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Abstract

A general methodology is introduced for texture segmentation in
binary, scalar, or multispectral images. Textural information is ob-
tained from morphological operations on images. Starting from a �ne
partition of the image in regions, hierarchical segmentations are de-
signed in a probabilistic framework by means of probabilistic distances
conveying the textural information, and of random markers account-
ing for the morphological content of the regions and of their spatial
arrangement. The probabilistic hierarchies are built from binary or
multiple fusion of regions.
Keywords: texture segmentation, morphological operations, ran-

dom markers, probabilistic segmentation, hierarchical segmentation,
Poisson process.

1 Introduction

In many cases images contain regions with di¤erent textures, rather than
objects on a background or regions with homogeneous grey level easily seg-
mented by thresholding.

Automatic texture extraction is required in di¤erent areas such as for
instance industrial control [6] or remote sensing [20, 21]. In these two last
cases, in every pixel of images multivariate information is available, like
results of morphological transformations applied to grey level or to binary
images [6, 5], or like the wavelength response of a sensor in multispectral im-
ages [20, 21]. In this context a typical approach of segmentation makes use
of pixels classi�cation by means of multivariate image analysis [6, 5], some-
times combined with a watershed segmentation based on some multivariate
gradient [20, 21].

In what follows, we introduce a hierarchical probabilistic segmentation
of textures based on multivariate morphological information available on

1



every pixel. After a short reminder on morphological texture descriptors and
texture classi�cation, a probabilistic approach of hierarchical segmentation
of textures, based on a probabilistic distance and on the introduction of
various random markers, is developed.

2 Morphological texture descriptors

We will consider images as domains D in the n dimensional space Rn. Every
pixel x is described by a set of morphological parameters or transformations
building a vector with dimension p in the parameter space Rp. Many types
of transformations can be used. From experience, some standard families
of morphological transformations 	 [14, 23], performed on an initial im-
age, are e¢ cient as texture descriptors [5, 6]: dilations �(�), erosions "(�),
openings 
(r) or closings '(�) by convex structuring elements with size �.
These operations are as well de�ned for binary images as for scalar grey
level images. E¢ cient texture descriptors, from the point of view of pixels
classi�cation, are increments of transformations with respect to the size �.
Thus for a binary image A, vectors of description are obtained for each type
of transformation, with components I�(x) where I� is the indicator function
of the set 	(A; ��)4	(A; ���1), 4 being the set di¤erence, and � ranging
from 1 to s, with �0 = 0. For a grey level image Y (x), the components
are given by the increments Za(x) =

��	(Y (x); ��)�	(Y (x); ���1)��. When
	 is an opening or a closing, the increments Za(x) provide a granulometric
spectrum, as used in various domains: binary textures [24, 5], rough surfaces
[2], satellite imagery [22], to mention a few. In some speci�c situations, the
components I�(x) or Za(x) are averaged in a local window K(x) around x,
to provide local granulometries [10, 6, 5] or the output of linear �lters, like
curvelet transform [6, 5]. These descriptors are easily extended in a marginal
way to the components of multispectral images.

3 Texture classi�cation

The morphological descriptors generate a vector �eld on the domain D, from
which a classi�cation of pixels in the various textures present in the image
can be looked for. For this, a partition in classes C� must be built in the
high dimensional parameter space. A convenient methodology is based on
multivariate factor analysis to reduce the dimension of the data and to re-
move noise: in [20, 21] use is made of Factor Correspondence analysis FCA,
well suited to positive data, like multi spectral images or like probability dis-
tributions as encountered in granulometric spectra; for heterogeneous data,
Principal Component Analysis PCA can be a good method to produce the
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dimensional reduction [6]. Each of these analysis makes use of some speci�c
distance in the parameter space, which we will denote kZ(x1)� Z(x2)k for
the descriptors of the two pixels x1 and x2. Various distances can be chosen
(for instance the chi-squared between distributions in the case of FCA). We
will not discuss this choice here, which is highly application dependent.

A classi�cation of pixels is then made in the parameter space or in its re-
duced version, after keeping the most prominent factors. This classi�cation
can be unsupervised, using random germs in the K-means algorithm or a hi-
erarchical classi�cation, as described in the book [3]. When the textures are
documented by a set of representative pixels, supervised statistical learning
methods can be implemented for later classi�cation (see an extensive pre-
sentation in the book [11]). In [5] a Linear Discriminant Analysis LDA is
used. It follows a PCA in [6].

4 Probabilistic texture segmentation

In this section we assume that in every pixel x in the image embedded in Rn,
multivariate information (like multispectral data, or transformed images as
described in section 2) is stored in a vector Z(x) with components Z�(x).
For any pair of pixels x1 and x2, a multivariate distance kZ(x1)� Z(x2)k is
de�ned in the parameter space Rp.

4.1 Watershed texture segmentation

Considering points y in the neighborhood B(x) of point x, a multivariate
gradient can be de�ned as [19, 20, 21]:

grad (Z(x)) = _y2B(x) kZ(x)� Z(y)k � ^y2B(x) kZ(x)� Z(y)k

The gradient image can be used as the starting point of the segmentation
of the domain D in homogeneous regions Ai. In fact it is expected that a
texture sensitive gradient will provide weak values in homogeneous regions,
and high values on the boundary Aij between two regions Ai and Aj . A
separation of the domain D in homogeneous connected regions Ai is obtained
by the construction of the watershed of the gradient image from markers
generated by the minima of the gradient, as initially de�ned for scalar images
[4, 16] and later extensively used for multispectral images [19, 20, 21].

