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Abstract: A general methodology is introduced for texture segmentation in binary, scalar, or multispectral
images. Textural information is obtained frommorphological operations on images. Starting from a �ne par-
tition of the image in regions, hierarchical segmentations are designed in a probabilistic framework bymeans
of probabilistic distances conveying the textural or morphological information, and of random markers ac-
counting for the morphological content of the regions and of their spatial arrangement. The probabilistic
hierarchies are built from binary or multiple fusion of regions.
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1 Introduction
In many cases images contain regions with di�erent textures, rather than objects on a background or regions
with homogeneous grey level easily segmented by thresholding.

Automatic texture extraction is required in di�erent areas such as for instance industrial control [7] or
remote sensing [25, 26]. In these two last cases, in every pixel of images multivariate information is available,
like results of morphological transformations applied to grey level or to binary images [6, 7], or like the wave-
length response of a sensor inmultispectral images [25, 26]. In this context a typical approachof segmentation
makes use of pixel classi�cation by means of multivariate image analysis [6, 7], sometimes combined with a
watershed segmentation based on some multivariate gradient [25, 26].

In what follows, we introduce a hierarchical probabilistic segmentation of textures based on multivari-
ate morphological information available on every pixel. After a short review of earlier works, a reminder on
morphological texture descriptors and texture classi�cation is given. Then a probabilistic approach of hierar-
chical segmentation of textures, based on a probabilistic distance and on the introduction of various random
markers, is developed. This work is an extension of preliminary results given in [17].

2 Earlier works on probabilistic segmentation of textures
Previous publications on probabilistic segmentation of textures are rather sparse. We present here for com-
parison a short review of some papers related to this area.

In the early work [30], objects (rather than textures) are labelled by relaxation operations to remove some
ambiguity in their classi�cation. Aheuristic process involves a probabilisticmodel, called stochastic labeling,
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Morphological probabilistic hierarchies for texture segmentation | 217

using compatibility constraints between the labels of all objects. They are implemented as empirical coe�-
cients of a linear or a non-linear operator acting on the probabilities of the labels attributed to pairs of object.
The choice of the operators is justi�ed by their behaviour during iterations, namely a convergence to a �xed
point, starting from an initial guess, but without any probabilistic basis. In a later work [13], the probabilistic
interpretation is rejected and the approach is reformulated in the context of local optimization, leading to a
relaxation labeling by a projection operator.

In [28] a probabilistic classi�cation (or attribution of labels) of nodes of a graph or of pixels is performed
in a Bayesian framework. For this, the probability for a node to get a given label is considered as a random
variable, which is estimated from information on its neighbours in an iterative calculation involving a condi-
tional independence of the probabilities, knowing the labels. An updating operator of the labels by means
of neighboring probabilities is introduced. Its convergence is ensured by the existence of �xed points.

In [20] segmentation algorithms rely on stochastic and deterministic relaxation principles. Using the
Gauss Markov random �eld model the segmentation is given by the approximate solution of an optimiza-
tion problem, namely the MAP (maximum a posteriori) or the expected classi�cation error rate per pixel. The
possibility of hierarchical segmentation from the change of the energy involved in the Gibbs formulation is
brie�y mentioned.

A probabilistic bottom-up aggregation approach [1] merges adjacent regions by a graph coarsening pro-
cedure. Various criteria (intensity and texture bymeans of outputs of edge �lters) are accounted for, and com-
bined by amixture of probabilities involving likelihoods estimated from information in surrounding regions.
Prior probabilities promote the fusion of adjacent regions with long common boundaries.

In [19] a supervised segmentation of textures is proposed. Starting from�lter responses, a similaritymea-
sure between textures is given from the data of the Kullback-Leibler divergence between histograms obtained
on local windows around a training set of pixels. This similarity measure is then used for every pixel and in-
troduced in a Bayesian Markov random �eld (MRF) for the segmentation (in fact classi�cation) of each pixel.
In [18] the same method is applied to the fusion of existing regions (instead of local windows), and using an
active contour based segmentation.

In contrast with some of these previous developments, our approach does not make use of any proba-
bilistic or statistical model of random �eld for the image. The randomness is introduced by the process of
sampling random points in the image, or by the use of randommarkers. Furthermore, we operate on regions
of a partition resulting from an oversegmentation process and will build hierarchies based on a probabilistic
content.

3 Morphological texture descriptors
We will consider images as domains D in the n dimensional space Rn. Every pixel x is described by a set of
morphological parameters or transformations building a vector with dimension p in the parameter spaceRp.
For instance in the case of 2D multispectral images, we have n = 2 and p is the number of channels of each
spectrum. Many types of transformations can be used. From experience, some standard families of morpho-
logical transformations Ψ [21, 31], performed on an initial image, are e�cient as texture descriptors [6, 7]:
dilations δ(ρ), erosions ε(ρ), openings γ(r) or closings ϕ(ρ) by convex structuring elements with size ρ. These
operations are as well de�ned for binary images as for scalar grey level images. E�cient texture descriptors,
from the point of viewof pixel classi�cation, are increments of transformationswith respect to the size ρ. Thus
for a binary image A, vectors of description are obtained for each type of transformation, with components
Iα(x) where Iα is the indicator function of the set Ψ(A, ρα)4 Ψ(A, ρα−1),4 being the set di�erence, and α
ranging from 1 to s, with ρ0 = 0. For a grey level image Y(x), the components are given by the increments
Za(x) =

∣∣Ψ(Y(x), ρα) − Ψ(Y(x), ρα−1)
∣∣. When Ψ is an opening or a closing, the increments Za(x) provide a

granulometric spectrum, as used in various domains: binary textures [6, 32], rough surfaces [3], satellite im-
agery [29], tomention a few. In some speci�c situations, the components Iα(x) or Za(x) are averaged in a local
window K(x) around x, to provide local granulometries [6, 7, 11] or the output of linear �lters, like curvelet
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218 | Dominique Jeulin

transform [6, 7]. These descriptors are easily extended in a marginal way to the components of multispectral
images.

4 Texture classi�cation
The morphological descriptors generate a vector �eld on the domainD, from which a classi�cation of pixels
in the various textures present in the image can be looked for. For this, a partition in classes Cβ must be
built in the high dimensional parameter space. A convenient methodology is based on multivariate factor
analysis to reduce the dimension of the data and to remove noise: in [25, 26] use is made of Factor Correspon-
dence analysis FCA, well suited to positive data, like multi spectral images or like probability distributions
as encountered in granulometric spectra; for heterogeneous data, Principal Component Analysis PCA can be
a good method to produce the dimensional reduction [7]. Each of these analysis makes use of some speci�c
distance in the parameter space, which we will denote

∥∥Z(x1) − Z(x2)
∥∥ for the descriptors of the two pixels

x1 and x2. Various distances can be chosen (for instance the chi-squared between distributions in the case of
FCA). We will not discuss this choice here, which is highly application dependent.

A classi�cation of pixels is then made in the parameter space or in its reduced version, after keeping
the most prominent factors. This classi�cation can be unsupervised, using random germs in the K-means
algorithm or a hierarchical classi�cation, as described in [4]. When the textures are documented by a set of
representative pixels, supervised statistical learningmethods can be implemented for later classi�cation (see
an extensive presentation in [12]). In [6] a Linear Discriminant Analysis LDA is used. It follows a PCA in [7].

5 Probabilistic texture segmentation
In this section we assume that in every pixel x in the image embedded in Rn, multivariate information (like
multispectral data, or transformed images as described in section 3) is stored in a vector Z(x)with components
Zα(x). For any pair of pixels x1 and x2, a multivariate distance

∥∥Z(x1) − Z(x2)
∥∥ is de�ned in the parameter

space Rp.

