation (4). For a given
set of parametersh1 · · ·hN , a flow domain is defined and meshed using the domain decomposition
technique previously mentioned. Stokes problem is then solved in the flow domain using the mixed
formulation and velocity and pressure fields are computed according to the boundary conditions
previously mentioned. This allows to compute the discrete functionF defined by:

F (h1, · · · , hN ) =




f1(h1, · · · , hN )
...

fN (h1, · · · , hN )


 with fi(h1, · · · , hN ) = −uh(xi, hi)

∂h

∂x
(xi) + vh(xi, hi)

The set ofN unknowns representing the steady interface are computed through solving the
following set ofN equations :

F (h1, · · · , hN ) = 0 (14)

This is achieved using an iterative process which is initialized according to the analytical 1D model
solution mentioned previously. To improve this initialization, several iterations allow to get closer to
the shape of the steady interface. These iterations consist in computingh by solving the following



1-D equation:

−
d

dx

(
dh

dx

)
= −

d

dx

(
u
(
x, h(x)

)

v

)
with h(0) = h0 and h(L) =

h0

Dr

Finally, equation (14) is solved numerically by successive Newton-Raphson iterations. At the
beginning of each iteration, the interface is updated according to the computed velocity field and the
gradient of the functionF is numerically computed using the approximation (for a small enough
value ofδh):

∂fi
∂hj

(h1, · · · , hN ) =
1

δh

(
fi(h1, · · · , hj + δh, · · · , hN )− fi(h1, · · · , hj , · · · , hN )

)

This strategy is relatively precise but, unlike the capturing strategy, it is unable to describe transient
evolution of the interface.

In the following the steady interface is denoted byy = h(x).

4. LINEAR STABILITY ANALYSIS OF THE INTERFACE STEADY-STATE SOLUTION

4.1. Linearized equations

Once the interface steady-state solution is computed, the linear stability method is used to investigate
its stability which allows determining the onset of Draw resonance instability. When considering an
unsteady flow, the kinematic interface equation (4) becomes:

∂h

∂t
= F (h) (15)

Since the only equation including time-derivatives is the dynamic interface equation (15), stability
of the steady stateh is studied by introducing a small perturbation as follows :

h(t, x) = h(x) + eΛt ĥ(x) (16)

whereΛ is an eigenvalue and̂h(x) an eigenfunction. Inserting this expression into the dynamic
interface equation and neglecting second order terms, gives the following linearized equation:

∇hF (h) ĥ = Λ ĥ (17)

Thus, the stability problem is reduced to a classical eigenvalue problem as described in section2.
The gradient of functionF is computed numerically using a similar strategy to the one considered
in the case of Newton-Raphson iterations and theN eigenvalues are then computed using a classical
Scilab routine. The steady-state interface is stable only if the real part of the leading eigenvalues
(two complex conjugate eigenvalues) is negative. As a test, numerical results were compared to
those of the classical membrane model by imposing a slipping condition onΓ1 and considering a
large stretching distance and the classical critical Draw ratioDrc = 20.2 was obtained.

4.2. Case study :
L

2h0

= 2 andDr = 18

In this section, some results are shown for a specific case (
L

2h0

= 2 andDr = 18 ). Figure5 shows

ascaled image for the steady-state interface.
Figures 6 and 7 show the velocity iso-values in the stretching direction and the pressure

distribution. These figures prove that the membrane assumption becomes valid at the final part



Figure 5. Steady-state interface (
L

2h0
= 2 andDr = 18 )

Figure 6. Iso-values of the velocity component in the stretching direction

Figure 7. Pressure field inside the flow domain

of the film. This finding justifies the usefulness of block-structured meshes. Besides, the die exit
singularity is revealed in Figure7.

Linear stability method has been used to investigate the stability of the computed steady-state
interface. The obtained leading eigenvalues areΛ = −1.89± i 11.1 and the steady-state interface is
thus stable in this case.