The main drawback of the watershed segmentation is its sensitivity to
noise, resulting in systematic oversegmentation of the image. This is allevi-
ated by means of a careful choice of markers, driven by some local content,
like for instant chosen from a multivariate classi�cation in [21].

Another approach, the stochastic watershed [1], makes use of random
markers replacing the usual markers, enabling us to estimate a local prob-
ability of boundaries at each point x 2 Aij . The main idea is to evaluate
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the strength of contours by their probability, estimated from Monte Carlo
simulations in a �rst step, as developed in the scalar [1] and in the multi-
spectral cases [20, 21]. Simulations can be replaced by a direct calculation
of the probability of contour for each boundary Aij between adjacent re-
gions Ai and Aj [13, 17]. This was successfully applied for 3D multiscale
segmentation of granular media using point markers [8] or oriented Poisson
lines markers [9].

4.2 Probabilistic hierarchical segmentation

In what follows, we design a new probabilistic segmentation obtained by a
hierarchical merging of regions from a �ne partition of a domain D in regions
Ai. This initial partition can be obtained in a �rst step from the watershed
of a gradient image, or from some classi�cation of pixels. Given two regions
Ai and Aj , not necessarily connected or even adjacent, we will estimate for
various criteria the probability pij :

pij = PfAi and Aj contain di¤erent texturesg (1)

The probability pij will play the same role as a gradient (or a distance)
between regions Ai and Aj . In a hierarchical approach, a progressive aggre-
gation of regions is performed, starting from lower values of pij and updating
the probability after fusion of regions containing similar textures. This ap-
proach was proposed for the case of random markers [13] and implemented
in an iterative segmentation [8]. Using a probabilistic framework makes eas-
ier the combination of di¤erent criteria for the segmentation, as illustrated
later.

In the context of texture classi�cation, the probability 1 � pij = PfAi
and Aj contain the same textureg is also a similarity index between regions
Ai and Aj .

4.2.1 Probabilistic distance

Consider two points x1 and x2 in a domain D, and the multivariate dis-
tance kZ(x1)� Z(x2)k. When the two points are located randomly in D,
kZ(x1)� Z(x2)k becomes a random variable, characterized by its cumula-
tive distribution function P fkZ(x1)� Z(x2)k � dg = T (x1; x2; d). We have
the following property:

Proposition 1 For any d > 0, the distribution function T (x1; x2; d) is a
distance in D.

Proof. We have T (x1; x1; d) = 0 and T (x1; x2; d) = T (x2; x1; d). T satis�es
the triangular inequality: for any triple (x1; x2; x3),

kZ(x1)� Z(x2)k � kZ(x1)� Z(x3)k+ kZ(x2)� Z(x3)k .
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Therefore

kZ(x1)� Z(x2)k � d =) kZ(x1)� Z(x3)k+ kZ(x2)� Z(x3)k � d

and

T (x1; x2; d) � P fkZ(x1)� Z(x3)k+ kZ(x2)� Z(x3)k � dg
� T (x1; x3; d) + T (x2; x3; d):

De�nition 2 Consider two regions Ai and Aj in D, and two indepen-
dent random points xi 2 Ai; xj 2 Aj. For any d > 0, the probability
P (Ai; Aj ; d) = P fkZ(xi)� Z(xj)k � dg de�nes a probabilistic distance be-
tween Ai and Aj.

By construction, P (Ai; Aj ; d) is a pseudo-distance, since we have not
for every d, P (Ai; Ai; d) = 0. For any triple (Ai � D; Aj � D; Ak � D)
and (xi 2 Ai; xj 2 Aj ; xk 2 Ak) we have P (Ai; Aj ; d) � P (Ai; Ak; d) +
P (Aj ; Ak; d) as a result of the triangular inequality satis�ed by T (xi; xj ; d).

The probabilistic distance can also be used between classes C� obtained
for a partition in the parameter space as a result of a classi�cation. In that
case we will de�ne for two classes C� and C� the probability

p�� = P fkZ(x�)� Z(x�)k � dg

estimated for independent random points x� 2 C� and x� 2 C�. For a
classi�cation of textures in homogeneous classes, we expect that the diagonal
of the matrix P , with elements p�� , is close to 0. This can drive the choice
of the threshold d, based on the data used for the classi�cation.

Remark 3 For any pair of regions Ai and Aj in D, where the propor-
tions of pixels belonging to class C� are pi� and pj� respectively,
and for independent uniform random points xi 2 Ai; xj 2 Aj we have
P fxi 2 C�; xj 2 C�g = pi�p

j
�. In that case we get P (Ai; Aj ; d) =

P
�;�

pi�p
j
� p��. The calculation of the probabilistic distance between Ai and

Aj is made faster after a preliminary storage of the probability matrix P .