5.1 Watershed texture segmentation

Considering points y in the neighborhood B(x) of point x, a multivariate gradient can be de�ned as (Noyel et
al. 2007; Noyel et al. 2008):

grad
(
Z(x)

)
= ∨y∈B(x)

∥∥Z(x) − Z(y)
∥∥ − ∧y∈B(x)

∥∥Z(x) − Z(y)
∥∥

The gradient image can be used as the starting point of the segmentation of the domain D into homo-
geneous regions Ai. In fact it is expected that a texture sensitive gradient will provide weak values in ho-
mogeneous regions, and high values on the boundary Aij between two regions Ai and Aj. A separation of
the domainD in homogeneous connected regions Ai is obtained by the construction of the watershed of the
gradient image from markers generated by the minima of the gradient, as initially de�ned for scalar images
[5, 23] and later extensively used for multispectral images [25, 26].

Themain drawback of thewatershed segmentation is its sensitivity to noise, resulting in systematic over-
segmentation of the image. This is alleviated by means of a careful choice of markers, driven by some local
content, like for instant chosen from a multivariate classi�cation [27].

Another approach, the stochastic watershed [2], makes use of randommarkers replacing the usual mark-
ers, enabling us to estimate a local probability of boundaries at each point x ∈ Aij. The main idea is to eval-
uate the strength of contours by their probability, estimated from Monte Carlo simulations in a �rst step, as
developed in the scalar [2] and in the multispectral cases [25–27]. Simulations can be replaced by a direct

Unauthenticated
Download Date | 1/4/17 6:41 PM



Morphological probabilistic hierarchies for texture segmentation | 219

calculation of the probability of contour for each boundary Aij between adjacent regions Ai and Aj [15, 24].
This was successfully applied for 3D multiscale segmentation of granular media using point markers [9] or
oriented Poisson lines markers [10].

5.2 Probabilistic hierarchical segmentation

In what follows, we design a new probabilistic segmentation obtained by a hierarchical merging of regions
from a �ne partition of a domain D in regions Ai. This initial partition can be obtained in a �rst step from
the watershed of a gradient image, or from some classi�cation of pixels. Given two regions Ai and Aj, not
necessarily connected or even adjacent, we will estimate for various criteria the probability pij:

pij = P{Ai and Aj contain di�erent textures} (1)

The probability pij will play the same role as a gradient (or a distance) between regions Ai and Aj. In a
hierarchical approach, a progressive aggregation of regions is performed, starting from lower values of pij
and updating the probability after fusion of regions containing similar textures. This approach was proposed
for the case of random markers [15] and implemented in an iterative segmentation based on the stochastic
watershed [9]. Using a probabilistic framework makes easier the combination of di�erent criteria for the seg-
mentation, as illustrated later.

In the context of texture classi�cation, the probability 1 − pij = P{Ai and Aj contain the same texture} is
also a similarity index between regions Ai and Aj.

5.2.1 Probabilistic distance

Consider two points x1 and x2 in a domain D, and the multivariate distance
∥∥Z(x1) − Z(x2)

∥∥. The choice
of a speci�c multivariate distance (not necessarily Euclidean), with appropriate scaling of variables, is quite
standard in multivariate data analysis, and is not discussed in the present paper. When the two points are
located randomly in D,

∥∥Z(x1) − Z(x2)
∥∥ becomes a random variable, characterized by its cumulative distri-

bution function P
{∥∥Z(x1) − Z(x2)

∥∥ ≥ d} = T(x1, x2, d). We have the following property:

Proposition 1. For any d > 0, the distribution function T(x1, x2, d) is a distance inD.

Proof. We have T(x1, x1, d) = 0 and T(x1, x2, d) = T(x2, x1, d). T satis�es the triangle inequality: for any
triple (x1, x2, x3), ∥∥Z(x1) − Z(x2)

∥∥ ≤ ∥∥Z(x1) − Z(x3)
∥∥ +
∥∥Z(x2) − Z(x3)

∥∥ .
Therefore ∥∥Z(x1) − Z(x2)

∥∥ ≥ d =⇒
∥∥Z(x1) − Z(x3)

∥∥ +
∥∥Z(x2) − Z(x3)

∥∥ ≥ d
and

T(x1, x2, d) ≤ P
{∥∥Z(x1) − Z(x3)

∥∥ +
∥∥Z(x2) − Z(x3)

∥∥ ≥ d}
≤ T(x1, x3, d) + T(x2, x3, d).

De�nition 1. Consider two regions Ai and Aj in D, and two independent random points xi ∈ Ai , xj ∈ Aj. For
any d > 0, the probability

P(Ai , Aj , d) = P
{∥∥Z(xi) − Z(xj)

∥∥ ≥ d} (2)

de�nes a probabilistic distance between Ai and Aj.
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220 | Dominique Jeulin

By construction, P(Ai , Aj , d) is a pseudo-distance, since we have not for every d, P(Ai , Ai , d) = 0. For any
triple (Ai ⊂ D, Aj ⊂ D, Ak ⊂ D) and (xi ∈ Ai , xj ∈ Aj , xk ∈ Ak) we have P(Ai , Aj , d) ≤ P(Ai , Ak , d) +
P(Aj , Ak , d) as a result of the triangle inequality satis�ed by T(xi , xj , d).

The probabilistic distance can also be used between classes Cβ obtained for a partition in the parameter
space as a result of a classi�cation. In that case we will de�ne for two classes Cα and Cβ the probability

pαβ = P
{∥∥Z(xα) − Z(xβ)

∥∥ ≥ d}
estimated for independent random points xα ∈ Cα and xβ ∈ Cβ . For a classi�cation of textures in homoge-
neous classes, we expect that the diagonal of the matrix P, with elements pαβ , is close to 0. This can drive
the choice of the threshold d, based on the data used for the classi�cation.

Remark 1. For any pair of regions Ai and Aj in D, where the proportions of pixels belonging to class Cα
are piα and pjα respectively, and for independent uniform random points xi ∈ Ai , xj ∈ Aj we have
P
{
xi ∈ Cα, xj ∈ Cβ

}
= piαpjβ . In that case we get P(Ai , Aj , d) =

∑
α,β piαpjβ pαβ . The calculation of the

probabilistic distance between Ai and Aj is made faster after a preliminary storage of the probability matrix P.

5.2.2 Probabilistic distance and hierarchical segmentation

As mentioned before, we can make use of the probabilistic distance P(Ai , Aj , d) to build a hierarchi-
cal segmentation, starting from the lowest probability. Let P(Ai , Aj , d) < P(Ai , Ak , d) and P(Ai , Aj , d) <
P(Aj , Ak , d), ∀k ≠ i, k ≠ j. By merging regions Ai and Aj with measures |Ai| and

∣∣Aj∣∣ (for instance area in R2

and volume in R3), we generate a new region Al = Ai ∪ Aj. For any k we get P(Ak , Al , d) = |Ai|
|Al|P(Ak , Ai , d) +

|Aj|
|Al|P(Ak , Aj , d). Therefore we have

P(Ak , Ai , d) ∨ P(Ak , Aj , d) ≥ P(Ak , Al , d) ≥ P(Ak , Ai , d) ∧ P(Ak , Aj , d)
> P(Ai , Aj , d).

The probabilistic distance increases when merging two classes, so that it can be used as an index in the hi-
erarchy. All remaining values P(Ak , Al , d) are updated after fusion of two regions, and the process can be
iterated. Indeed, ∂(Ai , Aj) = Inf{p, Ai and Aj are included in the same region Al} is equivalent to the diam-
eter of the smallest region of the hierarchy containing Ai and Aj, which satis�es the ultrametric inequality
required to generate a hierarchy [4]. Alternatively we can use the probabilistic distance involved in every level
of merging, to generate an ultrametric distance used to build the hierarchy [8]. The segmentation involved
with the probabilistic distance is unsupervised in the general case.

Remark 2. In the context of segmentation, a partition of the domain D is obtained by considering all subdo-
mains obtained when cutting the hierarchy at a given level (probability) p. The choice of the threshold p can be
driven by the results of the preliminary classi�cation of pixels, using the values of the elements of the matrix P,
or by the number of subdomains, that should correspond to the number of textures present in D. An estimate
of this number can be derived from the spectral analysis of the matrix of the graph Laplacian derived from the
matrix with elements 1 − P(Ai , Aj , d), which is an adjacency matrix [12].

