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Abstract

Detecting and quantifying isoforms from RNA-seq data is an important and challenging task.
The problem is often ill-posed since different combinations of isoforms may correctly explain the
observed read counts, particularly at low coverage. Assuming that some isoforms are shared
between samples, simultaneously detecting isoforms from multiple samples can yield better esti-
mation by increasing the total number of reads available and the diversity in relative abundances
between different transcripts. We propose a new method for solving this isoform deconvolution
problem jointly across several samples. The method is an extension of the FlipFlop technique,
which was initially proposed to identify and quantify isoforms from a single sample, and is for-
mulated as a convex optimization problem. We demonstrate the benefits of combining several
samples for isoform detection, and show that our approach outperforms simple pooling strate-
gies and other methods based on mixed integer programming. Source code is freely available
as an R package from the Bioconductor web site (http://www.bioconductor.org/) and more
information is available at http://cbio.ensmp.fr/flipflop.

1 Introduction

Most genes in eukaryote genomes are subject to alternative splicing, meaning they can give rise
to different mature mRNA molecules, called transcripts or isoforms, by including or excluding
particular exons (Pan et al., 2008). Alternative splicing is a regulated process that not only greatly
increases the repertoire of proteins that can be encoded by the genome (Nilsen and Graveley,
2010), but also appears to be tissue-specific (Wang et al., 2008; Xu et al., 2002) and regulated in
development (Kalsotra and Cooper, 2011), as well as implicated in diseases such as cancers (Pal
et al., 2012). Hence, detecting isoforms in different cell types or samples is an important step
to understand the regulatory programs of the cells or to identify splicing variants responsible for
diseases.

Next-generation sequencing (NGS) technologies can be used to identify and quantify these
isoforms, using the RNA-seq protocol (Mortazavi et al., 2008; Wang et al., 2009; Martin and
Wang, 2011). However, identification and quantification of isoforms from RNA-seq data, sometimes
referred to as the isoform deconvolution problem, is often challenging because RNA-seq technologies
usually only sequence short portions of mRNA molecules, called reads. A given read sequenced by
RNA-seq can therefore originate from different transcripts that share a particular portion containing
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Grenoble - Rhône Alpes, France, 6Sysra, Yerres, France

1



the read, and a deconvolution step is needed to assign the read to a particular isoform or at least
estimate globally which isoforms are present and in which quantity based on all sequenced reads.

When a reference genome is available, the RNA-seq reads can be aligned on it using a dedicated
splice mapper (Trapnell et al., 2009; Li and Durbin, 2009; Dobin et al., 2013), and the deconvolution
problem for a given sample consists in estimating a small set of isoforms and their abundances that
explain well the observed coverage of reads along the genome. Many existing methods take this
approach such as Cufflinks (Trapnell et al., 2010), Scripture (Guttman et al., 2010), IsoLasso (Li
et al., 2011b), NSMAP (Xia et al., 2011), SLIDE (Li et al., 2011a), iReckon (Mezlini et al., 2013),
Traph (Tomescu et al., 2013), MiTie (Behr et al., 2013), and FlipFlop (Bernard et al., 2014). How-
ever, the problem is far from being solved and is still challenging, due in particular to identifiability
issues (the fact that different combinations of isoforms can correctly explain the observed reads),
particularly at low coverage, which limits the statistical power of the inference methods: as a result,
the performance reported by the state-of-the-art is often disappointingly low.

One promising direction to improve isoform deconvolution is to exploit several samples at the
same time, such as biological replicates or time course experiments. If some isoforms are shared
by several samples — potentially with different abundances —, then the identifiability issue may
vanish and the statistical power of the deconvolution methods may increase due to the availability
of more data for estimation. For example, the state-of-the-art methods CLIIQ (Lin et al., 2012)
and MiTie (Behr et al., 2013) perform joint isoform deconvolution across multiple samples, by for-
mulating the problem as an NP-hard combinatorial problem solved by mixed integer programming.
MiTie avoids an explicit enumeration of candidate isoforms using a pruning strategy, which can
drastically speed up the computation in some cases but remains very slow in other cases. The Cuf-
flinks/Cuffmerge (Trapnell et al., 2010) method uses a more naive and straightforward approach,
where transcripts are first predicted independently on each sample, before being merged — with
some heuristics — in a unique set.