4.2.2 Probabilistic distance and hierarchical segmentation

As mentioned before, we can make use of the probabilistic distance P (Ai; Aj ; d)
to build a hierarchical segmentation, starting from the lowest probability.
Let P (Ai; Aj ; d) < P (Ai; Ak; d) and P (Ai; Aj ; d) < P (Aj ; Ak; d);8k 6= i; k 6=
j. By merging regions Ai and Aj with measures jAij and jAj j (for instance
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area in R2 and volume in R3), we generate a new region Al = Ai [ Aj . For
any k we get P (Ak; Al; d) =

jAij
jAljP (Ak; Ai; d) +

jAj j
jAljP (Ak; Aj ; d). Therefore

we have

P (Ak; Ai; d) _ P (Ak; Aj ; d) � P (Ak; Al; d) � P (Ak; Ai; d) ^ P (Ak; Aj ; d)
> P (Ai; Aj ; d):

The probabilistic distance increases when merging two classes, so that it
can be used as an index in the hierarchy. All remaining values P (Ak; Al; d)
are updated after fusion of two regions, and the process can be iterated.
Indeed, @(Ai; Aj) = Inffp;Ai and Aj are included in the same region Alg is
equivalent to the diameter of the smallest region of the hierarchy containing
Ai and Aj , which satis�es the ultrametric inequality required to generate a
hierarchy [3]. Alternatively we can use the probabilistic distance involved
in every level of merging, to generate an ultrametric distance used to build
the hierarchy [7]. The segmentation involved with the probabilistic distance
is unsupervised in the general case.

Remark 4 In the context of segmentation, a partition of the domain D is
obtained by considering all subdomains obtained when cutting the hierarchy
at a given level (probability) p. The choice of the threshold p can be driven
by the results of the preliminary classi�cation of pixels, using the values of
the elements of the matrix P , or by the number of subdomains, that should
correspond to the number of textures present in D. An estimation of this
number can be derived from the spectral analysis of the matrix of the graph
Laplacian derived from the matrix with elements 1 � P (Ai; Aj ; d), which is
an adjacency matrix [11].

Remark 5 The proposed hierarchy generates non necessarily connected sub-
domains, since no adjacency conditions is imposed in the choice of regions
to be merged. This condition can be required, as is made for the construction
of watersheds, by restricting the use of the probabilistic distances to adjacent
regions. In addition to connectedness of segmented regions, it reduces the
cost of calculations by limiting the number of pairs, instead of considering
the full cross-product Ai � Aj. Intermediate constructions can involve the
probabilistic distances of iterated adjacent regions. This approach can be fol-
lowed in the �rst steps of the segmentation, to reduce the number of regions,
and released for the remaining steps of the process, in order to allow for the
extraction of non connected regions with the same texture.

Remark 6 By integrating the probability P (Ai; Aj ; d) with respect to the
threshold d, we obtain the average distance kZ(xi)� Z(xj)k for independent
random points xi 2 Ai; xj 2 Aj. This average can be used in a hierarchy
where the aggregation is made according to the average distance criterion
[3].
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4.2.3 Combination of probabilistic segmentations

It can be useful to enrich the probabilistic distance by other probability
distributions concerning the comparison of the content of two regions, in
order to combine them for the segmentation. We will have to restrict the
choice of probability distributions on the cross-product Ai � Aj according
to the following de�nition.

De�nition 7 A probability P (Ai; Aj) is said to be increasing with respect
to the fusion of regions, when it satis�es P (Ak; Al) � P (Ak; Ai)^P (Ak; Aj)
for any i; j; k, with Al = Ai [Aj.

As shown before, the probabilistic distance satis�es the property given
in de�nition 7. Other probability distributions with the same property will
be introduced later.

The property given in de�nition 7 is satis�ed when P (Ai; Aj) is in-
creasing with respect to �, which means that P (Ak; Al) � P (Ak; Ai) when
Ai � Al. However, this is not a necessary condition.

We start from two probabilistic segmentations, based on separate aggre-
gation conditions, involving the probability of separation of regions Ai and
Aj , P 1(Ai; Aj) and P 2(Ai; Aj). P 1and P 2 are assumed to own the fusion
property of de�nition 7. These probabilities can be combined according to
di¤erent rules. For instance:

1. probabilistic independence: P (Ai; Aj) = P 1(Ai; Aj)P 2(Ai; Aj)

2. more reliable event: P (Ai; Aj) = P 1(Ai; Aj) _ P 2(Ai; Aj)
3. least reliable event: P (Ai; Aj) = P 1(Ai; Aj) ^ P 2(Ai; Aj)
4. ponderation between the two events (with probabilities �1 and
�2: P (Ai; Aj) = �1P 1(Ai; Aj) + �2P 2(Ai; Aj)

5. any combination P (Ai; Aj) = �(P1; P2)(Ai; Aj), where P is a
probability.

These rules are easily extended to more than two conditions of aggrega-
tion. We have the following result.

Proposition 8 The previous rules of combination of the probability of sep-
aration of regions satisfy the property given in de�nition 7.

Proof. We start from P (Ai; Aj) = �(P1; P2)(Ai; Aj). As before, consider
Al = Ai [ Aj and the condition: P (Ai; Aj) < P (Ai; Ak) and P (Ai; Aj) <
P (Aj ; Ak);8k 6= i; k 6= j. We have for any region Ak

P (Ak; Al) =
jAij
jAlj

P (Ak; Ai) +
jAj j
jAlj

P (Ak; Aj):
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and

P (Ak; Ai) _ P (Ak; Aj) � P (Ak; Al) � P (Ak; Ai) ^ P (Ak; Aj) > P (Ai; Aj)

4.2.4 Local probability distributions

The regions of the �ne partition (or obtained after some steps of aggregation)
can be characterized by some local probability distributions.