Remark 3. The proposed hierarchy generates non necessarily connected subdomains, since no adjacency con-
dition is imposed in the choice of regions to be merged. This condition can be required, as is made for the con-
struction of watersheds, by restricting the use of the probabilistic distances to adjacent regions. In addition to
connectedness of segmented regions, it reduces the cost of calculations by limiting the number of pairs, instead
of considering the full cross-product Ai × Aj. Intermediate constructions can involve the probabilistic distances
of iterated adjacent regions. This approach can be followed in the �rst steps of the segmentation, to reduce the
number of regions, and released for the remaining steps of the process, in order to allow for the extraction of
non connected regions with the same texture.
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Remark 4. By integrating the probability P(Ai , Aj , d) with respect to the threshold d, we obtain the average
distance

∥∥Z(xi) − Z(xj)
∥∥ for independent randompoints xi ∈ Ai , xj ∈ Aj. This average canbeused in ahierarchy

where the aggregation is made according to the average distance criterion [4].

5.2.3 Combination of probabilistic segmentations

It can be useful to enrich the probabilistic distance by other probability distributions concerning the compar-
ison of the content of two regions, in order to combine them for the segmentation. We will have to restrict the
choice of probability distributions on the cross-product Ai × Aj according to the following de�nition.

De�nition 2. A probability P(Ai , Aj) is said to be increasing with respect to the fusion of regions, when it sat-
is�es P(Ak , Al) ≥ P(Ak , Ai) ∧ P(Ak , Aj) for any i, j, k, with Al = Ai ∪ Aj.

As shown before, the probabilistic distance satis�es the property given in de�nition 2. Other probability
distributions with the same property will be introduced later.

The property given in de�nition 2 is satis�edwhen P(Ai , Aj) is increasingwith respect to⊂, whichmeans
that P(Ak , Al) ≥ P(Ak , Ai) when Ai ⊂ Al. However, this is not a necessary condition.

We start from two probabilistic segmentations, based on separate aggregation conditions, involving the
probability of separation of regions Ai and Aj, P1(Ai , Aj) and P2(Ai , Aj). P1and P2 are assumed to own the
fusion property of de�nition 2. These probabilities can be combined according to di�erent rules. For instance:

1. probabilistic independence: P(Ai , Aj) = P1(Ai , Aj)P2(Ai , Aj)
2. more reliable event: P(Ai , Aj) = P1(Ai , Aj) ∨ P2(Ai , Aj)
3. least reliable event: P(Ai , Aj) = P1(Ai , Aj) ∧ P2(Ai , Aj)
4. weighting between the two events (with probabilitiesλ1 andλ2): P(Ai , Aj) = λ1P1(Ai , Aj)+λ2P2(Ai , Aj)
5. any combination P(Ai , Aj) = Φ(P1, P2)(Ai , Aj), where P is a probability increasing with respect to the

fusion of regions according to de�nition 2.

These rules are easily extended tomore than two conditions of aggregation.We have the following result.

Proposition 2. The previous rules of combination of the probability of separation of regions satisfy the property
given in de�nition 2.

Proof. We start from P(Ai , Aj) = Φ(P1, P2)(Ai , Aj). As before, consider Al = Ai ∪ Aj and the condition:
P(Ai , Aj) < P(Ai , Ak) and P(Ai , Aj) < P(Aj , Ak), ∀k ≠ i, k ≠ j. We have for any region Ak

P(Ak , Al) = |Ai||Al|
P(Ak , Ai) +

∣∣Aj∣∣
|Al|

P(Ak , Aj).

and
P(Ak , Ai) ∨ P(Ak , Aj) ≥ P(Ak , Al) ≥ P(Ak , Ai) ∧ P(Ak , Aj) > P(Ai , Aj)

5.2.4 Local probability distributions

The regions of the �ne partition (or obtained after some steps of aggregation) can be characterized by some
local probability distributions.

5.2.4.1 Probabilistic classi�cation
If pixels xi in region Ai can be attributed to various classes of textures Cα by a probabilistic classi�cation, the
probability piα = P{xi ∈ Cα} can be used as a probabilistic descriptor of Ai. Considering now independent
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uniform random points xi ∈ Ai and xj ∈ Aj, the probability (1) can be written

P(Ai , Aj) = 1 − P{xi and xj belong to the same texture} (3)

= 1 − pij = 1 −
∑
α

piαpjα (4)

Denoting Iα(x) the indicator function of class Cα, and I(x) the vector with components Iα(x), we have
P{
∥∥Iα(xi) − Iα(xj)

∥∥ = 0} = P{xi ∈ Cα, xj ∈ Cα} = piαpjα and therefore P(Ai , Aj) = P{
∥∥I(xi) − I(xj)∥∥ > 0}, so

that P(Ai , Aj) de�ned by (3) is a probabilistic distance corresponding to de�nition 1. It satis�es the property
given in de�nition 2. This can be checked as follows:using Al = Ai ∪ Aj we obtain

plα = |Ai||Al|
piα +

∣∣Aj∣∣
|Al|

pjα

and

1 − P(Ak , Al) =
∑
α

pkαplα = |Ai||Al|
∑
α

piαpkα +
∣∣Aj∣∣
|Al|

∑
α

pjαpkα

= |Ai||Al|
(

1 − P(Ai , Ak)
)

+
∣∣Aj∣∣
|Al|

(
1 − P(Aj , Ak)

)
Therefore we get

P(Ak , Al) = |Ai||Al|
P(Ai , Ak) +

∣∣Aj∣∣
|Al|

P(Aj , Ak)

and
P(Ak , Ai) ∨ P(Ak , Aj) ≥ P(Ak , Al) ≥ P(Ak , Ai) ∧ P(Ak , Aj)

We now illustrate this situation in the binary case of two textures (α = 1, 2). We have

pij = pi1pj1 + (1 − pi1)(1 − pj1)

Note that when pj1 = 1
2 (meaning that the region Ai is randomly allocated to texture 1 or to texture 2), we also

have pij = 1
2 .

A simple practical example is obtained by starting with a partition in seven regions Ai with the same
measure |Ai| and with the following probabilities pi1:[

0.1 0.9 0.25 0.75 0.4 0.6 0.5
]

The symmetrical probability matrix pij used in equation (3), with lines (i = 1 to i = 6) and columns (j = 2, to
j = 7) is given by: 

0.18 0.7 0.3 0.58 0.42 0.5
0.3 0.7 0.42 0.58 0.5

0.375 0.55 0.45 0.5
0.45 0.55 0.5

0.48 0.5
0.5


The two regions with the highest probability pij (namely 0.7 for p13 or p24) are merged, and the pij are

updated. Using for instance A1′ = A1 ∪ A3, the probability matrix becomes:
0.24 0.338 0.565 0.435 0.5

0.7 0.42 0.58 0.5
0.55 0.45 0.5

0.48 0.5
0.5


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Setting now A2′ = A2 ∪ A4, pij becomes:
0.289 0.565 0.435 0.5

0.485 0.515 0.5
0.48 0.5

0.5


In the next step regions A1′ and A5 are merged (since p1′5 is the highest probability) to obtain region

A1′′ = A1 ∪ A3 ∪ A5 and the probability matrix for regions A1′′ , A2′ , A6 and A7 becomes:0.354 0.45 0.5
0.515 0.5

0.5


Regions A2′ and A6 are now merged to form A2′′ and we are left with a segmentation ofD in two regions

A1′′ and A2′′ corresponding to textures 2 and 1 respectively. Region A7 can be left unclassi�ed or can indi�er-
ently bemergedwith A1′′ or with A2′′ . The obtained segmentation is what is expected in this very simple case,
where it would have been obvious to immediately merge regions with pi1 > 0.5 (corresponding to texture 1)
and regions with pi1 < 0.5 (corresponding to texture 2).

