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Stability analysis of a polymer film casting problem
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SUMMARY

The polymercastfilm processonsistsn stretchinga moltenpolymerfilm betweeraflat dieandadrawing
roll. Drawinginstabilitiesareoftenencountere@ndrepresena drasticlimitation to the processNewtonian
fluid film stretchingstability is investigatedusing two numericalstrategiesThe first oneis a “tracking”
methodwhich consistsn solving Stokesequationsn thewholefluid area(extrusiondie andstretchingpath)
by finite elementsThe interfaceis determinedo satisfy a kinematicequation.A domaindecomposition
meshingechniques usedn orderto accounfor aflow singularityresultingfrom thechangen theboundary
conditionsbetweenthe die flow region and the stretchingpathregion. A linear stability methodis then
appliedto this transientkinematicequationin orderto investigatethe stability of the stationarysolution.
The secondmethodis a direct finite elementsimulationin an extendedareaincluding the fluid and the
surroundingair. Thetime dependeninterfaceis capturedoy solving an appropriatdevel-setfunction. The
agreemenbetweenthe two methodsis fair. The influenceof the stretchingparameterg¢Draw ratio and

drawinglength)is investigatedFor a long stretchingdistancea critical Draw ratio around20 delimitating
stableandunstabledrawingconditionsis obtainedandthis agreesvell with the standardnembranenodels
which havebeendeveloped0 yearsago.Whendecreasinghe stretchingdistancethe membranenodelis
nomore valid. The 2D models presentédrtre point out a significant increasgthe criticalDraw ratio and
this is consistent witlexperimentatesults.

KEY WORDS: cast-film; tracking strategy; capturing strategy; draw resonance; domain decomposition
technique.

1. INTRODUCTION

The cast-film process is commonly used to produce polymer films or coatings, especially for
packaging applications. It consists in extruding a molten polymer in a flat die2fgap 1 mm,
extrusion velocityug ~ lem/s; width W ~ 1m) and then stretching the polymer sheet by a chill
roll whose linear velocity can reaely = 1m/s, to produce a polymer film of thicknegs ; (of the
order of10 um). The stretching distanck between the die and the roll is generally of the order of
severakm (see Figurel) [1]. When the hot polymer film (temperature aro3td°C) is in contact
with the cold roll (temperature arourd°C), it is cooled down rapidly due to its very thin thickness
in such a way that stretching is really imposed on the distdnce

The key parameters of this cast film process are the Draw Fatie- v /vy and the shape factor
A = L/2hy. Due to the high viscosity of molten polymers £10° Pa.s) the final gap of the die
2ho needs to be sufficiently large to limit the pressure required to deliver the appropriate extrusion



Figure 1. Typical cast film process and leading parameteslizzation

velocity ug. It is thus necessary to impose a high Draw ratio to produce the target film thickness
2h; = 10pm and this results in several processing problems.

First, the film width will shrink during stretching which limits the film thickness reduction
(h¢/ho < 1/Dr). Inaddition, this “neck-in” phenomenon will result in an inhomogeneous final film
thickness even if the initial sheet thickness at die exit is homogeneous. The resulting localized over-
thicknesses on each side of the film (commonly called “dog-bone” phenomenon) make it necessary
to trim the lateral borders of the film and this will again reduce the width of the produced film. Both
phenomena are amplified when the Draw ratio or/and the stretching distance increase. One can try
to reduce the stretching distance but this induces complex technological problems and generally the
shape factor is higher tha (L > 1em).

Moreover, periodic instabilities on both the film width and the film thickness are observed as soon
as the Draw ratio is higher than a critical valuer(> Dr.) (see Figure).
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Figure 2. Typical width and thickness periodic instabifitia cast film processing [2]

These defects represent obvious limitations for the productivity of the process and a lot
of scientific and technological effort has been devoted to limit the “necking” and “dog-bone”



phenomena and to postpone the development of periodic instabilities. Increasing the drawing
distancel and applying an appropriate cooling air jet along this drawing distance allow to increase
the critical Draw ratioDr. but at the same time both “necking” and “dog-bone” phenomena are
enhanced. One can try to reduce these defects by reducing the stretching distance and it was
speculated that the critical Draw ratio would remain constant or even decrease (which means that
periodic instabilities would appear at a lower stretching velocity) but surprisingly, the opposite was
experimentally observed. This paper aims at understanding these observations.

2. STATE OF THE ART

Due to the industrial importance of the cast film process, a large range of models exists (see
for example B]) and the goal here is not to give an exhaustive description for eatheaof

but to underline the main common features connected with this study. The different models deal
principally with one or several of the following difficulties:

e behaviour of the molten polymer (Newtonian or viscoelastic),
e description of “necking” and “dog-bone” phenomena,

o determination of the critical Draw ratio,

e description of the transition from a shear flow to a stretching flow.

