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Introduction

Energetic materials are nowadays widely used for military and civil purposes, and exist in a large variety of forms, depending upon their destination. Among them, pressed TATB-based polymer-bonded explosives (PBXs) have the peculiarity of combining a high density of chemical energy and a very high level of safety. These materials contain primarily TATB (1,3,5-triamino-2,4,6-trinitrobenzene), a powerful explosive molecular crystal, and a few percent of a polymer that acts as a binder between TATB particles. These materials display an irreversible and nonlinear thermo-mechanical response to a variety of macroscopic loadings, such as uniaxial compression or tension, for instance. They are also known to display irreversible dila-tancy in response to cyclic slow thermal loading (see, e.g. [START_REF] Rizzo | Growth of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). II. Control of growth by use of high T g polymeric binders[END_REF][START_REF] Maienschein | Thermal expansion of TATB-based explosives from 300 to 566 K[END_REF][START_REF] Thompson | The eects of TATB ratchet growth on PBX 9502[END_REF]). Provided that temperature exceeds a characteristic threshold, the specic volume of the material increases after each thermal cycle, and eventually stabilizes after a number of cycles that depends upon the nature of the binder. This phenomenon, known as ratchet growth in the community of energetic materials, is also known to occur in a variety of materials, especially polycrystalline graphite, and some ceramics (see [START_REF] Rizzo | Growth of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). II. Control of growth by use of high T g polymeric binders[END_REF]).

Although the physical origin of this phenomenology is not yet fully understood, the strongly anisotropic thermoelastic behavior of the TATB crystal is suspected to play a fundamental role [START_REF] Gee | Mesoscale modeling of irreversible volume growth in powders of anisotropic crystals[END_REF][START_REF] Maiti | Irreversible volume growth in polymer-bonded powder systems: Eects of crystalline anisotropy, particle size distribution, and binder strength[END_REF]. The manufacturing process is such that TATB particles are oriented at random in the pressed material, which is therefore macroscop- This scenario is only qualitative. Examining it in detail needs a numerical tool operating at the level of the microstructure and deriving macroscopic properties at the same time, in other words a numerical homogenization tool. This in turn requires (i) a description of the microstructure of the studied material, (ii) the knowledge of the behavior of the constituents, including their interfaces, and (iii) a code for performing the simulations.

The present paper reports the rst stage of the development of such a tool. Section 2 presents the studied material, its microstructure and its macroscopic behavior and linear thermoelastic properties. Section 3 shows how a model of its microstructure is built, whereas Section 4 deals with the anisotropic behavior of TATB, the major constituent. Section 5 presents the FFT based numerical homogenization method. In section 6, we derive the size of the representative volume element, give the predicted quasi-isotropic thermoelastic macroscopic properties and compare them with available experimental macroscopic data. A rst attempt is also made to account for the presence of the polymer binder, treated as a soft interphase at grain boundaries.

Finally, the main results are summarized in the con-clusion, which also discusses future work. [START_REF] Maienschein | Thermal expansion of TATB-based explosives from 300 to 566 K[END_REF] The material: microstructure and macroscopic thermomechanical response

The material studied here is a pressed TATB-based explosive containing less than 5% of a glassy amorphous polymer. The TATB powder is rst coated with the polymer in a slurry process, then granulated to about 1 mm diameter porous spherical prills. The prills are then carefully dried, and isostatically pressed under vacuum at high pressure and moderate temperature in an oil bath, to a nal porosity of a few percent.

Microstructure

Observing the microstructure implies to prepare plane surfaces. However, the material is quite soft, and cutting operations induce heavy damage in a layer down to 1 mm below the surface. Therefore, polishing is required to remove any preparation artifact. Using conventional metallographic tools and procedures, it is relatively easy to prepare at polished microsections, in a way quite similar to that used for other pressed energetic materials (see, for instance, [START_REF] Demol | A study of the microstructure of pressed TATB and its evolution after several kinds of insults[END_REF][START_REF] Skidmore | Characterizing the microstructure of selected high explosives[END_REF]). The image in Fig. 1 has been obtained using optical reected polarized (non analyzed) light microscopy.

As expected, the microstructure appears globally as polycrystalline.

Individual TATB grains are not easy to recognize, because of very complex contrast patterns.

They contain small dark spots (thin white arrows in Fig. 1) and thin band-like features (white solid arrows).

The spots are binder-lled pores, remnant of the initial porosity of the TATB powder after the isostatic compaction process. The bands, absent from the initial TATB powder, witness the plastic deformation of individual grains to accommodate compaction. The binder is also supposed to be located at grain boundaries, but cannot be resolved. A few inter-and intra-granular microcracks exist in the material (hollow black arrows), but are not easy to pick from this picture. And nally, the large scale meta-structure corresponding to the remnants of the prills can be observed in the form of a prill boundary (white hollow arrows) crossing the image.

Scanning electron microscopy can also be used to ob-serve polished surfaces.