5.2.4.2 Local granulometric spectrum
As indicated in section 3, granulometric information can be provided after transformation of the image by
morphological opening or closing operations. A local granulometric spectrum can be obtained in each region
Ai by averaging the components Iα(xi) or Zα(xi) over Ai. After normalization, we obtain local granulomet-
ric spectra in classes of sizes Cα where for size α, piα = P{xi ∈ Cα}. This local classi�cation with respect
to size can be introduced in the probability (3) to build a hierarchy. We can alternatively combine di�erent
granulometries, like opening and closing, for instance by linear combination as proposed in section 5.2.3, to
generate a composite hierarchy.

5.2.4.3 Local orientation
Some textures present local orientation [16] which it is convenient to study from a vector �eld

−→
V(x), like for

instance the gradient vector. To remove the e�ect of noise in the gradient, a local orientation can be extracted
as follows: in every window K(x) is considered the cloud of pointsMγ generated by connecting the origin to

vector
−→
V(xγ). The principal axes of inertia of the pointsMγ are then extracted [16]. A con�dence degree of the

orientation is provided by the ratio of the largest eigenvalue of the inertia matrix to its trace. Working with a
partition of the domain D, the same approach can be followed with the cloud of points generated by

−→
V(xi),

xi ∈ Ai. In a second step, we can characterize the disorientation between Ai and Aj from the scalar product

between the twomain eigenvectors
−→
V i and

−→
V j. We have,αij being the angle between

−→
V i and

−→
V j with Euclidean

norms
∥∥∥∥−→V i∥∥∥∥and ∥∥∥∥−→V j∥∥∥∥, for ∥∥∥∥−→V i∥∥∥∥ ≠ 0 and

∥∥∥∥−→V j∥∥∥∥ ≠ 0:

cos2 αij =

(
−→
V i .
−→
V j
)2

∥∥∥∥−→V i∥∥∥∥2 ∥∥∥∥−→V j∥∥∥∥2

The value cos2 αij is a proximity index between orientations of regions Ai and Aj, while 1 − cos2 αij is an
angular distance, which can be used in a similar way as P(Ai , Aj) to build an orientation based segmentation,
starting from a partition.

An alternative way to account for the disorientation between two regions is to use the probability distri-
bution of the quantity (1 − cos2 αij) obtained for

−→
V(xi) and

−→
V(xj), when xi and xj are independent uniform
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points in Ai and Aj.We can de�ne an orientational probabilistic distance P(Ai , Aj , d) = P
{

(1 − cos2 αij) ≥ d
}
.

In the presence of pixels with a weak gradient
−→
V it may be wise to exclude them from the calculation of the

orientational probabilistic distance, since the computation of cos2 αij is ill-de�ned in that case. Alternatively,

we can use the probability distribution of the random variable
(
−→
V i .
−→
V j
)2

.

5.3 Higher order probabilistic segmentation

In the previous section, the fusion construction of a hierarchy was limited to the fusion of pairs of regions,
restricting to second order probabilities P(Ai , Aj) and generating binary trees. This can be easily extended to
higher order probabilities, to produce more general trees and hierarchies. The resulting aggregation process
can be accelerated, as compared to the binary case, at a marginal computational cost.

Consider m regions Ai1 , Ai2 , ..., Aim . For every pair Aik , Ail independent uniform random points xik , xil
and the independent random variables

∥∥Z(xik ) − Z(xil )
∥∥ are generated. We decide to merge the m regions

when (
∨ik ,il

∥∥Z(xik ) − Z(xil )
∥∥) < d.

The probability of this event is given by:

P
{
∨ik ,il

∥∥Z(xik ) − Z(xil )
∥∥ < d} =

∏
ik ,il

P
{∥∥Z(xik ) − Z(xjl )

∥∥ < d} (5)

=
∏
ik ,il

(
1 − P(Aik , Ail , d)

)
An indexed hierarchy is obtained by sorting the probabilities (5) with decreasing order. Alternatively we

can use the m order version of the probabilistic distance sorted with increasing order:

P(Ai1 , Ai2 , ..., Aim , d) = P
{
∨ik ,il

∥∥Z(xik ) − Z(xil )
∥∥ ≥ d} (6)

= 1 −
∏
ik ,il

(
1 − P(Aik , Ail , d)

)
For instance in the case of a ternary hierarchy the probabilities (5) and (6) become:

P
{∥∥Z(xi) − Z(xj)

∥∥ ∨ ∥∥Z(xi) − Z(xk)
∥∥ ∨ ∥∥Z(xj) − Z(xk)

∥∥ < d} (7)
=
(

1 − P(Ai , Aj , d)
) (

1 − P(Ai , Ak , d)
) (

1 − P(Aj , Ak , d)
)

and

P(Ai , Aj , Ak , d) = 1 −
(

1 − P(Ai , Aj , d)
) (

1 − P(Ai , Ak , d)
) (

1 − P(Aj , Ak , d)
)

(8)

By construction, the m order probabilities (5) are always lower than the corresponding second order
probabilities, and the P(Ai1 , Ai2 , ..., Aim , d) are larger than the P(Ai , Aj , d). Once the binary probabilities
P(Ai , Aj , d) are available, it is easy to work out higher order probabilities (5, 6, 7, 8). When starting from
a partition with r regions, computing the Cmr = r!

m!(r−m)! orderm probabilities may be expensive. However this
can be easily performed when restricting the fusion to adjacent regions.

When merging the m regions with the lowest probability

P(Ai1 , Ai2 , ..., Aim , d)

a new region Al = Ai1 ∪ Ai2 ∪ ... ∪ A is generated. In a next step, all possible fusions of m − 1 regions with Al
have to be considered. We get

P(Ak1, Ak2 , ...., Akm−1 , Al , d) =
∣∣Ai1 ∣∣
|Al|

P(Ak1, Ak2 , ...., Akm−1 , Ai1 , d) + ...

+
∣∣Aim−1

∣∣
|Al|

P(Ak1, Ak2 , ...., Akm−1 , Aim−1 , d)
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so that

∨i=i1 ,...im−1P(Ak1, Ak2 , ...., Akm−1 , Ai , d) ≥ P(Ak1, Ak2 , ...., Akm−1 , Al , d)
≥ ∧i=i1 ,...im−1P(Ak1, Ak2 , ...., Akm−1 , Ai , d)
> P(Ai1 , Ai2 , ..., Aim , d)

Theprobability P(Ai1 , Ai2 , ..., Aim , d) increaseswhenmergingm classes, and therefore satis�es the prop-
erty given in de�nition 2.

The hierarchy can also be built by combining distance probabilities of various ordersm. To illustrate this
point, consider the combination ofm = 2 andm = 3. At a given step of the hierarchy the three regions Ai, Aj,
and Ak are merged into Al = Ai ∪ Aj ∪ Ak if for any p we have

P(Ai , Aj , Ak , d) < P(Ai , Ap , d)
P(Ai , Aj , Ak , d) < P(Aj , Ap , d)
P(Ai , Aj , Ak , d) < P(Ak , Ap , d)

It comes for p,

P(Al , Ap , d) = |Ai||Al|
P(Ai , Ap , d) +

∣∣Aj∣∣
|Al|

P(Aj , Ap , d) + |Ak||Al|
P(Ak , Ap , d)

and therefore

P(Al , Ap , d) > P(Ai , Ap , d) ∧ P(Aj , Ap , d) ∧ P(Ak , Ap , d)
> P(Ai , Aj , Ak , d)

so that the index of the hierarchy increases after the fusion of the regions Ai, Aj, and Ak.

Remark 5. There is a connection between the m order probabilistic distance and some image transformations
in the case of adigitized image. Consider aneighborhood B(x)withm pixels. The criterion

(
∨ik ,il

∥∥Z(xik ) − Z(xil )
∥∥)

becomes
Y(x) = ∨x1∈B(x),x2∈B(x)

∥∥Z(x1) − Z(x2)
∥∥

In the case of a scalar image Z(x) we have Y(x) = ∨y∈BZ(y) − ∧y∈BZ(y) = Z(x) ⊕ B − Z(x) 	 B, and Y(x) is a
standard morphological gradient.