5. DIRECT NUMERICAL SIMULATION

5.1. Extended domain and interface capturing strategy

The polymer flow domainΩ is extended to the air flow domain in the neighborhood of the air-
polymer interface. The whole domainΩe is represented on Figure8. The subdomainΩe\Ω is
occupied by a fictitious Newtonian fluid of very low viscosityηa. The viscosityηa can be chosen
as the air viscosity but the key point is thatηa/ηp ≪ 1 and the balance equation (2) ensures that the
normal stress vanishes on the air-polymer interfaceH. Boundary conditions for the Stokes problem
are extended to the new domain as follows (Figure8) :



• On Γ4, the same boundary condition is extended to the air phase : the x-component of the
velocity is imposed (u= uL)

• On Γ5, a free-surface condition is considered which means that normal stress vanishes:
σ
−→n = 0

• On Γ6, a non slip condition is considered meaning that velocity components vanish (u = 0
andv = 0)

Figure 8. Geometry of the extended 2D flow domain

The Stokes problem (1)-(3) is now solved onΩe and combined with a convection equation for
a level-set function (see [22]). Ifφ(x, t) andE denote the distance function toH and a truncation
thickness respectively, the level-set functionα is defined as follows:

α =





2E

π
for φ > E

2E

π
sin
( π

2E
φ
)

for |φ| < E

−
2E

π
for φ < −E

(18)

Functionα satisfies (see [23]) the convected level-set equation :




∂α

∂t
+ u.∇α+ λ s(α)

(
∣∣∇α

∣∣−
√

1−
( π

2E
α
)2
)

= 0

α(t = 0, x) = α0(x)

(19)

where the sign functions(α) is defined as follows:

s(α) =





1 if α > 0

0 if α = 0

−1 if α < 0

(20)

In this equationλ is a coupling constant depending on time and spatial discretisations (typically
λ ≃ hK/∆t wherehK is the mesh size and∆t the time step). Following [24] and setting:

a = s(α)
∇α∣∣∇α
∣∣ and g(α) =

√
1−

( π

2E
α
)2



a rearranged form of (19) leads to the following simple convection equation:




∂α

∂t
+ (u+ λa) · ∇α = λs(α)g(α)

α(t = 0, x) = α0(x)

(21)

Compared to [25] and [26], this method is specific since we intend to restrict all the levelsets to
the interface, thus avoiding different reinitialization of the distance function all over the domain
and reducing computational effort. Moreover, this particular filtering of the levelset function allows
to embed the reinitialization steps automatically in the transport equation. At this point the Stokes
problem (1)-(3) is coupled with equation (21) through the expression of viscosity. This is classically
done using a linear interpolation for the dynamic viscosity as follows:

η = H(α)ηp + (1−H(α))ηa (22)

whereH is a smoothed Heaviside function given by:

H(α) =





1 if α > ε

1

2

(
1 +

α

ε
+

1

π
sin
(πα

ε

))
if |α| ≤ ε

0 if α < −ε

(23)

Hereε is a small parameter (the interface thickness) chosen such that, ifhI is the mesh size in the
normal direction to the interface,ε ∼ hI . The use of linear interpolation for the dynamic viscosity
is advised for an interface orthogonal to the flow. However this can lead to inaccurate results for an
interface parallel to the flow. In order to handle the abrupt changes at the interface, the following
harmonic mean formulation has been used:

1

η
=

H(α)

ηp
+

1−H(α)

ηa
(24)

5.2. Numerical strategy

The Stokes problem (1)-(3) is solved using the mixed finite elements strategy (P+
1 − P1) described

in section (3). As equation (21) is an advection equation it is necessary to use upwind scheme.
A finite element formulation based on the classical SUPG (Streamline upwind Petrov-Galerkin)
method able to control the spurious oscillations of the advection dominated regime is used (see
[27]). The finite element formulation of equation (21) can be written as follows:

Find αh ∈ Vh such that∀wh ∈ Wh

∫

Ω

(
∂αh

∂t
+ (uh + λah) · ∇αh − λs(αh)g(αh)

)
wh+

nel∑

e=1

∫

Ωe

τSUPG

(
∂αh

∂t
+ (uh + λah) · ∇αh − λs(αh)g(αh)

)
(uh + λah) · ∇wh

= 0

(25)

whereVh andWh are standard test and weight finite element spaces for theP1 interpolation. The
classical Galerkin terms are represented by the first integral whereas the element-wise summation,
tuned by the stablization parameterτSUPG, represents the SUPG term needed to control the
convection in the streamline direction. More detail about the use of stabilized finite element method



for the convection equation and the evaluation of this parameter on anisotorpic meshes can be found
in [28].