The first model is a simple but interesting 1D membrane motjelfassumes a constant width
and a Newtonian behaviour. If variablesindt denote respectively stretching direction and time, the
unknown functions (¢, ) andu(t, ) denote respectively the half thickness of the web and the mean
value of the velocity in thedirection over the thickness. The steady model has an analytical solution
which obviously does not account for “necking” and “dog-bone” phenomena. Stability of the steady
flow is studied using linear stability analysis. It consists in calculating the dominant eigenvalue (two
complex conjugates eigenvalues) of the stationary solution. This Newtonian isothermal constant
width situation leads to the well known critical Draw rafir. = 20.2 below which all eigenvalues
have a negative real part which means that any flow perturbation will decrease and finally vanish as
a function of time [5]. Let us mention that f@r > Dr., a Hopf bifurcation occurs: the steady flow
becomes unstable when a time-periodic solution appears. This elegant and rapid stability analysis
has been then applied to more realistic and complex situations (viscoelastic constitutive equations,
non isothermal flow) in the case of fiber spinning which is basically governed by the same system
of equations (se&] for a detailed bibliography). Of particular interest, this approach pointthai
increasing the drawing distance and introducing film cooling will stabilize the process (leading to
a higher critical Draw ratio) and this is consistent with experiments. The drawback of this method
is that computing the time dependent solution is tedious and possible only in a small neighborhood
of the critical Draw ratio. Let us point out that, as the transition from a shear flow in the flat
die to a stretching flow between the die and the chill roll is neglected, the critical Draw ratio is
overestimated: this is easily understood having in mind that swelling (ip tirection) occuring at
the die exit is neglected.

The following are membrane models using mean values of velocity compongnis z) and
v(t,z,z) in the z and z directions respectively (stretching and shrinking directions) as well as
thicknesse(t, z, z) ([6]; [7]; [8]; [9]; [10]). The important contribution of these 2D membrane
models is a description of “necking” and “dog-bone” phenomena. They were first developed based
on a Newtonian behaviour but they were then extended to account for viscoelastic fluids. In this
case, the stability of the steady flow is determined using transient simulations and a convenient
time-space numerical scheme. Growth or decay of a small perturbation of the steady flow can be
observed. It was found that the critical Draw ratio depends on the initial film viétith and the
stretching distancé (see Figurel).

A difficult point is to take into account the transition from a shear flow in the flat die to a stretching
flow between die and chill roll (Figurg). This can be done for large initial width by assuming a
constant width of the web and considering a 2D Stokes free boundary problem(in, {heplane
of Figure 1 ([11]; [12]). For instance, since the thickness of the polymer film and the stretching



distanceare negligeable comparing to the width, it is possible to assume that the flow is invariant
according to: (the position in the transverse direction). Generalization to a viscoelastic fluid remains
challenging.
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Figure 3. Geometry of the 2D flow domain (only one half of the flow donggonsidered)

In this paper, two complementary methods for the 2D problem ifuthg) plane will be proposed
and compared, first for a long stretching distancexA) to check the validity of the results with
the existing membrane models, and then for a short distanee ) Awhich corresponds to a new
development.

¢ A front-tracking method is first developed. A stationary solution is computed in the polymer
flow domain (Figure3). The interface with air is determined to satisfy the kinematic interface
steadyequation. The linear stability method is then applied to this interface location in order
to predict onset of Draw resonance.

e For the direct numerical simulation, both polymer flow and the surrounding air are considered
and the time dependent interface, between polymer and air, is captured by solving a suitable
transport equation for a level-set function.

The front-tracking method coupled with a linear stability analysis is able to determine the onset of
Draw resonance at a low computational cost for various processing conditions. Scilab programming
language is used and it results in a computation code that runs in few minutes on a laptop computer.

3. FRONT-TRACKING METHOD

The two dimensional stretching flow of a (highly viscous) Newtonian fluid is considered. As this
flow presents an unknown interface with air, the classical and well posed Stokes problem is coupled
with a kinetic interface equation allowing to determine the air-polymer interface at each time step.
This interface becomes unstable at high stretching rates. Let us point out that as the Reynolds
number is small (Rek 1), this instability is not inertial. The development of instability at high
values of the Draw ratio is due to the nonlinear terms of the kinematic interface equation. The finite
element computation of the steady flow is first described. The linear stability is studied in section
4 by introducing the time dependency in the kinetic interface equation. The compafisopar
stability results to a time dependent simulation using a capturing method will be detailed in section
5.