In this paper, we propose a new method for isoform deconvolution from multiple samples.
When applied to a single sample, the method boils down to FlipFlop (Bernard et al., 2014); thus,
we simply refer to the new multi-sample extension of the technique as FlipFlop as well. It formulates
the isoform deconvolution problem as a continuous convex relaxation of the combinatorial problem
solved by CLIIQ and MiTie, using the group-lasso penalty (Yuan and Lin, 2006; Lounici et al.,
2009) to impose shared sparsity of the models estimated on each sample. The group-lasso penalty
allows to select a few isoforms among many candidates jointly across samples, while assigning
sample-specific abundance values. By doing so, it shares information between samples but still
considers each sample to be specific and does not learn a unique model for all samples. Compared
to CLIIQ or MiTie, FlipFlop addresses a convex optimization problem efficiently, and involves an
automatic model selection procedure to balance the fit of the data against the number of detected
isoforms. We show experimentally, on simulated and real data, that FlipFlop is more accurate than
simple pooling strategies and than other existing methods for isoform deconvolution from multiple
samples.

2 Method

The deconvolution problem for a single sample can be cast as a sparse regression problem of
the observed reads against expressed isoforms, and solved by penalized regression techniques
like the Lasso, where the `1 penalty controls the number of expressed isoforms. This approach
is implemented by several of the referenced methods, including IsoLasso (Li et al., 2011b) and
FlipFlop (Bernard et al., 2014). When several samples are available, we propose to generalize this
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Figure 1: Multi-dimensional splicing graph with three samples. Each candidate isoform is a path
from source node s to sink node t. Nodes denoted as grey squares correspond to ordered set of
exons. Each read is assigned to a unique node, corresponding to the exact set of exons that it
overlaps. A vector of read counts (one component per sample) is then associated to each node of
the graph. Note that some components of a vector can be equal to zero.

approach by using a convex penalty that leads to small sets of isoforms jointly expressed across
samples, as we explain below.

2.1 Multi-dimensional splicing graph

The splicing graph for a gene in a single sample is a directed acyclic graph with a one-to-one
mapping between the set of possible isoforms of the gene and the set of paths in the graph. The
nodes of the graph typically correspond to exons, sub-exons (Li et al., 2011b,a; Behr et al., 2013)
or ordered sets of exons (Montgomery et al., 2010; Bernard et al., 2014) — the definition we adopt
here. The directed edges correspond to links between possibly adjacent nodes.

When working with several samples, we choose to build the graph based on the read alignments
of all samples pooled together. Since the exons used to build the graph are estimated from read
clusters, this step already takes advantage of information from multiple samples, and leads to a more
accurate graph. We associate a list of read counts — as many as samples — with each node of the
graph. In other words, we extend the notion of splicing graph to the multiple-sample framework,
using a shared graph structure with specific count values on each node. Our multi-dimensional
splicing graph is illustrated in figure 1.

2.2 Notation

Throughout the paper, we call G = (V,E) the multi-dimensional splicing graph where V is the set
of vertices and E the set of edges. We denote by P the set of all paths in G. By construction of the
graph, each path p ∈ P corresponds to a unique candidate isoform. We denote by ytv the number of
reads falling in each node v ∈ V for each sample t ∈ {1, . . . , T}, where T is the number of samples.
We denote by βtp ∈ R+ the abundance of isoform p for sample t. Finally, we define for every path p

in P the T -dimensional vector of abundances βp = [β1p , β
2
p , . . . , β

T
p ], and denote by β = [βp]p∈P the

matrix of all abundances values.
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2.3 Joint sparse estimation