Probabilistic classi�cation If pixels xi in region Ai can be attributed

to various classes of textures C� by a probabilistic classi�cation, the prob-
ability pi� = Pfxi 2 C�g can be used as a probabilistic descriptor of Ai.
Considering now independent uniform random points xi 2 Ai and xj 2 Aj ,
the probability (1) can be written

P (Ai; Aj) = 1� Pfxi and xj belong to the same textureg = 1� pij(2)
= 1�

X
�

pi�p
j
�

Noting I�(x) the indicator function of class C�, and I(x) the vector
with components I�(x), we have PfkI�(xi)� I�(xj)k = 0g = Pfxi 2 C�;
xj 2 C�g = pi�p

j
� and therefore P (Ai; Aj) = PfkI(xi)� I(xj)k > 0g, so that

P (Ai; Aj) de�ned by 2 is a probabilistic distance corresponding to de�nition
2. It satis�es the property given in de�nition 7. This can be checked as
follows:using Al = Ai [Aj we obtain

pl� =
jAij
jAlj

pi� +
jAj j
jAlj

pj�

and

1� P (Ak; Al) =
X
�

pk�p
l
� =

jAij
jAlj

X
�

pi�p
k
� +

jAj j
jAlj

X
�

pj�p
k
�

=
jAij
jAlj

(1� P (Ai; Ak)) +
jAj j
jAlj

(1� P (Aj ; Ak))

Therefore we get

P (Ak; Al) =
jAij
jAlj

P (Ai; Ak) +
jAj j
jAlj

P (Aj ; Ak)

and

P (Ak; Ai) _ P (Ak; Aj) � P (Ak; Al) � P (Ak; Ai) ^ P (Ak; Aj)
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We now illustrate this situation in the binary case of two textures (� = 1; 2).
We have

pij = p
i
1p
j
1 + (1� pi1)(1� p

j
1)

Note that when pj1 =
1
2 (meaning that the region Ai is randomly a¤ected to

texture 1 or to texture 2), we also have pij = 1
2 .

A simple practical example is obtained by starting with a partition in
seven regions Ai with the same measure jAij and with the following proba-
bilities pi1: �

0:1 0:9 0:25 0:75 0:4 0:6 0:5
�

The symmetrical probability matrix pij used in equation ( 2), with lines
(i = 1 to i = 6) and columns (j = 2, to j = 7) is given by:26666664

0:18 0:7 0:3 0:58 0:42 0:5
0:3 0:7 0:42 0:58 0:5

0:375 0:55 0:45 0:5
0:45 0:55 0:5

0:48 0:5
0:5

37777775
The two regions with the highest probability pij (namely 0:7 for p13 or

p24) are merged, and the pij are updated. Using for instance A10 = A1[A3,
the probability matrix becomes:266664

0:24 0:338 0:565 0:435 0:5
0:7 0:42 0:58 0:5

0:55 0:45 0:5
0:48 0:5

0:5

377775
Setting now A20 = A2 [A4, pij becomes:2664

0:289 0:565 0:435 0:5
0:485 0:515 0:5

0:48 0:5
0:5

3775
In the next step regions A10 and A5 are merged (since p105 is the highest

probability) to obtain region A100 = A1[A3[A5 and the probability matrix
for regions A100 , A20 , A6 and A7 becomes:240:354 0:45 0:5

0:515 0:5
0:5

35
Regions A20 and A6 are now merged to form A200 and we are left with

a segmentation of D in two regions A100 and A200 corresponding to textures
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2 and 1 respectively. Region A7 can be left unclassi�ed or can indi¤erently
be merged with A100 or with A200 . The obtained segmentation is what is
expected in this very simple case, where it would have been obvious to
immediately merge regions with pi1 > 0:5 (corresponding to texture 1) and
regions with pi1 < 0:5 (corresponding to texture 2).

Local granulometric spectrum As indicated in section 2, granulo-
metric information can be provided after transformation of the image by
morphological opening or closing operations. A local granulometric spec-
trum can be obtained in each region Ai by averaging the components I�(xi)
or Z�(xi) over Ai. After normalization, we obtain local granulometric spec-
tra in classes of sizes C� where for size �, pi� = Pfxi 2 C�g. This local
classi�cation with respect to size can be introduced in the probability (2)
to build a hierarchy. We can alternatively combine di¤erent granulometries,
like opening and closing, for instance by linear combination as proposed in
section 4.2.3, to generate a composite hierarchy.

Local orientation Some textures present local orientation [18], which it
is convenient to study from a vector �eld

�!
V (x), like for instance the gradient

vector. To remove the e¤ect of noise in the gradient, a local orientation can
be extracted as follows: in every window K(x) is considered the cloud of
points M
 generated by connecting the origin to vector

�!
V (x
). The prin-

cipal axes of inertia of the points M
 are then extracted [18]. A con�dence
degree of the orientation is provided by the ratio of the largest eigenvalue
of the inertia matrix to its trace. Working with a partition of the domain
D, the same approach can be followed with the cloud of points generated
by
�!
V (xi), xi 2 Ai. in a second step, we can characterize the disorientation

between Ai and Aj from the scalar product between the two main eigenvec-

tors
�!
V i and

�!
V j . We have, �ij being the angle between

�!
V i and

�!
V j with

Euclidean norms



�!V i




and 


�!V j




, for 


�!V i




 6= 0 and 


�!V j




 6= 0:
cos2 �ij =

��!
V i:
�!
V j

�2



�!V i




2 


�!V j




2
The value cos2 �ij is a proximity index between orientations of regions

Ai and Aj , while 1 � cos2 �ij is an angular distance, which can be used
in a similar way as P (Ai; Aj) to build an orientation based segmentation,
starting from a partition.