Finally, the last step consists in deriving the anisotropic adapted mesh that describes very
accurately the interface between the polymer and the surrounding air. Indeed, anisotropic mesh
adaptation allows to capture scale heterogeneities in particular when simulating multiphase flow
problems : the discontinuities and high gradients of the solution are captured with good accuracy for
a reasonable number of elements. This challenging construction of the anisotropic mesh adaptation
can be conveyed to that of constructing an appropriate mesh tensor by means of a discretization
error analysis. All details of the algorithm can be found in [28].

Therefore, we start by applying an a posteriori error estimator based on the length distribution
tensor approach and the associated edge based error estimator to ensure an accurate capture of
the discontinuities and an oscillation free solution. The key idea of the approach is to produce
extremely stretched and highly directional elements under the constraint of a fixed number of nodes.
All boundaries and evolving inner interfaces are then captured automatically in particular for high
viscosity ratio. Figure9 shows the modified level-set function and the distribution of the viscosity
along the polymer-air interface.

Figure 9. (a) The level-set function, (b) The mixed viscosity

Snapshots of the adapted mesh at different time steps are depicted in Figure10. As expected, the
algorithm progressively detects and refines the mesh at the moving polymer-air interface leading to
a well respected shape in terms of curvature, angles, etc. The zoom at the take-up position illustrates
the sharp capture of the interface and the right orientation and deformation of the mesh elements



(longest edges parallel to the boundary). This yields a great reduction of the number of triangles and
consequently a reduction in the computational cost.

Figure 10. Anisotropic adapted meshes at different time steps

Moreover, the anisotropic mesh adaptation takes into account only the levelest function since the
background mesh remains isotropic. Remeshing is carried out every 10 time steps and the solution
is linearly interpolated on the new mesh. It is worth mentioning that the large width of the interface



is related to the interface thickness and also the use of a size gradation to ensure a smooth transition,
which is needed in the case of monolithic formulations.

6. COMPARISON OF THE TWO NUMERICAL METHODS

The two proposed numerical methods are compared in a specific case :A =
L

2h0

= 5 andDr = 10.

These strategies are compared on the basis of the obtained steady-state interfaces and also with
respect to stability.
Figure 11-a compares the shape of the interface at the steady-state : both methods areable to
converge to the same solution. This is also confirmed by comparing the velocity profiles along
the x-axis (Figure11-b).

Figure 11. (a) The shape of the interface, (b) The velocity profile along the x-axis

The interface stability is investigated using the linear stability method and direct simulation.
In the case of tracking strategy, linear stability analysis results in the following leading

eigenvaluesΛ = −1.15± i 10.39 which means that the process is stable.

In the case of capturing strategy, the transient stability analysis is performed by introducing a
small perturbation to the steady-state solution. The transient response due to this perturbation is
monitored by the direct simulation, taking into account both domains, the polymer fluid and the
surrounding air. The evolution of the final film thicknessh(L) is depicted in Figure12.

Figure 12. Transient stability analysis



Convergence to a steady value of the final thickness is observed within a precision of1% and
this shows that the numerical method is reasonably conservative. The real part of the leading
eigenvalues is estimated from the exponential envelope of the transient response while its imaginary
part is estimated from the time period of oscillations. Leading eigenvaluesΛ = −1.18± i 9.88 are
obtained for the same conditions which is very close to the leading eigenvalues computed with the
tracking strategy.

This finding shows that both strategies are able to give the same stability results using two
different stability analysis techniques.