We propose to estimate β through the following penalized regression problem:

min
β
L(β) + λ

∑
p∈P
‖βp ‖2 such that βp ≥ 0 for all p ∈ P, (1)

where L is a convex smooth loss function defined below, ‖βp ‖2 =
√∑T

t=1(β
t
p)

2 is the Euclidean

norm of the vector of abundances of isoform p across the samples, and λ is a non-negative regu-
larization parameter that controls the trade-off between loss and sparsity. The `1,2-norm ‖β‖1,2 =∑

p∈P ‖βp ‖2, sometimes called the group-lasso penalty (Yuan and Lin, 2006), induces a shared
sparsity pattern across samples: solutions of (1) typically have entire columns equal to zero (Yuan
and Lin, 2006). This shared sparsity-inducing effect corresponds exactly to our assumption that
only a limited number of isoforms are present across the samples (non-zero columns of β). It can be
thought of as a convex relaxation of the number of isoforms present in at least one sample, which
is used as criterion in the combinatorial formulations of CLIIQ and MiTie.

We define the loss function L as the sum of the T sample losses, thus assuming independence
between samples (reads are sampled independently from each sample). The loss is derived from the
Poisson negative log-likelihood — the Poisson model has been successfully used in several RNA-seq
studies (Jiang and Wong, 2009; Salzman et al., 2011; Xia et al., 2011; Bernard et al., 2014) — so
that the general loss is defined as

L(β) =

T∑
t=1

∑
v∈V

[
δtv − ytv log δtv

]
with δtv =

(
N tlv

∑
p∈P:p3v

βtp

)
,

where N t is the total number of mapped reads in sample t and lv is the effective length of node v,
as defined in (Bernard et al., 2014). The sum

∑
βtp over all p ∈ P that contain node v represents

the sum of expressions in sample t of all isoforms involving node v.

2.4 Candidate isoforms

Since |P| grows exponentially with the number of nodes in G, we need to avoid an exhaustive
enumeration of all candidate isoforms p ∈ P. FlipFlop efficiently solves problem (1) in the case
where T = 1, i.e., the `1-regularized regression minβp∈R+ L(β) + λ

∑
p∈P βp using network flow

techniques, without requiring an exhaustive path enumeration and leading to a polynomial-time
algorithm in the number of nodes.

Unfortunately, this network flow formulation does not extend trivially to the multi-sample case.
We therefore resort to a natural two-step heuristic: we first generate a large set of candidate isoforms
by solving T + 1 one-dimensional problems — the T independent ones, plus the one corresponding
to all samples pooled together — for different values of λ, and taking the union of all selected
isoforms, and we then solve (1) restricted to this union of isoforms. This approach can potentially
miss isoforms which would be selected by solving (1) over all paths p ∈ P and are not selected
for any single sample or when pooling all reads to form a single sample, but allows to efficiently
approximate (1). We observe that it leads to good results in various settings in practice, as shown
in the experimental part.

2.5 Model selection

We solve (1) for a large range of values of the regularization parameter λ, obtaining solutions from
very sparse to more dense (a sparse solution involves few non-zero abundance vectors βp). Each
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solution, i.e., each set of selected isoforms obtained with a particular λ value, is then re-fitted
against individual samples — without regularization but keeping the non-negativity contraint—,
so that the estimated abundances do not suffer from shrinkage (Tibshirani, 1996). The solution
with the largest BIC criterion (Schwarz, 1978) — where the degree of freedom of a group-lasso
solution is computed as explained in Yuan and Lin (2006) — is finally selected. Note that although
the same list of isoforms selected by the group-lasso is tested on each sample, the refitting step lets
each sample pick the subset of isoforms it needs among the list, meaning that all samples do not
necessarily share all isoforms at the end of the deconvolution.