For a probabilistic classi�cation of textures, the result (3) is easily extended to higher orders:

P(Ai1 , Ai2 , ..., Aim) = 1 − P{xi1 , xi2 , ..., xim belong to the same texture} (9)

= 1 −
∑
α

∏
pi1αpi2α ...pimα

This is illustrated by a short numerical example for r = 5 regions and two textures, as earlier, starting
from the following probabilities pi1: [

0.1 0.9 0.25 0.75 0.5
]

To the second order, the symmetrical probability matrix pij with lines (i = 1 to i = 4) and columns (j = 2,
to j = 5) is given by: 

0.18 0.7 0.3 0.5
0.3 0.7 0.5

0.375 0.5
0.5


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We can decide to merge regions of highest probabilities pij = 0.7, namely regions A1 and A3 (with the dom-
inant texture 2) and regions A2 and A4 (with the dominant texture 1), region A5 being left, or indi�erently
merged with the two groups.

To the third order, it is easy to compute the 10 following probabilities pijk:[
p123 p124 p125 p134 p135 p145 p234 p235 p245 p345
0.09 0.09 0.09 0.1875 0.35 0.15 0.1875 0.17 0.35 0.1875

]

From the highest probability p135 = p245 = 0.35 we can decide tomerge regions A1, A3 and A5 or regions
A2, A4 and A5, which is consistent to what is expected from the probabilities pi1 and from the second order
probabilities pij.

5.4 Probabilistic distances between sets

As a particular case of a probabilistic distance, it is interesting to consider the distribution of the Euclidean
distance d(x, y) between two random points x and y.

Proposition 3. Consider two uniform random points x and y located in the set Ai ⊂ Rn. The distribution of
distances d(x, y) is given by

P
{
d(x, y) < d

}
=
∫
Ai

∣∣Bx(d) ∩ Ai
∣∣

|Ai|2
dx (10)

where Bx(d) is the ball with center x and radius d.

Proof. Given point x in Ai, we have d(x, y) < d ⇐⇒ y ∈ Bx(d) and y ∈ Ai. The probability of this event is
given by |Bx(d)∩Ai|

|Ai| . After deconditioning with respect to the uniform location of x in Ai, we obtain the result
(10).

Proposition 4. Consider two uniform random points x ∈ Ai and y ∈ Aj. The distribution of distances d(x, y)
is given by

P
{
d(x, y) < d

}
=
∫
Ai

∣∣Bx(d) ∩ Aj
∣∣

|Ai|
∣∣Aj∣∣ dx =

∫
Aj

∣∣By(d) ∩ Ai
∣∣

|Ai|
∣∣Aj∣∣ dy (11)

where Bx(d) is the ball with center x and radius d. By construction, it satis�es the criterion of fusion given in
de�nition 2.

Proof. Given a random point x in Ai, we have d(x, y < d ⇐⇒ y ∈ Bx(d) and y ∈ Aj. The probability of this
event is given by |Bx(d)∩Aj|

|Aj| . After deconditioning with respect to the uniform location of x in Ai, we obtain the
result (11). Alternatively we can compute this probability, given a random point y in Aj. The two expressions
are equal since, noting 1Ai (x), 1Aj (y) and 1Bx(d)(y) the indicator functions of the sets Ai, Aj and Bx(d), we get:∫

Ai

∣∣Bx(d) ∩ Aj
∣∣

|Ai|
∣∣Aj∣∣ dx = 1

|Ai|
∣∣Aj∣∣

∫
Rn

1Ai (x)1Aj (y)1Bx(d)(y)dydx

= 1
|Ai|

∣∣Aj∣∣
∫
Rn

1Ai (x)1Aj (y)1B0(d)(y − x)dydx

= 1
|Ai|

∣∣Aj∣∣
∫
Rn

1Ai (x)1Aj (y)1By(d)(x)dydx
∫
Aj

∣∣By(d) ∩ Ai
∣∣

|Ai|
∣∣Aj∣∣ dy
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The probability distributions (10) and (11) involve average values of the measures
∣∣Bx(d) ∩ Ai

∣∣, ∣∣Bx(d) ∩ Aj
∣∣

and
∣∣By(d) ∩ Ai

∣∣. In practice, they can be estimated from sampling the locations of the ball Bx(d). These prob-
abilities of distances can be used for some morphological characterization of each set Ai and for each pair
Ai, Aj. When consideringm regions in a �ne partition, they allow us the calculation of m order probabilities,
after introduction in the probability given in (5) to calculate P

{
∨ik ,ild(xik , xil ) < d

}
.

These probabilities of distance between sets carry some morphological content on the partition, which
can be introduced in a hierarchical segmentation based on the shape and spatial distribution of regions Ai.
For a given pair of regions Ai and Aj, the probability of fusion decreases when their spatial separation in-
creases, so that the process promotes the fusion of neighbour regions. This information can be combined
with the previously de�ned probability distances with a textural content.

Another way to introduce morphological data on regions of the partition is obtained by the introduction
of randommarkers.

5.5 Use of random markers

Following the approach proposed for the stochastic watershed [2] we can use random markers to randomly
select regions forwhich thepreviousprobabilistic segmentationwill be performed. Doing this, somemorpho-
logical content on the regions of the hierarchy and on their location inD is accounted for, in addition to the
previous probabilistic textural information. The aim of this section is to calculate the probability PR(Ai , Aj)
of selection of two regions (Ai , Aj) by randommarkers. We follow the results introduced in [15].

5.5.1 Reminder on random allocation of germs

We use ng random points (or germs) xk with independent uniform distributions in the domainD containing
r regions. The probability pi for a germ to fall in Ai is given by

pi = |Ai||D| , with
r∑
i=1

pi = 1.

By construction, the allocation of germs in the regions of a partition follows a multinomial distribution (Ni
being the random number of germs in Ai) with multivariate generating function:

G(s1, s2, ..., sr) = E
{
sN1

1 sN2
2 ...sNrr

}
Starting with ng = 1 (use of a single germ):

G1(s1, s2, ..., sr) = p1s1 + p2s2 + ... + prsr

For ng ≥ 1, the numbers Ni are the sum of n independent binary random variables, and

Gng (s1, s2, ..., sr) = G1(s1, s2, ..., sr)ng = (p1s1 + p2s2 + ... + prsr)ng

so that

P {N1 = k1, N2 = k2, ..., Nr = kr} = ng!
k1!k2!...kr!

pk1
1 p

k2
2 ...pkrr (12)

with k1 + k2 + ... + kr = ng

An interesting case is asymptotically obtained when |D| → ∞ and ng → ∞, with ng
|D| → θ. For these

conditions, the multinomial distribution converges towards the multivariate Poisson distribution. We have:

logGng (s1, s2, ..., sr) = ng log (p1s1 + p2s2 + ... + prsr)
= ng log(1 + p1(s1 − 1) + p2(s2 − 1) + ... + pr(sr − 1))
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and
logGng (s1, s2, ..., sr) → θ |A1| (s1 − 1) + θ |A2| (s2 − 1) + ... + θ |Ar| (sr − 1)

so that:
lim
ng→∞

Gng (s1, s2, ..., sr) = πi=ri=1 exp(θ |Ai| (si − 1))

The random numbers N1, N2, ..., Nr are independent Poisson random variables with intensities θi =
θ |Ai|:

P {Ni = k} = θki
k! exp−(θi) (13)

Using Poisson points as markers, the number of germs for each realization follows a Poisson distribution
with parameter θ |D|.

5.5.2 Calculation of the probability PR(Ai , Aj) for point markers

Random markers are used to select regions of a partition by reconstruction. With this process, the recon-
structed regions for any realization of the random germs are left intact, while regions without germs are
merged. Considering many realizations of the germs, we can compute the probability PR(Ai , Aj) for the two
regions to remain separate.

Proposition 5. For ng independent uniformly distributed random germs, the probability PR(Ai , Aj) for the two
regions Ai , Aj to remain separate is given by:

PR(Ai , Aj) = 1 −
(

1 − pi − pj
)ng (14)

Proof. The pair (Ai , Aj) is merged⇐⇒
{
Ni = 0 and Nj = 0

}
⇐⇒ Ni + Nj = 0⇐⇒ N(Ai ∪ Aj) = 0.