An alternative way to account for the disorientation between two regions
is to use the probability distribution of the quantity (1�cos2 �ij) obtained for�!
V (xi) and

�!
V (xj), when xi and xj are independent uniform points in Ai and
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Aj . We can de�ne an orientational probabilistic distance P (Ai; Aj ; d) = P�
(1� cos2 �ij) � d

	
. In the presence of pixels with a weak gradient

�!
V

it may be wise to exclude them from the calculation of the orientational
probabilistic distance, since the computation of cos2 �ij is ill-de�ned in that
case. Alternatively, we can use the probability distribution of the random

variable
��!
V i:
�!
V j

�2
.

4.3 Higher order probabilistic segmentation

In the previous section, the fusion construction of a hierarchy was limited
to the fusion of pairs of regions, restricting to second order probabilities
P (Ai; Aj) and generating binary trees. This can be easily extended to higher
order probabilities, to produce more general trees and hierarchies.

Consider m regions Ai1 ; Ai2 ; :::; Aim. For every pair Aik ; Ail indepen-
dent uniform random points xik ; xil and the independent random variables
kZ(xik)� Z(xil)k are generated. We decide to merge the m regions when

(_ik;il kZ(xik)� Z(xil)k) < d:

The probability of this event is given by:

P f_ik;il kZ(xik)� Z(xil)k < dg =
Y
ik;il

P fkZ(xik)� Z(xjl)k < dg (3)

=
Y
ik;il

(1� P (Aik ; Ail ; d))

An indexed hierarchy is obtained by sorting the probabilities (3) with
decreasing order. Alternatively we can use the m order version of the prob-
abilistic distance sorted with increasing order:

P (Ai1 ; Ai2 ; :::; Aim ; d) = P f_ik;il kZ(xik)� Z(xil)k � dg (4)

= 1�
Y
ik;il

(1� P (Aik ; Ail ; d))

For instance in the case of a ternary hierarchy the probabilities (3) and
(4) become:

P ffkZ(xi)� Z(xj)k _ kZ(xi)� Z(xk)k _ kZ(xj)� Z(xk)k < dgg(5)
= (1� P (Ai; Aj ; d)) (1� P (Ai; Ak; d)) (1� P (Aj ; Ak; d))

and

P (Ai; Aj ; Ak; d) (6)

= 1� (1� P (Ai; Aj ; d)) (1� P (Ai; Ak; d)) (1� P (Aj ; Ak; d))
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By construction, the m order probabilities (3) are always lower than the
corresponding second order probabilities, and the P (Ai1 ; Ai2 ; :::; Aim ; d) are
larger than the P (Ai; Aj ; d). Once the binary probabilities P (Ai; Aj ; d) are
available, it is easy to work out higher order probabilities (3, 4, 5, 6). When
starting from a partition with r regions, computing the Cmr = r!

m!(r�m)! order
m probabilities may be expensive. However this can be easily performed
when restricting the fusion to adjacent regions.

When merging them regions with the lowest probability P (Ai1 ; Ai2 ; :::; Aim ; d)
we generate the new region Al = Ai1[Ai2[:::[A. In a next step, all possible
fusions of m� 1 regions with Al have to be considered. We get

P (Ak1; Ak2 ; ::::; Akm�1 ; Al; d)

=
jAi1 j
jAlj

P (Ak1; Ak2 ; ::::; Akm�1 ; Ai1 ; d) + :::

+

��Aim�1��
jAlj

P (Ak1; Ak2 ; ::::; Akm�1 ; Aim�1 ; d)

so that

_i=i1;:::im�1P (Ak1; Ak2 ; ::::; Akm�1 ; Ai; d) � P (Ak1; Ak2 ; ::::; Akm�1 ; Al; d)

� ^i=i1;:::im�1P (Ak1; Ak2 ; ::::; Akm�1 ; Ai; d)
> P (Ai1 ; Ai2 ; :::; Aim ; d)

The probability P (Ai1 ; Ai2 ; :::; Aim ; d) increases when mergingm classes,
and therefore satis�es the property given in de�nition 7.

The hierarchy can also be built by combining distance probabilities of
various ordersm. To illustrate this point, consider the combination ofm = 2
and m = 3. At a given step of the hierarchy the three regions Ai, Aj , and
Ak are merged into Al = Ai [Aj [Ak if for any p we have

P (Ai; Aj ; Ak; d) < P (Ai; Ap; d)

P (Ai; Aj ; Ak; d) < P (Aj ; Ap; d)

P (Ai; Aj ; Ak; d) < P (Ak; Ap; d)

It comes for p,

P (Al; Ap; d)

=
jAij
jAlj

P (Ai; Ap; d) +
jAj j
jAlj

P (Aj ; Ap; d) +
jAkj
jAlj

P (Ak; Ap; d)

and therefore

P (Al; Ap; d) > P (Ai; Ap; d) ^ P (Aj ; Ap; d) ^ P (Ak; Ap; d)
> P (Ai; Aj ; Ak; d)

so that the index of the hierarchy increases after the fusion of the regions
Ai, Aj , and Ak.
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Remark 9 There is a connection between the m order probabilistic distance
and some image transformations in the case of a digitized image. Consider
a neighborhood B(x) with m pixels. The criterion (_ik;il kZ(xik)� Z(xil)k)
becomes

�
Y (x) = _x12B(x);x22B(x) kZ(x1)� Z(x2)k

�
. In the case of a scalar

image Z(x) we have Y (x) = _y2BZ(y)�^y2BZ(y) = Z(x)�B�Z(x)	B,
and Y (x) is a standard morphological gradient.