3 Results

We show results on simulated human RNA-seq data with both increasing coverage and increasing
number of samples, with different simulation settings, and on real RNA-seq data. In all cases,
reads are mapped to the reference with TopHat2 (Trapnell et al., 2009). We compare FlipFlop
implementing the group-lasso approach (1) to the simpler strategy of pooling all samples together,
running single-sample FlipFlop (Bernard et al., 2014) on the merged data, and performing a fit
for each individual sample data against the selected isoforms. We also assess the performance of
MiTie (Behr et al., 2013) and of the version 2.2.0 of the Cufflinks/Cuffmerge package (Trapnell et al.,
2010). Performances on isoform identification are summarized in terms of Fscore, the harmonic
mean of precision and recall, as used in other RNA-seq studies (Lin et al., 2012; Behr et al., 2013).
Of note, in all the following experiments, we consider a de novo setting, without feeding any of
the methods with prior transcript annotations (i.e., MiTie and FlipFlop first reconstruct sub-exons
and build the splicing graph, then perform isoform deconvolution).

3.1 Influence of coverage and sample number

The first set of simulations is performed based on the 1329 multi-exon transcripts on the positive
strand of chromosome 11 from the RefSeq annotation (Pruitt et al., 2005). Single-end 150bp
reads are simulated with the RNASeqReadSimulator software (available at http://alumni.cs.

ucr.edu/\~{}liw/rnaseqreadsimulator.html). We vary the number of reads from 10 thousand
to 10 million per sample (corresponding approximately to sequencing depth from 1X to 1000X)
and the number of samples from 1 to 10. All methods are run with default parameters, except that
we fix region-filter to 40 and max-num-trans to 10 in MiTie as we notice that choosing these two
parameter values greatly increases its performances (see figure A.1 of the supplementary information
for a comparison between MiTie with default parameters or not).

Figure 2 shows the Fscore in two different settings: the Equal setting corresponds to a case
where all samples express the same set of transcripts at the same abundances (in other words
each sample is a noisy realization of a unique abundance profile), while in the Different setting
the samples may have very different transcript expression values (but still share the same set of
expressed transcripts).

In all cases and for all methods, the higher the coverage or the number of samples, the higher
the Fscore. In the Equal case, the group-lasso and merging strategies give almost identical results,
which shows the good behavior of the group-lasso, as pooling samples in that case corresponds
to learning the shared abundance profile. In the Equal case again, for all methods the different
Fscore curves obtained with increasing number of samples converge to different plateaux. None
of these levels reaches a Fscore of 100, but the group-lasso level is the highest (together with the
merging strategy). In the Different case, the group-lasso shows equal or higher Fscore than the
merging strategy, with a great improvement when the coverage or the number of samples increases.
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The group-lasso also outperforms the Cufflinks/Cuffmerge method for all numbers of samples when
the coverage is larger than 80. When using more than 5 samples the group-lasso shows greater
Fscore as soon as the coverage is bigger than 15. Finally, the group-lasso outperforms MiTie for
all number of samples and all coverages. Of note, the group-lasso performances are better in the
Different setting than in the Equal setting, showing that our multi-sample can efficiently deal with
diversity among samples.

3.2 Influence of hyper-parameters with realistic simulations

The second set of simulations is performed using a different and more realistic simulator, the Flux
Simulator (Griebel et al., 2012), in order to check that our approach performs well regardless the
choice of the simulator. Coverage and single-end read length are respectively fixed to 105 reads
and 150bp, and we run experiments for one up to five samples. We study the influence of hyper-
parameters on the performances of the compared methods, and show that our approach leads to
better results with optimized parameters as well. Hyper-parameters are first tuned on a training
set of 600 transcripts from the positive strand of chromosome 11, which is subsequently left aside
from the evaluation procedure after tuning. We start by jointly optimizing a set of pre-processing
hyperparameters. We then keep the combination that leads to the best training Fscore, and we
jointly optimize a set of prediction hyperparameters. More specifically, we optimize 7 values of 3
different pre-processing or prediction parameters (hence 73 different combinations in both cases),
except that for MiTie we add 2 values of one pre-processing parameter and 3 values of a fourth
prediction parameter (hence optimizing over 9 × 72 and 3 × 73 parameters). A more detailed
description of the optimized parameters is given in tables B.1 and B.2 of the supplementary.