3.1. Governing equations for the steady flow

The considered fields are velocit, rate of strain tensat, stress tensar and pressurg:

U= [“] L e=lvuive) ;o= ["” "”}
v 2 Ozy Oyy

As the objective is to describe the transition from a purely shearing flow in the flat die to a purely
stretching flow (Figures), the considered geometry includes the final part of the flat die and the
stretching area till take up. The change of boundary conditions at die exit induces a geometric
singularity which is responsible for computational difficulties. Let us aigthe gap of the flat
die. Extrusion occurs at = 0. The flow in the die is considered on a length(from =z = —hg to
2 = 0) and the contact of the fluid with the wall is sticky. After extrusion the liquid is stretched by
imposing atz = L a take-up velocity:;, largely greater than the mean extrusion veloeity The
flow domainf2 and its boundaries are presented on Figuiest us precise the boundary conditions:

e The velocity components vanish on the upper walbf the flat die.

e A plane Poiseuille flow is imposed dry.

e On the symmetry axi§'s;, the normal component of the velocity vanishes<0) as well as
the shear component of the stress tensgy & 0).

e On I'y (take up), the x-component of the velocity is imposed=(u;) and the shear
components of the stress tensor vanishgg & 0).

e The interface with aif{ is described as the gragh= h(x). On this part, the interface balance
equation writeso 77 = 0 .

The stress tenser for a Newtonian behaviour reads, (ig the polymer viscosity) :
o=2né—pld Q)
Due to the large value of,, gravity and inertia are neglected, and the balance equation becomes :
V.o=0 (2)
Finally, as the fluid is incompressible, mass conservation holds:
V-U=Tr(€) =0 3)

Equations {)-(3) form the classical Stokes problem which is well posed with the previously
described boundary conditions @2 for a given air-polymer interface (i.e for a given function
y = h(zx)). A finite element strategy is used to compute velocity componentsand pressure
p (see paragrapBi.2). Let us point out that as inertia is neglected, the considered equat®ns ar
unchanged if the time dependency is introduced.

At this step, a supplementary condition is needed to determine the steady intRrfésethe
non-miscibility condition writes for a steady flow - 77 = 0 [11], we have:

oh

Un 7 = Vh

ox

with uy (z) = u(z, h(x)) andv, (z) = v(z, h(zx)).
The non-miscibility condition leads to a highly non linear equatiomfanamely :

Ooh
F(h):—uh%—kvh:() (4)

An iterative process is used to solve this equation. First, the interface position is initialized by
X

the analytical solution of the 1D membrane modék) = hoDr L [13]. Then, several fixed-

point iterations allow to make the interface position closer to the solution and thus ensure an
easy convergence. Finally, the steady-state interface is obtained by successive Newton-Raphson’s
iterations.



3.2. The finite elements strategy

For a given air-polymer interface, the Stokes problem is classically written as a mixed problem:
FindU € V andp € Q such that:

a(U, V) +b(V,p) =0 VYV ey (5a)
b(U,q) =0 VgeQ (5b)

with
a(U,V) =2 /an e(U):e(V) and b(U,p) = /deiv(U)

The space¥;, andQ), of test functions are convenient subspaces of Sobolev spﬁce@Hl (Q))2
andQ c L? (Q) [14]. The finite element approximation of problem (5) leads to a linear system for
nodal values of/ andp of the following form:

A BTl[U Fy

3 210811
In this matrix equation]J and P are the unknown vectors of nodal values for the velocity and
pressure whereas the right hand side &gt of the equation contains Dirichlet conditions for
velocity. Due to Korn inequality, the bilinear fora{., .) is coercive and hence matrikis positive
definite. However, the linear syster®)(is not invertible for all choices of the finite element pairs
for interpolating velocity and pressure. The finite elementpair- P; (Mini-element, [15])which
satisfies the Babushka-Brezzi-Ladysenskaia (BBL) condition is used here for velocity components
and pressure. According to this choice, every triangular eletiestdivided in three sub-triangles
having as a common vertex the element’s center of gravity and the discrete velocity space is enriched
by a bubble function defined as the test function associated to the center of gravity of the element.
This bubble function is continuous, linear on each sub-triangle and vanishes on the boungary of
The supplementary velocity component degrees of freedom introduced by the bubble function are
removed thanks to the so-called static condensation strategy which consists in writing the discrete
equations of (5a) with the bubble as test function on each velocity component. Assembling on the

three sub-triangles allows to compute nodal values of velocity at the center of each element as a
function of nodal values of velocity and pressure at the vertices of the element. It thus leads to the

following linear system :
A B'][U] [Fy @
B C||P|] |F

In the following sectionsA, B, C, F; andF,, will be simply denoted byl, B, C, Fy; andF,.