For a probabilistic classi�cation of textures, the result (2) is easily ex-
tended to higher orders:

P (Ai1 ; Ai2 ; :::; Aim) (7)

= 1� Pfxi1 ; xi2 ; :::; xim belong to the same textureg (8)

= 1�
X
�

Y
pi1� p

i2
� :::p

im
�

4.4 Use of random markers

Following the approach proposed for the stochastic watershed [1], we can
use random markers to randomly select regions for which the previous prob-
abilistic segmentation will be performed. Doing this, some morphological
content on the regions of the hierarchy and on their location in D is ac-
counted for, in addition to the previous probabilistic textural information.
The aim of this section is to calculate the probability PR(Ai; Aj) of selection
of two regions (Ai; Aj) by random markers. We follow the results introduced
in [13].

4.4.1 Reminder on random allocation of germs

We use ng random points (or germs) xk with independent uniform distrib-
utions in the domain D containing r regions. The probability pi for a germ
to fall in Ai is given by

pi =
jAij
jDj , with

i=rX
i=1

pi = 1:

By construction, the allocation of germs in the regions of a partition follows
a multinomial distribution (Ni being the random number of germs in Ai)
with multivariate generating function:

G(s1; s2; :::; sr) = E
n
sN11 s

N2
2 :::s

Nr
r

o
Starting with ng = 1 (use of a single germ):

G1(s1; s2; :::; sr) = p1s1 + p2s2 + :::+ prsr

13



For ng � 1, the numbersNi are the sum of n independent binary random
variables, and

Gng(s1; s2; :::; sr) = G1(s1; s2; :::; sr)
ng = (p1s1 + p2s2 + :::+ prsr)

ng

so that

P fN1 = k1; N2 = k2; :::; Nr = krg =
ng!

k1!k2!:::kr!
pk11 p

k2
2 :::p

kr
r (9)

with k1 + k2 + :::+ kr = ng

An interesting case is asymptotically obtained when jDj ! 1 and ng !
1, with ng

jDj ! �. For these conditions, the multinomial distribution con-
verges towards the multivariate Poisson distribution. We have:

logGng(s1; s2; :::; sr) = ng log (p1s1 + p2s2 + :::+ prsr)

ng log(1 + p1(s1 � 1) + p2(s2 � 1) + :::+ pr(sr � 1))

and

logGng(s1; s2; :::; sr)! � jA1j (s1 � 1) + � jA2j (s2 � 1) + :::+ � jArj (sr � 1)

so that:

lim
ng!1

Gng(s1; s2; :::; sr) = �
i=r
i=1 exp(� jAij (si � 1))

The random numbers N1; N2; :::; Nr are independent Poisson random
variables with intensities �i = � jAij:

P fNi = kg =
�ki
k!
exp��i (10)

Using Poisson points as markers, the number of germs for each realization
follows a Poisson distribution with parameter � jDj.

4.4.2 Calculation of the probability PR(Ai; Aj) for point markers

Random markers are used to select regions of a partition by reconstruc-
tion. With this process, the reconstructed regions for any realization of
the random germs are left intact, while regions without germs are merged.
Considering many realizations of the germs, we can compute the probability
PR(Ai; Aj) for the two regions to remain separate.

Proposition 10 For ng independent uniformly distributed random germs,
the probability PR(Ai; Aj) for the two regions Ai; Aj to remain separate is
given by:

PR(Ai; Aj) = 1� (1� pi � pj)ng (11)

Proof. The pair (Ai; Aj) is merged () fNi = 0 and Nj = 0g () Ni +
Nj = 0() N(Ai [Aj) = 0.

14



Working on images, the probabilities PR(Ai; Aj) computed for all pairs
(Ai; Aj) are easily ranked in increasing order. A hierarchical fusion of regions
is obtained by starting with the lowest probability PR(Ai; Aj). After fusion
of two regions with Al = Ai [Aj the probabilities PR(Ak; Al) are updated.
The pair (Ak; Al) is merged() fNk = 0 and Nl = 0g () Nk+Nl = 0()
N(Ak [Al) = 0 () N(Ai [Aj [Ak) = 0: We get:

PR(Ak; Al) = 1� (1� pi � pj � pk)ng > PR(Ai; Aj)

and the probability PR(Ak; Al) is increasing with respect to the fusion of
regions as in de�nition 7.

In general no conditions of connectivity or of adjacency of regions are
required for the fusion process. It is easy to force the connectivity by work-
ing on connected components of regions, or to limit the fusion to adjacent
regions.

The random germs can be generated by a Poisson point process.

Proposition 11 For Poisson point germs with intensity �, the probability
PR(Ai; Aj) for the two regions Ai; Aj to remain separate is given by:

PR(Ai; Aj) = 1� exp [�� (jAij+ jAj j)] (12)

and PR(Ak; Al) is increasing with respect to the fusion of regions as in de�-
nition 7.

The morphological content in the probabilities (11, 12) only depends on
the Lebesgue measure (area in R2 and volume in R3) of regions. It increases
with the measure of regions, larger regions resisting more to fusion. For a
pair of regions, PR(Ai; Aj) is maximal when jAij = jAj j, so that the random
markers hierarchy tends to generate by fusion regions with homogeneous
sizes, the regions with lower measure disappearing �rst.