Fscore is shown on figure 3 for 600 other test transcripts, for both default and tuned settings
(except that again we set region-filter to 40 and max-num-trans to 10 in MiTie instead of using all
default parameters as it greatly improves its performances, see figure A.2 for a comparison of several
versions of MiTie). For all methods and for both default and tuned settings, performances increase
with the number of samples. Except for Cufflinks/Cuffmerge for the last three sample numbers,
all methods improve their results after tuning of their hyper-parameters. When using default
parameter values, the group-lasso shows the largest Fscore for the first three sample numbers,
while Cufflinks/Cuffmerge is slightly better for the very last sample number. When using tuned
parameter values, the group-lasso approach outperforms all other methods for the first three sample
numbers, and is slightly better or equal to the default version of Cufflinks/Cuffmerge for the last
two sample numbers.

3.3 Experiments with real data

We use five samples from time course experiments on D. melanogaster embryonic development.
Each sample corresponds to a 2-hour period, from 0 to 10 hours (0-2h, 2-4h, . . . , 8-10h). Data is
available from the modENCODE (Celniker et al., 2009) website. For each given period we pooled all
75bp single-end technical replicate reads available, ending up with approximately 30 to 65 million
mapped reads per sample. A description of the samples is given in table C.1. Data from the same
source were also used in the MiTie paper (Behr et al., 2013).

Because the exact true sets of expressed transcripts is not known, we validated predictions based
on the RefSeq transcript annotations. Reads were mapped to the RefSeq transcriptome in order to
restrict predictions to known genomic regions, and we perform independent analysis on the forward
and reverse strands. All methods are run with default parameters.

Figure 4 shows the Fscore per sample when FlipFlop, MiTie, and Cufflinks are run independently
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on each sample or when multi-sample strategies are used. Results on the forward and reverse strands
are extremely similar. All methods give better results than their independent versions, and the
performances of the multi-sample approaches increase with the number of used samples. Again, the
group-lasso strategy of FlipFlop seems more powerful than the pooling strategy, and gives better
Fscore than MiTie and Cufflinks/Cuffmerge in that context.

3.4 Illustrative examples

We describe an example as a proof of concept that multi-sample FlipFlop with the group-lasso
approach (1) can be much more powerful in some cases than its independent FlipFlop version,
and than the merging strategy of Cufflinks/Cuffmerge. Figure 5 shows transcriptome assemblies of
gene CG15717 on the first three modENCODE samples presented in the previous section, denoted
as 0-2h, 2-4h and 4-6h on the figure. For each sample, we display the read coverage along the
gene, the junctions between exons, and the single-sample FlipFlop and Cufflinks predictions. At
the bottom of the figure, we show the 6 RefSeq records as well as the multi-sample predictions
obtained with FlipFlop or with Cuffmerge. A predicted transcript is considered as valid if all its
exon/intron boundaries match a RefSeq record (3 and 7 denote validity or not). The estimated
abundances in FPKM are given on the right-hand side of each predicted transcript. Of note, the
group-lasso predictions come with estimated abundances (one specific value per sample), whereas
Cufflinks/Cuffmerge only reports the structure of the transcripts.

For single-sample predictions, FlipFlop and Cufflinks report the same number of transcripts
for each sample (respectively 2, 2 and 3 predictions for samples 0-2h, 2-4h and 4-6h), with the
same number of valid transcripts, except for the first sample where FlipFlop makes 2 good guesses
against 1 for Cufflinks. This difference might be due to the fact that FlipFlop not only tries to
explain the read alignement as Cufflinks does, but also the coverage discrepancies along the gene.