3.3. Flow domain, meshing and domain decomposition technique

The flow domain between the extrusion die and the take-up is restricted by the position of the
interfaceX which is defined by a piecewise linear interpolation of functian

h; = h(z;) with zp=0 and zy =1L

wherehy is half of the flat die thickness and the gagt: - - hy is unknown. Since it is required to
determine the onset of Draw resonance, for various processing conditions, relatively quickly (few
minutes) and at a low computational cost, a direct and simple strategy is considered. For example,
structured meshes are used to easily control node numbers at the air-polymer interface. Moreover, a
reference domaif,.; = [—ho, L] x [0, ho] is defined and a meshing of domdins then obtained

by applying the following transformation, between die exit and take-up, to a meshing pf

(z,y) — <:z:,y h}i?) for x>0



In addition, mesh refinement at die exit is required to deal with the pressure singularity resulting
from the change of boundary conditions at die exit (sticky contact at theTwah the die and
vanishing normal stress oH).As the effect of this geometrical singularity is well known for the
so calledstick-slip flow(in this case velocity and stress tensor behave respectivity @%9) and
r~2¥(0)) and in order to avoid the use of an adaptative method, the mesh of the reference domain
Q.. is radially refined in the neighborhood of extrusion die exit(0 andy = hy). Figure @)
shows the mesh refinement of the resulting flow domain. The suitability of this mesh refinement
was checked since it allowed to capture th& die swelling when no draw ratio is imposeth].

|~

o | o o o

Figure 4. Structured mesh transformation

Obviously, in the flow region located immediately after die exit (about half a thickness after
die exit), shear components which were dominant inside the die, vanish progressively whereas
elongation components become largely dominant along the stretching path. In the remaining part
of the flow, the velocity component and its gradient become negligeable with respect to the
velocity component: and its gradient respectively. Therefore, in this part of the domain, it is
required to refine the mesh only in thelirection. Thus a domain decomposition approach, allowing
to adapt the meshes to the features of the solution in the flow domain, is ada@lednpleed,
it allows to obtain a convenient solution at low computational cost. Classical approaches when
dealing with nonconforming finite approximations are the mortar element meth8H[{]) and
the discontinuous Galerkin method. See also [20] and the references therein for more details on
discretization methods for fluid problems and their theoretical analysis in complex geometries.
The scope here is mostly confined to a very simple coupling approach which neither introduces
additional difficulties (such as complicated function spaces or new variational terms depending
on parameters to set) nor alters the significant features of the solution (such as stability, flow rate
distribution) even if the coupling is not optimal with respect to the consistency error. The rule of
mesh-conformity (i.e., two elements of the mesh sharing either nothing, or a vertex or a whole edge)
constrains mesh refinement to propagate from the die exit singularity up to the end of the domain.
To by-pass this difficulty, two meshes that do not match on the connectiof neused as shown
in Figure4. The coupling technique used to link component&/oénd P associated to nodes on
~ for the two meshes is described in the following. The flow donfaiis decomposed into two
non-overlapping sub-domaify,, k = 1, 2:

ﬁzﬁlLJﬁQ, leggzw, §1m§2:75 (8)

such that); contains the die exit singularity and, the final part of the polymer film. The
connection liney is vertical and located after die exit, for examplezat= hy where neither the
pressure nor the velocity present too strong variations iny tfieection. Then two different families
of triangulations7; and7; are used orf2; and(2, respectively. Let us denote liyk and P* the
vectors of nodal values fdf and P on mesh7y, k = 1, 2. After the assembling on each local mesh,
one obtains matriced”, B* andC*. Let us point out that, since the nodes7fand7; do not in
general coincide on, the continuity conditions

Ul(z) =U?(z) ; p'(z) =p*(x) ;for zevy (9)



have to be restored at the discrete level. This is done by interpolation. For the final linear algebraic
system, unknown values 6f and7; are split. We seU = [U*,U?]" andP = [P*, P?]" with

UlZ[U}7U’1y]T7 UQZ[Ui7U?]T7 PlZ[P}’P}/]T’ P2:[P'2y’P§]T7
whereU’} (resp.P’}) denotes the vector of unknown values for velocity (resp. pressure) associated

to nodese; € 7, with z; ¢ ~ and U§ (resp.Pﬁ) the one of unknowns for velocity (resp. pressure)
associated to nodes € 7, N . With the chosen ordering, we have :

Al Al A2 A2
Alz{ II 1«,]’ and Azz[ ~y 1]
al, b, A3, 4

(similarly for B* andC*). The right-hand side vectods;; and Fx have the same block structure

as the one ot/* and P*. For the discrete continuity condition enit is decided to conside®, as
the (master) subdomain that passes the information to the (slave) subdosraiiry. This choice

is motivated by the fact thaf; is finer than7; on~ in the y-direction (see figurd). Let us first
describe this master-slave strategy for the pressure (a scalar field). The continuity corddii®n (
imposed by interpolation om and it induces that the coefficienty, i = 1, m?2, associated to nodes
(24, 9?) € T2 N verify :

pi= > piejlyy),  i=1ml.