Working on images, the probabilities PR(Ai , Aj) computed for all pairs (Ai , Aj) are easily ranked in in-
creasing order. A hierarchical fusion of regions is obtained by starting with the lowest probability PR(Ai , Aj).
After fusion of two regions with Al = Ai ∪ Aj the probabilities PR(Ak , Al) are updated. The pair (Ak , Al) is
merged⇐⇒ {Nk = 0 and Nl = 0} ⇐⇒ Nk + Nl = 0⇐⇒ N(Ak ∪ Al) = 0⇐⇒ N(Ai ∪ Aj ∪ Ak) = 0. We get:

PR(Ak , Al) = 1 −
(

1 − pi − pj − pk
)ng > PR(Ai , Aj)

and the probability PR(Ak , Al) is increasing with respect to the fusion of regions as in de�nition 2.
In general no conditions of connectivity or of adjacency of regions are required for the fusion process.

It is easy to force the connectivity by working on connected components of regions, or to limit the fusion to
adjacent regions.

The random germs can be generated by a Poisson point process.

Proposition 6. For Poisson point germs with intensity θ, the probability PR(Ai , Aj) for the two regions Ai , Aj
to remain separate is given by:

PR(Ai , Aj) = 1 − exp
[
−θ
(
|Ai| +

∣∣Aj∣∣)] (15)

and PR(Ak , Al) is increasing with respect to the fusion of regions as in de�nition 2.

The morphological content in the probabilities (14, 15) only depends on the Lebesgue measure (area in
R2 and volume in R3) of regions. It increases with the measure of regions, larger regions resisting more to
fusion. For a pair of regions, PR(Ai , Aj) is maximal when |Ai| =

∣∣Aj∣∣, so that the random markers hierarchy
tends to generate by fusion regions with homogeneous sizes, the regions with lower measure disappearing
�rst.
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5.5.3 Calculation of the probability PR(Ai , Aj) for Poisson lines and Poisson flats markers

It can be interesting to obtain other weightings of regions with a probabilistic meaning, like the perimeter in
R2 or the surface area inR3. Restricting to the Poisson case, it is easy to make this extension, provided use is
made of appropriate markers. For this purpose, we will consider now isotropic Poisson lines in R2, isotropic
Poisson planes and Poisson lines in R3 [14, 22]. Oriented Poisson lines in R3 were used as markers in the
context of the stochasticwatershed (and sowith another type of probability), and applied to the segmentation
of granular structures [10].

Proposition 7. Consider stationary isotropic Poisson lines with intensity λ as randommarkers inR2. The prob-
ability PR(Ai , Aj) for the two regions Ai , Aj to remain separate is expressed as a function of the average projected
length l of the projection of Ai ∪ Aj in directions ω:

PR(Ai , Aj) = 1 − exp

−λ π∫
0

l(Ai(ω) ∪ Aj(ω))dω

 (16)

when Ai ∪ Aj is a connected set, PR(Ai , Aj) is given by:

PR(Ai , Aj) = 1 − exp
[
−λL

(
C(Ai ∪ Aj)

)]
(17)

where L is the perimeter and C(Ai ∪ Aj) is the convex hull of Ai ∪ Aj.

Proposition 8. Consider stationary isotropic Poisson lines with intensity λ as randommarkers inR3. The prob-
ability PR(Ai , Aj) for the two regions Ai , Aj to remain separate is expressedasa function of theaverageprojected
area A of the projection of Ai ∪ Aj in directions ω:

PR(Ai , Aj) = 1 − exp

−λ 2πster∫
0

A(Ai(ω) ∪ Aj(ω))dω

 (18)

when Ai ∪ Aj is a connected set, PR(Ai , Aj) is given by:

PR(Ai , Aj) = 1 − exp
[
−λπ4 S(C(Ai ∪ Aj))

]
(19)

where S is the surface area and C(Ai ∪ Aj) is the convex hull of Ai ∪ Aj. For randommarkers inR3 made of sta-
tionary isotropic Poisson planes with intensity λ, the probability PR(Ai , Aj) for the two regions Ai , Aj to remain
separate is expressed as a function of the average projected length l of the projection of Ai ∪ Aj in directions ω:

PR(Ai , Aj) = 1 − exp

−λ 2πster∫
0

l(Ai(ω) ∪ Aj(ω))dω

 (20)

when Ai∪Aj is a connected set, the probability PR(Ai , Aj) is given as a function of the integral ofmean curvature
A by:

PR(Ai , Aj) = 1 − exp
[
−λA(C(Ai ∪ Aj))

]
(21)

It is possible to combine various types of Poisson markers (points and lines in R2, points, planes and
lines in R3) with their own intensities. For instance, when Ai ∪ Aj is a connected set in R2, we obtain:

PR(Ai , Aj) = 1 − exp
[
−
{
θ
(
|Ai| +

∣∣Aj∣∣) + λL
(
C(Ai ∪ Aj)

)}]
(22)

where a weighting by the area and the perimeter of the regions acts for the segmentation. Similarly in R3 is
introduced a weighting of the volume, and the surface area and integral of mean curvature of C(Ai ∪ Aj) in
the process of segmentation.
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5.5.4 Calculation of the probability PR(Ai , Aj) for compact markers

Further morphological information on the regions can be accounted for when introducing compact random
markers (not necessarily connected). In the process of selection of regions of a partition by reconstruction,
pointmarkers are replaced by a compact grain A

′
located onPoisson points, and generating a Booleanmodel

A. We have:

Proposition 9. For compactmarkers A′ generating aBooleanmodelwith intensity θ, the probability PR(Ai , Aj)
for the two regions Ai , Aj to remain separate is given by:

PR(Ai , Aj) = 1 − exp
[
−θ
∣∣∣(Ǎi ⊕ A′) ∪ (Ǎj ⊕ A′)

∣∣∣] = 1 − exp
[
−θ
(∣∣∣Ǎi ⊕ A′∣∣∣ +

∣∣∣Ǎj ⊕ A′∣∣∣ − ∣∣∣(Ǎi ⊕ A′) ∩ (Ǎj ⊕ A′)
∣∣∣)]

(23)

Proof. The pair (Ai , Aj) is merged⇐⇒ Ai ∪ Aj is outside the Boolean model with primary grain A′. The ex-
pression (23) is the Choquet capacity T(K) of the Boolean model when K = Ai ∪ Aj.

The compact markers can be random sets (for instance spheres wit a random radius). In that case, the mea-
sures || are replaced by their mathematical expectations with respect to the random set A′. Using for A′ a ball
with radius ρ, PR(Ai , Aj) increases until a constant valuewhen the distance between Ai and Aj increases from
0 to 2ρ: the probability to merge two regions is higher when their distance is lower.

5.5.5 Combination of textural and of morphological information

Wecannowcombine the use of randommarkers, conveyingmorphological content on the partition and on its
evolution in the hierarchy, to the previous textural content (probabilistic distance, or local probability infor-
mation. For instance, we can decide to merge two regions when they are not reconstructed by markers (with
a marker dependent probability 1 − PR(Ai , Aj)) and the textures they enclose are similar (with a probability
1 − P(Ai , Aj , d)). In this context the probability pij (1) becomes

P(Ai , Aj) = Φ(PR , Pd)(Ai , Aj) (24)
= PR(Ai , Aj) + P(Ai , Aj , d) − PR(Ai , Aj)P(Ai , Aj , d)

By construction, this composite probability is increasing with respect to the fusion of regions as in de�-
nition 2, and will generate a hierarchy for the segmentation, by updating each terms of (24) according to the
previous rules.

Alternatively, the probabilities of distance between sets introduced in section 5.4 can replace PR(Ai , Aj)
in the formulation (24).