For multi-sample predictions, FlipFlop gives much more reliable results, with 4 validated tran-
scripts (among 4 predictions), while Cufflinks/Cuffmerge makes only 1 good guess out of 2 pre-
dictions. FlipFlop uses evidences from all samples together to find transcripts with for instance
missing junction reads in one of the sample (such as the one with 30, 7 and 20 FPKM) or lowly
expressed transcripts (such as the one with 0, 0.5 and 2 FPKM). Cufflinks/Cuffmerge explains all
read junctions but does not seek to explain the multi-sample coverage, which seems important in
that example.

Importantly, one can note that the results of multi-sample FlipFlop are different from the union
of all single-sample FlipFlop predictions. This illustrates the fact that designing a dedicated multi-
sample procedure can lead to more statistical power than merging individual results obtained on
each sample independently. We display an additional example in figure D.1 of the supplementary.

4 Discussion

We propose a multi-sample extension of FlipFlop, which implements a new convex optimization
formulation for RNA isoform identification and quantification jointly across several samples. Ex-
periments on simulated and real data show that an appropriate method for joint estimation is
more powerful than a naive pooling of reads across samples. We also obtained promising results
compared to MiTie, which tries to solve a combinatorial formulation of the problem.

Accurately estimating isoforms in multiple samples is an important preliminary step to differ-
ential expression studies at the level of isoforms (Anders et al., 2012; Trapnell et al., 2013). Indeed,
isoform deconvolution from single samples suffers from high false positive and false negatives rates,
making the comparison between different samples even more difficult if isoforms are estimated
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from each sample independently. Although the FlipFlop formulation of joint isoform deconvolution
across samples provides a useful solution to define a list of isoforms expressed (or not) in each
sample, variants of FlipFlop specifically dedicated to the problem of finding differentially expressed
isoforms may also be possible by changing the objective function optimized in (1).

Finally, as future multi-sample applications such as jointly analyzing large cohorts of cancer
samples or many cells in single-cell RNA-seq are likely to involve hundreds or thousands of samples,
more efficient implementations involving in particular distributed optimization may be needed.

Fundings: This work was supported by the European Research Council [SMAC-ERC-280032
to J-P.V., E.B.]; the European Commission [HEALTH-F5-2012-305626 to J-P.V., E.B.]; and the
French National Research Agency [ANR-09-BLAN-0051-04, ANR-11-BINF-0001 to J-P.V., E.B.,
ANR-14-CE23-0003-01 to J.M, L.J.].
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Appendices

A Some influence of MiTie parameters on human simultations

B Parameters optimization on human simulations

C Description of real RNA-seq data

D More illustrative examples
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Figure 2: Human simulations with increasing coverage and number of samples.
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Figure 3: Fscore results on the Flux Simulator simulations.
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Figure 5: Transcriptome predictions of gene CG15717 from 3 samples of the modENCODE data.
Samples name are 0-2h, 2-4h and 4-6h. Each sample track contains the read coverage (light grey)
and junction reads (red) as well as FlipFlop predictions (light blue) and Cufflinks predictions
(light green). The bottom of the figure displays the RefSeq records (black) and the multi-sample
predictions of the group-lasso (dark blue) and of Cufflinks/Cuffmerge (dark green).

Methods Pre-processing parameters Optimal values for each number of samples
(with default values) 1 2 3 4 5

MiTie region-filter (1000) 50 50 50 50 10
seg-filter (0.05) 0.01 0.01 0.01 0.01 0.01
tss-tts-pval (10−4) 6× 10−5 6× 10−5 2× 10−5 6× 10−5 6× 10−5

Cufflinks min-frags-per-transfrag (10) 29 17 17 17 29
max-multiread-fraction (0.75) 0.15 0.15 0.15 0.15 0.15
overlap-radius (50) 146 85 85 85 146