;— 1
Jj=1m;

wherey] is the piecewise linear Finite Element function associated to fiedey;) on meshf;.
Herem}y andm?y are respectively the number of nodes-~ofor 7; and7s.
In matrix form, we thus obtain

P2=QP), with Qi =¢j(z,,y), 1<i<m2 1<j<ml. (10)

This can be written as follows:

P}
1
pl P Id 0 O
L I o~ 0 Id 0
- =Q | P, with @ = 0 0 0
v P? 0 0 Id
| P ]

ch, L0 0

ct 0 1 1
¢ - -9 Y 2 o (1)
e 0 0 ¢z 2

0 0 i Ch

according to the set of unknow®;, P, P2, P7]T, the matrixC, for the reduced set of unknowns
[P}, P}, P7]" is then given by:

C.=Q'CQ (12)

Let us note that if nodes @f, and7; coincide oy, equation {2) achieves the assembly of triangles
of 7; and7; having nodes on.



_ The same strategy is applied for nodal values of the velocity components using m@triaed
Q2. They are built as follows:

U;
1
Ul Ui Id 0 O
9 1 v ~ 1 . ~ 0 Id O
U2 =Q.U. andhence =Q2 |U with Qo =
v v 2 g 0 @ 0
v 0 0 Id
2 Uﬁ
LU
MatricesA and B are defined similarly to equation{) by:
) A o ] B' 0
A= and B=
0 A2 0 B?

Then, the reduced matricels. and B, and the reduced vectofs, ;; and F',. , are defined by:
Ar:Q§AQ27 BTZQTBQ% FU,T‘:Q;FU Fp,r:QTFp

With this notation, the final reduced system for the solution of the Stokes problem writes:
A. Bl U.\ [ Fu,
(BT C, )(Pr>_<Fp.,r> (13)

UT':[U}aU}yaU?]Ta PTZ[PIl’P')lxvaQ]T

The domain decomposition technique secures a good compromise between reducing the number
of elements in the final film thickness and preserving a structured mesh. Thus, it helps optimizing
the mesh by refining it locally only in the flow regions or in the directions where refinement is
needed. Moreover, this technique improves the condition number of the global matrix compared to
the classical mono-domain technique.

where

3.4. Numerical computation of the interface steady-state solution

The interface-tracking is used in the computation of flow problems with unknown interface. It
requires meshes that “track” the interface and are updated at each itegdtjoiid this end, the
interface is represented by several connected marker gaintsh y across the stretching direction.

At steady-state, these marker points must satisfy the kinematic interface eqdatibor(a given

set of parameters; - - - hy, a flow domain is defined and meshed using the domain decomposition
technique previously mentioned. Stokes problem is then solved in the flow domain using the mixed
formulation and velocity and pressure fields are computed according to the boundary conditions
previously mentioned. This allows to compute the discrete fundilatefined by:

fl(h17”' 7hN)

. oh
F(hl, v ,hN) = with fi(hh' .. ,hN) = —uh(xi,hi) 7(171) "‘r’l}h(l‘i,hi)
fN(hla"'7hN)

Ox
The set of N unknowns representing the steady interface are computed through solving the
following set of N equations :
F(hy,--- ,hy) =0 (14)

This is achieved using an iterative process which is initialized according to the analytical 1D model
solution mentioned previously. To improve this initialization, several iterations allow to get closer to
the shape of the steady interface. These iterations consist in computiyngolving the following



1-D equation:

_C% <ZZ> B _c%: <W> with h(0) =ho and h(L) = %(;

Finally, equation (14) is solved numerically by successive Newton-Raphson iterations. At the
beginning of each iteration, the interface is updated according to the computed velocity field and the
gradient of the functiorF' is numerically computed using the approximation (for a small enough
value ofh):

ofi
oh;

1
(hh 7hN): E(fl(hh 7h]+6ha 7hN)_f’L<hl7 ahj7 7hN))

This strategy is relatively precise but, unlike the capturing strategy, it is unable to describe transient
evolution of the interface. B
In the following the steady interface is denotedyoy h(z).