Either in secondary or backscattered electron mode, the contrast is very poor, which presents the advantage of not displaying the deformation bands, but the drawback of not displaying grain boundaries either. This can be improved by etching the surface with a solvent of the binder, since TATB is almost insensitive to common solvents. In this way, grain boundaries can be revealed, as illustrated in Fig. 2. The dark background is relatively uniform. The grain boundaries are now clearly visible. However, the etching procedure has also removed the binder from the binderlled porosity, which appears as numerous black spots in all TATB grains. Notice that some grains display intragranular cracks (white solid arrows in Fig. 2). Some triple points appear hollow (white hollow arrows), which could be due to the etching process removing some of the smallest grains. The thin white network is explained below.

Segmentation

The remaining porosity represents an artifact, which prevented automatic grain boundary identication and grain segmentation. Therefore, manual segmentation had to be performed on a large polished area (2.55×0.66 mm 2 ). Two pixel wide lines are drawn following grain boundaries, as illustrated by the white network in Fig. 2. The result is illustrated in Fig. 3. In this image, the intra-granular pores have been deleted, such that only the grain boundaries remain.

Many very small grains or intergranular pores are located at grains boundaries or at triple points. It is likely that the etching process has removed a part of the population of micron-sized grains, such that the quantication of the granulometry should be taken with care concerning the smallest grains. Grain boundaries are rough and often concave, whereas grains are noticeably elongated on the average. And nally, the large scale prill metastructure is clearly visible (a prill boundary links the large black arrows in Fig. 3). Clearly, the microstructure is heteroge-neous at large (millimetric) scale. The prill boundary zone contains more small grains, and large grains are oriented along the boundary, whereas the bulk prill zone appears isotropic at rst sight.

For the present purpose, it is not intended to account for such large scale heterogeneities, but only to demonstrate the feasibility of the approach. Therefore, the study will be restricted to the microstructure representative to the bulk part of the prills (grey square in Fig. 3). Fig. 4 shows this bulk prill zone in more detail, and will constitute the source of morphological data in the following. Since some of the smallest grains may be missing, the image was submitted to a morphological opening operation with a three pixels diamond element, in order to remove the smallest grains and pores, possibly unrepresentative of the actual microstructure.

Brief overview of the macroscopic thermomechanical behavior

Fig. 5 shows the result of a cyclic uniaxial compression experiment, performed on a 10 mm diameter, 20 mm length cylindrical sample equipped with longitudinal and transverse strain gauges, at a strain rate of 1.7×10 Each cycle is characterized by a linear response up to ∼70°C, which corresponds to the glassy domain. After a strongly nonlinear transition phase, linearity is recovered above 120°C. However, this linear phase is irreversible, and accompanied with an irreversible increase of volumetric strain (dilation) of about 0.9 % after the two thermal cycles. Interestingly, the two cooling phases are shifted of about 0.18 % volumetric strain, but can otherwise be superposed. This shows that cooling is reversible, which allows a glass transition temperature to be estimated to 104°C approximately.

Linear thermoelastic macroscopic properties

From Fig. 5, the Young's and transverse moduli, dened as the initial slopes of the strain-strain curves, can be estimated respectively to 7.1 and 21.2 GPa. Their ratio yields a Poisson's coecient of 0.335. From these values, a bulk modulus of 7.2 GPa can be deduced. This is reasonably close to the value deduced from the plot of Fig. 6.

From the data of Fig. 7, a (glassy) volumetric thermal expansion coecient of 1.62×10 -4 K -1 is found. Notice that this value is almost half that of TATB single crystal (see Section 4).

3

Model of microstructure

Tessellations of space

We now introduce three random tessellation models and use them to simulate the prill bulk zone of the material:

the Voronoï, Johnson-Mehl and a modied Johnson-Mehl model described hereafter. Although they bear no relation with the actual manufacturing process of the material, they are in practice ecient for numerical work.

For simplicity, we consider models with as few parameters as possible. Additional degrees of freedom are available, if necessary, as proposed by various authors [START_REF] Møller | Random Johnson-Mehl tessellations[END_REF][START_REF] Heinrich | Generation of the typical cell of a non-Poissonian Johnson-Mehl tessellation[END_REF][START_REF] Pineda | Cell size distribution in random tessellations of space[END_REF] (see also [START_REF] Jeulin | Mathematical Morphology and its Applications to Signal and Image Processing[END_REF] for much more general space tessellations).

Accordingly, the models presented here should be regarded as starting points.

We divide the space R 3 into grains G i (i ≥ 0). Each grain is the inuence zone of a germ located at point x i and appearing at time t i ≥ 0:

G i = x; |x -x i | + v 0 t i < |x -x j | + v 0 t j , j = i . (1)
where the growth rate v 0 = 1 µm.s -1 is the same for all grains and | • | is the Euclidean norm. By convention, time is measured in seconds (s) and volume in cubic micrometers (µm 3 ).

In the Voronoï model, all germs appear at the same time, i.e. t i ≡ 0, and the germs x i follow a homogeneous Poisson points distribution in R 3 . Accordingly, the germs locations have no correlation in space and their spatial distribution depends only on the Poissonian intensity θ (µm -3 ), or statistical average density of germs per unit of volume. In the Voronoï model, grains are convex polyhedra.