FlipFlop minReadNum (40) 23 40 23 8 14
+ Merge minJuncCount (1) 1 1 1 1 1

minCvgCut (0.05) 0.02 0.03 0.01 0.01 0.01

FlipFlop minReadNum (40) 23 40 23 8 14
+ GroupLasso minJuncCount (1) 1 1 1 1 1

minCvgCut (0.05) 0.02 0.01 0.01 0.01 0.01

Table B.1: Details on the optimized pre-processing parameters.
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Figure A.1: MiTie results on a first set of human simulations when using default parameters or
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●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

10

20

30

40

50

1 2 3 4 5
Samples

F
sc

or
e

●

●

●

●

●

MiTie default

MiTie max−num−trans10

MiTie no−iter

MiTie region−filter40

MiTie region−filter40 max−num−trans10
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Methods Prediction parameters Optimal values for each number of samples
(with default values) 1 2 3 4 5

MiTie max-num-trans (2) 5 5 10 10 10
C-exon (10) 29 50 17 50 29
C-intron (100) 100 20 58 292 171
C-num-trans (100) 20 20 20 20 34

Cufflinks min-isoform-fraction (0.10) 0.02 0.03 0.02 0.02 0.02
pre-mrna-fraction (0.15) 0.08 0.08 0.03 0.03 0.03
junc-alpha (10−3) 2× 10−4 2× 10−4 2× 10−4 2× 10−4 2× 10−4

FlipFlop BICcst (50) 10 50 50 85 50
+ Merge cutoff (1) 0 1 1 3 3

delta (10−7) 10−11 10−11 10−10 10−10 10−11

FlipFlop BICcst (50) 10 29 29 50 50
+ GroupLasso cutoff (1) 0 0 0 0 1

delta (10−7) 10−11 10−9 10−10 10−10 10−10

Table B.2: Details on the optimized prediction parameters.
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Sample descriptions SRA accession names Total number of mapped reads

0-2h embryos SRR023659 32 643 406
SRR023755
SRR023671
SRR023663
SRR023747

2-4h embryos SRR023722 33 528 013
SRR023745
SRR023705
SRR023660

4-6h embryos SRR023746 66 002 347
SRR023836
SRR023696
SRR023669
SRR035220

6-8h embryos SRR023691 39 310 049
SRR023732
SRR023654
SRR023668
SRR024217

8-10h embryos SRR023754 51 620 448
SRR023657
SRR023749
SRR023701
SRR023759
SRR024219
SRR023750

Table C.1: Description of the D.melanogaster RNA-seq data from the modENCODE project.
Data can be found at the following adress: http://intermine.modencode.org/query/

experiment.do?experiment=Developmental+Time+Course+Transcriptional+Profiling+of+

D.+melanogaster+Using+Illumina+poly\%28A\%29\%2B+RNA-Seq
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Figure D.1: Transcriptome predictions of gene CG1129 from 3 samples of the modENCODE data.
Samples name are 0-2h, 2-4h and 4-6h. Each sample track contains the read coverage (light grey)
and junction reads (red) as well as FlipFlop predictions (light blue) and Cufflinks predictions
(light green). Here coverage is log-scale. The bottom of the figure displays the RefSeq records
(black) and the multi-sample predictions of the group-lasso (dark blue) and of Cufflinks/Cuffmerge
(dark green). Symbols 3 and 7 indicate if a predicted transcript matches a RefSeq record of not.
Estimated abundances in FPKM are given on the right hand side of each transcript.

Figure D.1 illustrates that our group-lasso approach can be more powerful than indivual
predictions and than the merging strategy of Cuffmerge. Indeed, when using evidences from
several samples (both junctions and coverage discrepancies) our approach finds a lowly expressed
transcript (that was found in only 1 sample with individual predictions), and two well expressed
transcripts, including one that was not previously found with individual predictions. On the other
hand, Cufflinks/Cuffmerge is very conservative and only predicts a long transcript that does not
explain the variations of coverage from the left to the right part of the gene.
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