4. LINEAR STABILITY ANALYSIS OF THE INTERFACE STEADY-STATE SOLUTION

4.1. Linearized equations

Once the interface steady-state solution is computed, the linear stability method is used to investigate
its stability which allows determining the onset of Draw resonance instability. When considering an
unsteady flow, the kinematic interface equatidhlfecomes:

oh _

ot
Since the only equation including time-derivatives is the dynamic interface equatiprs{akility
of the steady statg is studied by introducing a small perturbation as follows :

F(h) (15)

h(t,z) = h(z) + M h(z) (16)

where A is an eigenvalue anﬁ(x) an eigenfunction. Inserting this expression into the dynamic
interface equation and neglecting second order terms, gives the following linearized equation:

ViF(h)h=Ah 17)

Thus, the stability problem is reduced to a classical eigenvalue problem as described inZection
The gradient of functiorF is computed numerically using a similar strategy to the one considered

in the case of Newton-Raphson iterations andt¥heigenvalues are then computed using a classical
Sci | ab routine. The steady-state interface is stable only if the real part of the leading eigenvalues
(two complex conjugate eigenvalues) is negative. As a test, numerical results were compared to
those of the classical membrane model by imposing a slipping conditidh @md considering a

large stretching distance and the classical critical Draw tip= 20.2 was obtained.

L
4.2. Casestudy:— =2andDr =18
2hg

. . . L .
In this section, some results are shown for a specific ceﬁe & 2andDr = 18). Figure5 shows
0

ascaled image for the steady-state interface.
Figures6 and 7 show the velocity iso-values in the stretching direction and the pressure
distribution. These figures prove that the membrane assumption becomes valid at the final part
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Figure 6. Iso-values of the velocity component in the stietghlirection
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Figure 7. Pressure field inside the flow domain

of the film. This finding justifies the usefulness of block-structured meshes. Besides, the die exit
singularity is revealed in Figure.

Linear stability method has been used to investigate the stability of the computed steady-state
interface. The obtained leading eigenvaluesfare —1.89 + ¢ 11.1 and the steady-state interface is
thus stable in this case.

5. DIRECT NUMERICAL SIMULATION

5.1. Extended domain and interface capturing strategy

The polymer flow domairf2 is extended to the air flow domain in the neighborhood of the air-
polymer interface. The whole domain, is represented on Figur@ The subdomaif2.\Q is
occupied by a fictitious Newtonian fluid of very low viscosify. The viscosityn, can be chosen
as the air viscosity but the key point is thgt/n, < 1 and the balance equatioB) Ensures that the
normal stress vanishes on the air-polymer interfac&oundary conditions for the Stokes problem
are extended to the new domain as follows (Figtjre



e On Ty, the same boundary condition is extended to the air phase : the x-component of the
velocity is imposed (u= ur)
e On I';, a free-surface condition is considered which means that normal stress vanishes:

_>
on =0
e OnTyg, a non slip condition is considered meaning that velocity components vanisho (
andv = 0)
L
s

Figure 8. Geometry of the extended 2D flow domain

The Stokes probleml}-(3) is now solved orn), and combined with a convection equation for
a level-set function (see [22]). #(z, t) and E denote the distance function # and a truncation
thickness respectively, the level-set functieis defined as follows:

2B for¢ > F
s
2F us
= i 18
a - 51n<2E¢) for|¢| < E (18)
_2E forg < —FE
T

Functiona satisfies (se€3]) the convected level-set equation :

fole} T\ 2

E+u.Voz+/\s(a) <|Va|— 1-— <ﬁa) ) =0 (19)
a(t = va) = O‘O(x)

where the sign functior(«) is defined as follows:

1 ifa>0
sfa)=¢ 0 ifa=0 (20)
-1 ifa<0

In this equation\ is a coupling constant depending on time and spatial discretisations (typically
A ~ hi /At wherehg is the mesh size andlt the time step). FollowingZ4] and setting:

Va

Q)W and g(a)=14/1- (%002

a=s(



arearranged form ofl(9) leads to the following simple convection equation:

8704 + (u+ Aa) - Va = As(a)g(a)

alt =0,z) = ag(x)

Compared to35] and [26], this method is specific since we intend to restrict all the levelsets to
the interface, thus avoiding different reinitialization of the distance function all over the domain
and reducing computational effort. Moreover, this particular filtering of the levelset function allows
to embed the reinitialization steps automatically in the transport equation. At this point the Stokes
problem ()-(3) is coupled with equation (3through the expression of viscosity. This is classically
done using a linear interpolation for the dynamic viscosity as follows:

n=H(a)n,+ (1 - H(a))n, (22)

whereH is a smoothed Heaviside function given by:

1 if a>e
1 1 .