Other textural information can be introduced in the probability (24), such as orientational information,
as discussed in section 5.2.4.3, or extinction values: in the case of watershed segmentation, the �ooding algo-
rithm relies on theminimal values zij of the function to be �ooded, for instance grad

(
Z(x)

)
, on boundaries Aij

between adjacent regions Ai and Aj. Let F(z) be the cumulative distribution function of the extinction values.
It is equivalent to sort the values zij or F(zij), since the distribution function is a monotonous transforma-
tion of data. Using F(zij) instead of zij gives a probabilistic content to the �ooding. In this context, 1 − F(zij)
is a probabilistic distance between Ai and Aj. Consider the regions Ai, Aj and Ak. Aj and Ak are merged by
�ooding, if zjk < zij and zjk < zik, and consequently zjk < zij ∧ zik. After fusion, we obtain Al = Aj ∪ Ak and
zil = zij ∧ zik. Therefore, the probabilistic distance 1 − F(zil) increases by fusion, as required in de�nition 2.
Combining this probabilistic distance to the various probabilities PR(Ai , Aj) generated by random markers
provides a hierarchical segmentation, even outside of the �eld of textures. This hierarchical segmentation
resulting from a progressive fusion of adjacent regions is close to the segmentation given by the stochastic
watershed, but remains di�erent.
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5.6 Random markers and higher order fusion of regions

We now consider random germs and decide that regions without germs are merged. For the fusion of m re-
gions, the previous second order results are easily extended.

Proposition 10. For ng independent uniformly distributed random germs, the probability PR(Ai1 , Ai2 , ..., Aim )
for the m regions Ai1 , Ai2 , ..., Aim to remain separate is given by:

PR(Ai1 , Ai2 , ..., Aim ) = 1 −
(

1 − pi1 − pi2 − .... − pim
)ng (25)

Proof. The regions Ai1 , Ai2 , ..., Aim are merged⇐⇒{
Ni1 = 0 and Ni2 = 0 and .... Nim = 0

}
⇐⇒ Ni1 + Ni2 + .... + Nim = 0⇐⇒ N(Ai1 ∪ Ai2 ∪ ... ∪ Aim ) = 0.

A hierarchical fusion of regions is obtained by starting with the lowest probability PR(Ai1 , Ai2 , ..., Aim ).
After fusion ofm regions with Al = Ai1 ∪Ai2 ∪ ...∪Aim the probabilities PR(Ai1 , Ai2 , ..., Aim ) are updated. The
regions (Ak1, Ak2 , ...., Akm−1 , Al) are merged

⇐⇒
{
Nk1 = 0, Nk2 = 0,..., Nkm−1 = 0 and Nl = 0

}
⇐⇒ Nk1 + Nk2 + ... + Nkm−1 + Nl = 0
⇐⇒ N(Ak1 ∪ Ak2 ,∪.... ∪ Akm−1 ∪ Al) = 0.

We get:

PR(Ak1, Ak2 , ...., Akm−1 , Al) = 1 −
(

1 − pi1 − pi2 − .... − pim − pk1 − pk2 − ... − pkm−1

)ng
> PR(Ai1 , Ai2 , ..., Aim )

and the probability PR(Ai1 , Ai2 , ..., Aim ) is increasing with respect to the fusion of regions as in de�nition 2.
The extension of previous results to various markers (Poisson points, compact markers, Poisson lines or

Poisson planes) is straightforward. We get the following results.

Proposition 11. For Poisson point germs with intensity θ, the probability

PR(Ai1 , Ai2 , ..., Aim )

for the m regions Ai1 , Ai2 , ..., Aim to remain separate is given by:

PR(Ai1 , Ai2 , ..., Aim ) = 1 − exp
[
−θ
(∣∣Ai1 ∣∣ +

∣∣Ai2 ∣∣ + ... +
∣∣Aim ∣∣)] (26)

and PR(Ai1 , Ai2 , ..., Aim ) is increasing with respect to the fusion of regions as in de�nition 2.

Proposition 12. For compact markers A′ generating a Boolean model with intensity θ, the probability

PR(Ai1 , Ai2 , ..., Aim )

for the m regions Ai1 , Ai2 , ..., Aim to remain separate is given by:

PR(Ai1 , Ai2 , ..., Aim ) = 1 − exp
[
−θ
∣∣∣(Ǎi1 ⊕ A′) ∪ (Ǎi2 ⊕ A

′) ∪ ... ∪ (Ǎim ⊕ A
′)
∣∣∣] (27)

Proposition 13. Consider stationary isotropic Poisson lines with intensity λ as random markers in R2. The
probability

PR(Ai1 , Ai2 , ..., Aim )
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for the m regions Ai1 , Ai2 , ..., Aim to remain separate is expressed as a function of the average projected length
l of the projection of Ai1 ∪ Ai2 ∪ ... ∪ Aim in directions ω:

PR(Ai1 , Ai2 , ..., Aim ) = 1 − exp

−λ π∫
0

l(Ai1 (ω) ∪ Ai2 (ω) ∪ ... ∪ Aim (ω))dω

 (28)

when Ai1 ∪ Ai2 ∪ ... ∪ Aim is a connected set, it is given by:

PR(Ai1 , Ai2 , ..., Aim ) = 1 − exp
[
−λL

(
C(Ai1 ∪ Ai2 ∪ ... ∪ Aim )

)]
(29)

where L is the perimeter and C(Ai1 ∪ Ai2 ∪ ... ∪ Aim ) is the convex hull of Ai1 ∪ Ai2 ∪ ... ∪ Aim .

Proposition 14. Consider stationary isotropic Poisson lines with intensity λ as random markers in R3. The
probability

PR(Ai1 , Ai2 , ..., Aim )

for the m regions Ai1 , Ai2 , ..., Aim to remain separate is expressed as a function of the average projected area A
of the projection of Ai1 ∪ Ai2 ∪ ... ∪ Aim in directions ω:

PR(Ai1 , Ai2 , ..., Aim ) = 1 − exp

−λ 2πster∫
0

A(Ai1 (ω) ∪ Ai2 (ω) ∪ ... ∪ Aim (ω))dω

 (30)

when Ai1 ∪ Ai2 ∪ ... ∪ Aim is a connected set, it is given by:

PR(Ai1 , Ai2 , ..., Aim ) = 1 − exp
[
−λπ4 S(C(Ai1 ∪ Ai2 ∪ ... ∪ Aim ))

]
(31)

For random markers in R3 made of stationary isotropic Poisson planes with intensity λ, the probability

PR(Ai1 , Ai2 , ..., Aim )

for the m regions Ai1 , Ai2 , ..., Aim to remain separate is expressed as a function of the average projected length
l of the projection of Ai1 ∪ Ai2 ∪ ... ∪ Aim in directions ω:

PR(Ai1 , Ai2 , ..., Aim ) = 1 − exp

−λ 2πster∫
0

l(Ai1 (ω) ∪ Ai2 (ω) ∪ ... ∪ Aim (ω))dω

 (32)

when Ai1 ∪ Ai2 ∪ ... ∪ Aim is a connected set, it is given by:

PR(Ai1 , Ai2 , ..., Aim ) = 1 − exp
[
−λA(C(Ai1 ∪ Ai2 ∪ ... ∪ Aim ))

]
(33)

As previously (cf. the combination(24)), the morphological content carried by random markers can be
combined to the textural content given by the probability (6) in the construction of a hierarchy based on m
order probabilities. Alternatively,m order probabilities of distance between regions (section 5.4) can play the
same role.

6 Conclusion
The probabilistic hierarchical segmentation tools introduced in this work are �exible enough to handle vari-
ous types of textures (scalar ormultivariate) and their spatial distribution, byprogressivelymerging regions of
a �ne partition. Combining appropriatemorphological operations and texture classi�cation, successfully im-
plemented in previous studies on texture segmentation mentioned in the references, supervised or unsuper-
vised texture segmentations can be obtained. A probabilistic distance between regions, carrying statistical
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information on textures, is de�ned. From this distance, hierarchies involving progressive binary or multiple
fusions of regions with similar textures are built. Additionally, morphological information on the regions of
the �ne partition and on merged regions of the hierarchy can be accounted for in the process, through the
use of a probabilistic distance between regions of the initial partition, or of various kinds of randommarkers.
In each situation, the required probabilities are computed in a closed form by simple algebra, from the set of
probability distributions (2) estimated on the initial partition, as a function of the content and of the location
of the regions of the partition evolving during the construction of the hierarchy.