4.4.3 Calculation of the probability PR(Ai; Aj) for Poisson lines
and Poisson �ats markers

It can be interesting to obtain other ponderations of regions with a prob-
abilistic meaning, like the perimeter in R2 or the surface area in R3. Re-
stricting to the Poisson case, it is easy to make this extension, provided
use is made of appropriate markers. For this purpose, we will consider now
isotropic Poisson lines in R2, isotropic Poisson planes and Poisson lines in
R3[15, 12]. Oriented Poisson lines in R3 were used as markers in the context
of the stochastic watershed (and so with another type of probability), and
applied to the segmentation of granular structures [9].
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Proposition 12 Consider stationary isotropic Poisson lines with intensity
� as random markers in R2. The probability PR(Ai; Aj) for the two regions
Ai; Aj to remain separate, when Ai [Aj is a connected set, is given by:

PR(Ai; Aj) = 1� exp [��L (C(Ai [Aj))] (13)

where L is the perimeter and C(Ai [Aj) is the convex hull of Ai [Aj.

Proposition 13 Consider stationary isotropic Poisson lines with intensity
� as random markers in R3. The probability PR(Ai; Aj) for the two regions
Ai; Aj with surface areas S(Ai) and S(Ai) to remain separate, when Ai[Aj
is a connected set, is given by:

PR(Ai; Aj) = 1� exp
h
���

4
S(C(Ai [Aj))

i
(14)

For random markers in R3 made of stationary isotropic Poisson planes
with intensity �, the probability PR(Ai; Aj) for the two regions Ai; Aj with
integrals of mean curvature A(Ai) and A(Aj) to remain separate, when Ai[
Aj is a connected set, is given by:

PR(Ai; Aj) = 1� exp [��A(C(Ai [Aj))] (15)

It is possible to combine various types of Poisson markers (points and
lines in R2, points, planes and lines in R3) with their own intensities. For
instance, when Ai [Aj is a connected set in R2, we obtain:

PR(Ai; Aj) = 1� exp [�f� (jAij+ jAj j) + �L (C(Ai [Aj))g] (16)

where a ponderation by the area and the perimeter of the regions acts for the
segmentation. Similarly in R3 is introduced a ponderation of the volume,
and the surface area and integral of mean curvature of C(Ai [ Aj) in the
process of segmentation.

4.4.4 Calculation of the probability PR(Ai; Aj) for compact mark-
ers

Further morphological information on the regions can be accounted for when
introducing compact random markers (not necessarily connected). In the
process of selection of regions of a partition by reconstruction, point mark-
ers are replaced by a compact grain A

0
located on Poisson points, and

generating a Boolean model A. We have:

Proposition 14 For compact markers A0 generating a Boolean model with
intensity �, the probability PR(Ai; Aj) for the two regions Ai; Aj to remain
separate is given by:

PR(Ai; Aj) = 1� exp
�
��
��( �Ai �A0) [ ( �Aj �A0)��� (17)

= 1� exp
�
��
��� �Ai �A0��+ �� �Aj �A0��� ��( �Ai �A0) \ ( �Aj �A0)����
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Proof. The pair (Ai; Aj) is merged () Ai [ Aj is outside the Boolean
model with primary grain A0. The expression (17) is the Choquet capacity
T (K) of the Boolean model when K = Ai [Aj .

The compact markers can be random sets (for instance spheres wit a
random radius). In that case, the measures jj are replaced by their mathe-
matical expectations with respect to the random set A0. Using for A0 a ball
with radius �, PR(Ai; Aj) increases until a constant value when the distance
between Ai and Aj increases from 0 to 2�: the probability to merge two
regions is higher when their distance is lower.

4.4.5 Combination of textural and of morphological information

We can now combine the use of random markers, conveying morphological
content on the partition and on its evolution in the hierarchy, to the previ-
ous textural content (probabilistic distance, or local probability information.
For instance, we can decide to merge two regions when they are not recon-
structed by markers (with a marker dependent probability 1� PR(Ai; Aj))
and the textures they enclose are similar (with a probability 1�P (Ai; Aj ; d)).
In this context the probability pij (1) becomes

P (Ai; Aj) = (18)

�(PR; Pd)(Ai; Aj) = PR(Ai; Aj) + P (Ai; Aj ; d)� PR(Ai; Aj)P (Ai; Aj ; d)

By construction, this composite probability is increasing with respect
to the fusion of regions as in de�nition 7, and will generate a hierarchy for
the segmentation, by updating each terms of (18) according to the previous
rules.

Other textural information can be introduced in the probability (18),
such as orientational information, as discussed in section 4.2.4, or extinc-
tion values: in the case of watershed segmentation, the �ooding algorithm
relies on the minimal values zij of the function to be �ooded, for instance
grad (Z(x)), on boundaries Aij between adjacent regions Ai and Aj . Let
F (z) be the cumulative distribution function of the extinction values. It
is equivalent to sort the values zij or F (zij), since the distribution func-
tion is a monotonous transformation of data. Using F (zij) instead of zij
gives a probabilistic content to the �ooding. In this context, 1 � F (zij) is
a probabilistic distance between Ai and Aj . Consider the regions Ai, Aj
and Ak. Aj and Ak are merged by �ooding, if zjk < zij and zjk < zik, and
consequently zjk < zij ^ zik. After fusion, we obtain Al = Aj [ Ak and
zil = zij ^ zik. Therefore, the probabilistic distance 1 � F (zil) increases by
fusion, as required in de�nition 7. Combining this probabilistic distance to
the various probabilities PR(Ai; Aj) generated by random markers provides
a hierarchical segmentation, even outside of the �eld of textures. This hier-
archical segmentation resulting from a progressive fusion of adjacent regions
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is close to the segmentation given by the stochastic watershed, but remains
di¤erent.