ORSE <1+j+ﬁsin (”:‘)) if [af < e (23)
0 if a < —¢

Heree is a small parameter (the interface thickness) chosen such thatisfthe mesh size in the
normal direction to the interface,~ h;. The use of linear interpolation for the dynamic viscosity

is advised for an interface orthogonal to the flow. However this can lead to inaccurate results for an
interface parallel to the flow. In order to handle the abrupt changes at the interface, the following
harmonic mean formulation has been used:

EZH(a)Jrl—H(a) (24)
n Mp Na

5.2. Numerical strategy

The Stokes problentj-(3) is solved using the mixed finite elements strateBy (- ;) described

in section (3). As equation (21) is an advection equation it is necessary to use upwind scheme.
A finite element formulation based on the classical SUPG (Streamline upwind Petrov-Galerkin)
method able to control the spurious oscillations of the advection dominated regime is used (see
[27]). The finite element formulation of equation (21) can be written as follows:

Find o, € V}, such thatvvw;,, € W,

0
/ <aath + (up + Aap) - Va, — )\s(ah)g(ah)> wp~+
Q

(25)
Nel a
Z/ TSUPG (gth + (uh + )\a;,,) . Vozh — )\S(O&;JQ(O&},,)) (llh + )\ah) . th,
e=1 ¢

=0

whereV;, andW,, are standard test and weight finite element spaces faPtheterpolation. The
classical Galerkin terms are represented by the first integral whereas the element-wise summation,
tuned by the stablization parametesy pg, represents the SUPG term needed to control the
convection in the streamline direction. More detail about the use of stabilized finite element method



for the convection equation and the evaluation of this parameter on anisotorpic meshes can be found
in [28].

Finally, the last step consists in deriving the anisotropic adapted mesh that describes very
accurately the interface between the polymer and the surrounding air. Indeed, anisotropic mesh
adaptation allows to capture scale heterogeneities in particular when simulating multiphase flow
problems : the discontinuities and high gradients of the solution are captured with good accuracy for
a reasonable number of elements. This challenging construction of the anisotropic mesh adaptation
can be conveyed to that of constructing an appropriate mesh tensor by means of a discretization
error analysis. All details of the algorithm can be found in [28].

Therefore, we start by applying an a posteriori error estimator based on the length distribution
tensor approach and the associated edge based error estimator to ensure an accurate capture of
the discontinuities and an oscillation free solution. The key idea of the approach is to produce
extremely stretched and highly directional elements under the constraint of a fixed number of nodes.
All boundaries and evolving inner interfaces are then captured automatically in particular for high
viscosity ratio. Figure® shows the modified level-set function and the distribution of the viscosity
aong the polymer-air interface.
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Figure 9. (a) The level-set function, (b) The mixed viscosity

Snapshots of the adapted mesh at different time steps are depicted in Figére expected, the
algorithm progressively detects and refines the mesh at the moving polymer-air interface leading to
a well respected shape in terms of curvature, angles, etc. The zoom at the take-up position illustrates
the sharp capture of the interface and the right orientation and deformation of the mesh elements



(longest edges parallel to the boundary). This yields a great reduction of the number of triangles and

consequently a reduction in the computational cost.
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Figure 10. Anisotropic adapted meshes at different timesstep
Moreover, the anisotropic mesh adaptation takes into account only the levelest function since the

background mesh remains isotropic. Remeshing is carried out every 10 time steps and the solution
is linearly interpolated on the new mesh. It is worth mentioning that the large width of the interface



is related to the interface thickness and also the use of a size gradation to ensure a smooth transition,
which is needed in the case of monolithic formulations.

6. COMPARISON OF THE TWO NUMERICAL METHODS

. : . L
The two proposed numerical methods are compared in a speuﬂcﬁaseﬁ =5andDr = 10.

These strategies are compared on the basis of the obtained steady—st%\te interfaces and also with
respect to stability.

Figure 11-a compares the shape of the interface at the steady-state : both methadideatie
converge to the same solution. This is also confirmed by comparing the velocity profiles along
the x-axis (Figurel1-b).
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Figure 11. (a) The shape of the interface, (b) The velocityileralong the x-axis

The interface stability is investigated using the linear stability method and direct simulation.
In the case of tracking strategy, linear stability analysis results in the following leading
eigenvalues\ = —1.15 + ¢ 10.39 which means that the process is stable.