7. NUMERICAL EXPERIMENTS

Since the tracking strategy is faster and easier to implement, it is used in the following to investigate
the process stability.

7.1. Steady-state interface evolution with the shape factorA =
L

2h0

Figure 13 shows the shape of the steady state interface obtained for a Draw ratio of 18and two
different shape factors. In the case ofA = 15, a 4% die swelling is observed. When a planar
Poiseuille flow is considered and no Draw ratio is imposed, a Newtonian die swell of about19% is
numerically established [16]. However, by increasing the Draw ratio, die swell decreases.

Figure 13. The shape of the interface for different shape factors

In the case ofA = 5 which means a stretching distance three times shorter, no die swelling is
observed. Therefore, die swelling is much influenced by the stretching distance and it vanishes for
low values ofA.

7.2. Interface stability as a function of the shape factorA =
L

2h0

A Draw ratio of 18 is considered and the interface stability is investigated for three different shape
factors. TableI shows the dominant eigenvaluesΛ obtained in each situation. The caseA = 2 is



very stable because the real part of its dominant eigenvalues is negative and relatively far from zero.
Besides, the caseA = 5 is stable but it is just at the limit of stability. Thus, reducing the stretching
distance (at a fixed Draw ratio) improves significantly the stability of the process. This result
confirms experimental studies (performed at Bostik company) showing that when the stretching
distance is of the same order of magnitude as the die gap, the process becomes more stable at very
high Draw ratios.

In the caseA = 15 the real part of the dominant eigenvalue is close to zero. This means that the
critical Draw ratio is close to18. Since its shape factor is relatively high, this result can be compared
to the critical Draw ratioDrc = 20.2 given by a constant width membrane model. The difference
between the two solutions is not surprising since a different set of boundary conditions is used in
each model. In the membrane model, a plug flow is considered at die exit which does not account for
the flow inside the die. Nevertheless, the two critical Draw ratios have the same order of magnitude.

Dr = 18 A = 15 A = 5 A = 2
Λ 0.06± i11.94 −0.27± i12.03 −1.89± i11.1

Table I. The dominant eigenvalues for different shape factors

7.3. Interface stability as a function of the Draw ratio

Three different Draw ratios are considered and interface stability is investigated as a function of the

shape factorA =
L

2h0

. Figure14 shows the evolution of the real part of the dominant eigenvalues

Λ as a function of the shape factorA. For all Draw ratios, the real part of the dominant eigenvalues
increases with the shape factorA. For instance, for a low Draw ratioDr = 18, the real part of the
dominant eigenvalues remains negative until important stretching distances : It becomes slightly
positive atA = 15. However, for a higher Draw ratios (Dr= 36 andDr = 100), the real part of
the dominant eigenvalues becomes positive for a shape factorA of the order of 3. By reducing the
shape factor toA = 2, the real part of the dominant eigenvalues becomes significantly negative and
of the same order of magnitude for all Draw ratios which means that the process becomes very
stable regardless of the Draw ratio.

Figure 14. Interface stability for different Draw ratios anddifferent shape factors



8. CONCLUSION

Interface tracking method and direct numerical simulation give similar results for the stationary
interface of a Newtonian film stretching process. The tracking strategy coupled with a domain
decomposition meshing technique makes it possible to apply an efficient linear stability method
to determine the stability of the process. The direct numerical capturing method gives similar
results which validates the tracking method. Nevertheless it necessitates important computation
resources and it is thus difficult to use it for a systematic investigation of the extrusion and stretching
conditions. This has been done with the tracking method to investigate cast film processing
conditions. For large stretching distances, the real part of a pair of complex conjugate eigenvalues
becomes positive for a critical Draw ratio whose value is very close to the critical Draw ratio
of the membrane model. When reducing the stretching distance, the real part of the dominant
eigenvalues decreases which corresponds to a marked stabilizing effect and this has been observed
experimentally, on a pilot cast film line at Bostik company, by reducing the distance between the
extrusion die and the chill roll. For further developments more realistic viscoelastic constitutive
equations need to be considered.
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