References
[1] Alpert S,GalunM,Basri R, Brandt A. (2007) Imagesegmentationbyprobabilistic bottom-upaggregationand cue integration.

In Computer Vision and Pattern Recognition, CVPR’07. IEEE Conference, 1-8
[2] Angulo J, Jeulin D (2007) Stochastic watershed segmentation, Proc. ISMM’2007, 8th International Symposium on Mathe-

matical Morphology, Rio de Janeiro, Brazil, October 10-13 2007, Banon G., Barrera J., Braga-Neto U. (eds), ISBN 978-85-17-
00032-4, 265-276

[3] Aubert A, Jeulin D (2000) Classi�cation morphologique de surfaces rugueuses, Revue de Métallurgie - CIT/Sience et Génie
des Matériaux Feb 2000 (2000), 253–262

[4] Benzecri JP (1973) L’analyse des données, Dunod, Paris, TIB n◦3, §3-4, pp. 133-149; TIB n◦4, §2.3, pp. 180-183
[5] Beucher S, Lantuéjoul Ch (1979) Use of watersheds in contour detection. In: International workshop on image processing,

real-time edge and motion detection
[6] Cord A, Jeulin D, Bach F (2007) Segmentation of random textures by morphological and linear operators, Proc. ISMM’2007,

8th International Symposium onMathematical Morphology, Rio de Janeiro, Brazil, October 10-13 2007, Banon G., Barrera J.,
Braga-Neto U. (eds), ISBN 978-85-17-00032-4, 387-398

[7] Cord A, Bach F, Jeulin D (2010) Texture classi�cation by statistical learning from morphological image processing. Applica-
tion to metallic surfaces, Journal of Microscopy, 239, 159-166

[8] Duda RO, Hart PE (1973) Pattern recognition and scene analysis, Wiley, New York, 236-237
[9] Gillibert L, Jeulin D (2011) Stochastic Multiscale Segmentation Constrained by Image Content, Proc. ISSM 2011, Soille P.,

Pesaresi M., Ouzounis G.K. (eds), Lecture Notes in Computer Science 6671, Springer Verlag, 132-142
[10] Gillibert L, Peyrega Ch, Jeulin D, Guipont V, Jeandin M (2012) 3D Multiscale Segmentation and Morphological Analysis of

X-ray Microtomography from Cold-sprayed Coatings, Journal of Microscopy, vol. 248, Part 2, 187-199. doi: 10.1111/j.1365-
2818.2012.03655.x

[11] Gratin C, Vitria J, Moreso F, Seron D (1994) Texture classi�cation using neural networks and local granulometries. In: Math-
ematical Morphology and its Applications to Image Processing, J. Serra and P. Soille (eds), Kluwer Academic Publishers,
309-316

[12] Hastie T, Tibshirani R, Friedman J (2001) The Elements of Statistical Learning, Data Mining, Inference, and Prediction,
Springer pp. 544-547

[13] Hummel RA, Zucker SW (1983) On the Foundations of Relaxation Labeling Processes, IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. PAMI-5, N◦ 3, 267-287

[14] Jeulin D (1991) Modèles Morphologiques de Structures Aléatoires et de Changement d’Echelle. Thèse de Doctorat d’Etat ès
Sciences Physiques, Université de Caen

[15] Jeulin D (2008) Remarques sur la segmentation probabiliste, N-10/08/MM, Internal report, CMM, Mines ParisTech
[16] Jeulin D, MoreaudM (2008) Segmentation of 2D and 3D textures from estimates of the local orientation, Image Analysis and

Stereology, Vol. 27, 183-192
[17] Jeulin D (2015) Probabilistic Hierarchical Morphological Segmentation of Textures. In: International Symposium on Mathe-

matical Morphology and Its Applications to Signal and Image Processing, J. A. Benediktsson, J. Chanussot, L. Najman, H.
Talbot (eds), Springer International Publishing, 313-324

[18] Karoui I, Fablet R, Boucher J M, Augustin J M (2006) Region-based image segmentation using texture statistics and level-set
methods. In Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Confer-
ence, Vol. 2

[19] Karoui I, Fablet R, Boucher J M, Pieczynski W, Augustin J M (2008) Fusion of textural statistics using a similarity measure:
application to texture recognition and segmentation, Pattern Analysis and Applications, 11(3-4), 425-434

[20] ManjunathBS, Simchony T, ChellappaR (1990) Stochastic andDeterministic Networks for Texture Segmentation, IEEE Trans-
actions on Acoustics, Speech, and Signal ProcessingVol. 38, N◦ 6, 1039-1049

[21] Matheron G (1967) Eléments pour une théorie des milieux poreux, Masson, Paris
[22] Matheron G (1975) Random sets and integral geometry, Wiley, New York

Unauthenticated
Download Date | 1/4/17 6:41 PM



234 | Dominique Jeulin

[23] Meyer F, Beucher S (1990) Morphological segmentation, Journal of Visual Communication and Image Representation, Vol-
ume 1, Issue 1, 21–46

[24] Meyer F, Stawiaski J (2010) A stochastic evaluation of the contour strength, DAGM-Symposium’10, 513-522
[25] Noyel G, Angulo J, Jeulin D (2007) Morphological segmentation of hyperspectral images, Image Analysis and Stereology,

Vol. 26, 101-109
[26] Noyel, G, Angulo J, Jeulin D (2008) Classi�cation-driven stochastic watershed. Application to multispectral segmentation,

Proc. Fourth European Conference on Color in Graphics, Imaging and Vision (CGIV 2008), 471 - 476
[27] Noyel G, Angulo J., Jeulin D (2010) A new spatio-spectral morphological segmentation for multispectral remote sensing

images, International Journal of Remote Sensing, Vol. 31, Issue 22, 5895-5920
[28] Peleg S (1980) A New Probabilistic Relaxation Scheme, IEEE Transactions on Pattern Analysis andMachine Intelligence, Vol.

PAMI-2, N◦ 4, 362-369
[29] Pesaresi M, Benediktsson J (2001) A new approach for themorphological segmentation of high resolution satellite imagery,

Geoscience and Remote Sensing, Vol. 39 , Issue 2, 309–320
[30] Rosenfeld A, Hummel RA, Zucker SW (1976) Scene Labeling by Relaxation Operations, IEEE Transactions on Systems, Man,

and Cybernetics, Vol. SMC-6, N◦ 6, 420-433
[31] Serra J (1982) Image Analysis and Mathematical Morphology, Academic Press, London
[32] Sivakumar K, Goutsias J (1994)Monte Carlo estimation ofmorphological granulometric discrete size distributions. In: Math-

ematical Morphology and its Applications to Image Processing, J Serra and P Soille (eds), Kluwer Academic Publishers,
233-240

Unauthenticated
Download Date | 1/4/17 6:41 PM


	1 Introduction
	2 Earlier works on probabilistic segmentation of textures
	3 Morphological texture descriptors 
	4 Texture classification 
	5 Probabilistic texture segmentation
	5.1 Watershed texture segmentation
	5.2 Probabilistic hierarchical segmentation
	5.2.1 Probabilistic distance
	5.2.2 Probabilistic distance and hierarchical segmentation
	5.2.3 Combination of probabilistic segmentations 
	5.2.4 Local probability distributions

	5.3 Higher order probabilistic segmentation
	5.4 Probabilistic distances between sets 
	5.5 Use of random markers
	5.5.1 Reminder on random allocation of germs
	5.5.2 Calculation of the probability PR(Ai,Aj) for point markers
	5.5.3 Calculation of the probability PR(Ai,Aj) for Poisson lines and Poisson flats markers
	5.5.4 Calculation of the probability PR(Ai,Aj) for compact markers
	5.5.5 Combination of textural and of morphological information

	5.6 Random markers and higher order fusion of regions

	6 Conclusion