In the case of capturing strategy, the transient stability analysis is performed by introducing a
small perturbation to the steady-state solution. The transient response due to this perturbation is
monitored by the direct simulation, taking into account both domains, the polymer fluid and the
surrounding air. The evolution of the final film thicknggd.) is depicted in Figuréd 2.
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Figure 12. Transient stability analysis



Convergence to a steady value of the final thickness is observed within a precisi&hanfd
this shows that the numerical method is reasonably conservative. The real part of the leading
eigenvalues is estimated from the exponential envelope of the transient response while its imaginary
part is estimated from the time period of oscillations. Leading eigenvalues-1.18 + ¢ 9.88 are
obtained for the same conditions which is very close to the leading eigenvalues computed with the
tracking strategy.

This finding shows that both strategies are able to give the same stability results using two
different stability analysis techniques.

7. NUMERICAL EXPERIMENTS

Since the tracking strategy is faster and easier to implement, it is used in the following to investigate
the process stability.

7.1. Steady-state interface evolution with the shape fa«tt@f%
0

Figure 13 shows the shape of the steady state interface obtained for a Draw ratioapfd1®vo
different shape factors. In the case 4f= 15, a 4% die swelling is observed. When a planar
Poiseuille flow is considered and no Draw ratio is imposed, a Newtonian die swell of El50us
numerically established.p]. However, by increasing the Draw ratio, die swell decreases.

AATANANAVAVAVATA
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Figure 13. The shape of the interface for different shapefact

In the case ofA = 5 which means a stretching distance three times shorter, no die swelling is
observed. Therefore, die swelling is much influenced by the stretching distance and it vanishes for
low values ofA.

7.2. Interface stability as a function of the shape factos

2ho

A Draw ratio of 18 is considered and the interface stability is investigated for three different shape
factors. Table shows the dominant eigenvaluasobtained in each situation. The cade= 2 is



very stable because the real part of its dominant eigenvalues is negative and relatively far from zero.
Besides, the casé = 5 is stable but it is just at the limit of stability. Thus, reducing the stretching
distance (at a fixed Draw ratio) improves significantly the stability of the process. This result
confirms experimental studies (performed at Bostik company) showing that when the stretching
distance is of the same order of magnitude as the die gap, the process becomes more stable at very
high Draw ratios.

In the cased = 15 the real part of the dominant eigenvalue is close to zero. This means that the
critical Draw ratio is close t@8. Since its shape factor is relatively high, this result can be compared
to the critical Draw ratioDr. = 20.2 given by a constant width membrane model. The difference
between the two solutions is not surprising since a different set of boundary conditions is used in
each model. In the membrane model, a plug flow is considered at die exit which does not account for
the flow inside the die. Nevertheless, the two critical Draw ratios have the same order of magnitude.

Dr =18 A=15 A=5 A=2
A 0.06 £¢11.94 | —0.27 £¢12.03 | —1.89 £¢11.1
Table I. The dominant eigenvalues for different shape factor

7.3. Interface stability as a function of the Draw ratio

Three different Draw ratios are considered and interface stability is investigated as a function of the
L . . . .

shape factod = o Figure 14 shows the evolution of the real part of the dominant eigenvalues

A as a function of tﬁ)e shape factdr. For all Draw ratios, the real part of the dominant eigenvalues
increases with the shape factar For instance, for a low Draw ratibr = 18, the real part of the
dominant eigenvalues remains negative until important stretching distances : It becomes slightly
positive atA = 15. However, for a higher Draw ratios (D+ 36 and Dr = 100), the real part of

the dominant eigenvalues becomes positive for a shape faabdbthe order of 3. By reducing the
shape factor tol = 2, the real part of the dominant eigenvalues becomes significantly negative and
of the same order of magnitude for all Draw ratios which means that the process becomes very
stable regardless of the Draw ratio.

—4—Dr=18

05 —m—Dr=36
o e
-0,5 VA — — Stability limit

Figure 14. Interface stability for different Draw ratios adifferent shape factors



8. CONCLUSION

Interface tracking method and direct numerical simulation give similar results for the stationary
interface of a Newtonian film stretching process. The tracking strategy coupled with a domain
decomposition meshing technique makes it possible to apply an efficient linear stability method
to determine the stability of the process. The direct numerical capturing method gives similar
results which validates the tracking method. Nevertheless it necessitates important computation
resources and it is thus difficult to use it for a systematic investigation of the extrusion and stretching
conditions. This has been done with the tracking method to investigate cast film processing
conditions. For large stretching distances, the real part of a pair of complex conjugate eigenvalues
becomes positive for a critical Draw ratio whose value is very close to the critical Draw ratio
of the membrane model. When reducing the stretching distance, the real part of the dominant
eigenvalues decreases which corresponds to a marked stabilizing effect and this has been observed
experimentally, on a pilot cast film line at Bostik company, by reducing the distance between the
extrusion die and the chill roll. For further developments more realistic viscoelastic constitutive
equations need to be considered.
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