4.5 Random markers and higher order fusion of regions

We now consider random germs and decide that regions without germs are
merged. For the fusion of m regions, the previous second order results are
easily extended.

Proposition 15 For ng independent uniformly distributed random germs,
the probability PR(Ai1 ; Ai2 ; :::; Aim) for the m regions Ai1 ; Ai2 ; :::; Aim to re-
main separate is given by:

PR(Ai1 ; Ai2 ; :::; Aim) = 1� (1� pi1 � pi2 � ::::� pim)
ng (19)

Proof. The regions Ai1 ; Ai2 ; :::; Aim are merged ()

fNi1 = 0 and Ni2 = 0 and .... Nim = 0g
() Ni1 +Ni2 + ::::+Nim = 0() N(Ai1 [Ai2 [ ::: [Aim) = 0:

A hierarchical fusion of regions is obtained by starting with the lowest
probability PR(Ai1 ; Ai2 ; :::; Aim). After fusion of m regions with Al = Ai1 [
Ai2[:::[Aim the probabilities PR(Ai1 ; Ai2 ; :::; Aim) are updated. The regions
(Ak1; Ak2 ; ::::; Akm�1 ; Al) are merged

()
�
Nk1 = 0, Nk2 = 0,..., Nkm�1 = 0 and Nl = 0

	
() Nk1 +Nk2 + :::+Nkm�1 +Nl = 0

() N(Ak1 [Ak2 ;[:::: [Akm�1 [Al) = 0:

We get:

PR(Ak1; Ak2 ; ::::; Akm�1 ; Al)

= 1�
�
1� pi1 � pi2 � ::::� pim � pk1 � pk2 � :::� pkm�1

�ng
> PR(Ai1 ; Ai2 ; :::; Aim)

and the probability PR(Ai1 ; Ai2 ; :::; Aim) is increasing with respect to the
fusion of regions as in de�nition 7.

The extension of previous results to various markers (Poisson points,
compact markers, Poisson lines or Poisson planes) is straightforward. We
get the following results.

Proposition 16 For Poisson point germs with intensity �, the probability

PR(Ai1 ; Ai2 ; :::; Aim)
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for the m regions Ai1 ; Ai2 ; :::; Aim to remain separate is given by:

PR(Ai1 ; Ai2 ; :::; Aim) = 1� exp [�� (jAi1 j+ jAi2 j+ :::+ jAim j)] (20)

and PR(Ai1 ; Ai2 ; :::; Aim) is increasing with respect to the fusion of regions
as in de�nition 7.

Proposition 17 For compact markers A0 generating a Boolean model with
intensity �, the probability

PR(Ai1 ; Ai2 ; :::; Aim)

for the m regions Ai1 ; Ai2 ; :::; Aimto remain separate is given by:

PR(Ai1 ; Ai2 ; :::; Aim) = 1�exp
�
��
��( �Ai1 �A0) [ ( �Ai2 �A0) [ ::: [ ( �Aim �A0)���

(21)

Proposition 18 Consider stationary isotropic Poisson lines with intensity
� as random markers in R2. The probability

PR(Ai1 ; Ai2 ; :::; Aim)

for them regions Ai1 ; Ai2 ; :::; Aim to remain separate, when Ai1[Ai2[:::[Aim
is a connected set, is given by:

PR(Ai1 ; Ai2 ; :::; Aim) = 1� exp [��L (C(Ai1 [Ai2 [ ::: [Aim))] (22)

where L is the perimeter and C(Ai1 [ Ai2 [ ::: [ Aim) is the convex hull of
Ai1 [Ai2 [ ::: [Aim.

Proposition 19 Consider stationary isotropic Poisson lines with intensity
� as random markers in R3. The probability

PR(Ai1 ; Ai2 ; :::; Aim)

for them regions Ai1 ; Ai2 ; :::; Aim to remain separate, when Ai1[Ai2[:::[Aim
is a connected set, is given by:

PR(Ai1 ; Ai2 ; :::; Aim) = 1� exp
h
���

4
S(C(Ai1 [Ai2 [ ::: [Aim))

i
(23)

For random markers in R3 made of stationary isotropic Poisson planes with
intensity �, the probability

PR(Ai1 ; Ai2 ; :::; Aim)

for them regions Ai1 ; Ai2 ; :::; Aim to remain separate, when Ai1[Ai2[:::[Aim
is a connected set, is given by:

PR(Ai1 ; Ai2 ; :::; Aim) = 1� exp [��A(C(Ai1 [Ai2 [ ::: [Aim))] (24)

As previously, the morphological content carried by random markers
can be combined to the textural content given by the probability (4) in the
construction of a hierarchy based on m order probabilities.
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5 Conclusion

The probabilistic hierarchical segmentation tools introduced in this work
are �exible enough to handle various types of textures (scalar or multi-
variate) and their spatial distribution, by progressively merging regions of a
�ne partition. Combining appropriate morphological operations and texture
classi�cation, successfully implemented in previous studies on texture seg-
mentation mentioned in the references, supervised or unsupervised texture
segmentations can be obtained. A probabilistic distance between regions,
carrying statistical information on textures, is de�ned. From this distance,
hierarchies involving progressive binary or multiple fusions of regions with
similar textures are built. Additionally, morphological information on the
regions of the �ne partition and on merged regions of the hierarchy can be
accounted for in the process, through the use of various kinds of random
markers.
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