In the Johnson-Mehl model, the points (x i , t i ) follow a Poisson distribution in the space R 3 × R + where R + is the set of positive reals. It is prescribed by an intensity θ (µm -3 .s -1 ). This unique parameter is the average density of appearing germs per unit of time. When θ is constant, the germs birth rate is constant over time. Note that the Johnson-Mehl model may be equivalently dened by a Poisson distribution of points x i in R 3 with intensity θ (µm -3 ) and a Poisson distribution of times in R + of intensity φ (s -1 ). This does not provide additional exibility as the model depends solely on the product θφ = θ .

In the Johnson-Mehl model, a crystallized zone grows isotropically around each germ, starting at time t i . Growth is stopped when the crystal meets an adjacent grain. Germs appearing in a zone already crystallized are disregarded. The grain boundaries are quadrics [START_REF] Lantuéjoul | Sur le modèle de Johnson-Mehl généralisé[END_REF] and, contrarily to the Voronoï model, some of the grains are not convex.

In the Johnson-Mehl model, large grains tend to be generated at early germination times, whereas small grains appear lately in the process. Accordingly, an increase of the birth-rate with respect to time leads to broader size distributions in the nal tessellations. Indeed, a low germs-density at small times produces large grains. Conversely a high density of germs at the end of the germination process increases the number of small grains. To achieve wider size distributions, we accordingly modify the germs birth-rate φ in the Johnson-Mehl model. In this modied Johnson-Mehl model we set φ = ψt, where ψ > 0, is a constant. The model's parameters are thus the germs spatial density θ (µm -3 ), and the rate of increase of the germination rate ψ (s -2 ).

Models optimization

For practical purposes, the three Voronoï, Johnson-Mehl and modied Johnson-Mehl models are generated on a cubic 3D grid of size L 3 voxels. We call δ the voxel size in µm. The germs x i are generated according to the Poisson intensity θ. In the Johnson-Mehl model, germination times are random variables chosen uniformly in [0; T ]. The value of T is chosen large enough so that at time T , the entire domain [0; L] 3 has crystallized. In practice, we choose arbitrarily one value for T and verify afterwards that the grains cover the whole domain at T ; a larger value for T is chosen and the tessellation is recomputed from scratch otherwise. Accordingly, the choice of T does not aect the nal tessellation.

Likewise, a maximum germination time T is chosen for the modied Johnson-Mehl model. We let germination times be random variables chosen in [0; T ] following the probability density function P (t)dt = 2t/T 2 dt in the interval t ∈ [0; T ], and P (t) = 0 outside. As in the standard Johnson-Mehl model, we verify that all grains cover the whole domain at time T . But contrarily to the standard Johnson-Mehl model, the parameter T aects the nal tessellation as the choice of T controls the birth-rate increase rate ψ = 2/T 2 .

To anticipate on Fourier-based computations, the models are made periodic in space by replicating all germs x i at points x i ± δLe k (k = 1, ..., 3), associated to identical germination times t i . This amounts to replacing the distance |x -x i | by its periodized version:

|x -x i | # = 3 k=1 min m=0,±1 (x k -x i k + mδL) 2 .
We optimize the models's parameters on the granulometry, or grain size distribution, of 2D sections. The cumulative distribution of the granulometry by openings of the set E ⊂ [0; L] 3 is dened as [START_REF] Matheron | Random sets and integral geometry[END_REF]:

G(h) = P {x ∈ E} -P {x ∈ E • S h )} P {x ∈ E} (2) 
where P {x ∈ E} = |E|/L 3 is the volume fraction occupied by the set E, and P {x ∈ E • S h } that of its morphological opening by the structuring element S h of size h [START_REF] Matheron | Random sets and integral geometry[END_REF]:

E • S h = S h x ⊆E S h x , S h x = {x + s; s ∈ S h }. (3) 
We choose a diamond-shaped set S h for the structuring element so that S 1 is the cross {(-1; 0), (0; 0), (0; -1), (0; 1), (1; 0)}. We now choose for E the interior of the grains, i.e. the whole volume minus the grain boundaries. The grain boundaries are either the segmented SEM image or, on tessellation models, voxels that lie in-between two grains. The latter are dened as voxels having at least two grains in their neighborhood (adjacent voxels). The number of adjacent voxels is set to 4, but this value does not aect the resulting function G(h) (not shown). Finally, to check whether the anisotropy of the structuring element aects the granulometry function G(h) we computed a similar granulometry using a regular octagon as structuring element, which is closer to a disk than the diamond-shaped one we used. We found likewise a very similar granulometry function (not shown).

The granulometry function G(h) of the segmented SEM image is represented in Fig. 8 (black curve). The maximum value for h ≈ 47.4 µm roughly corresponds to the maximum radius of a circumscribed disk inside the grains. Overall, the function G(h) is close to the oneparameter Rayleigh distribution:

G(h) ≈ G r (h) = 1 -e -0.76 h h 0 2
where h 0 = 18.5 µm is the median of the distribution. This approximation breaks down when considering smaller grains as seen in the log-log plot of -log(1-G(h))

in the inscribed graph in Fig. 8. Indeed, the SEM image exhibits two populations of grains, the smaller one primarily located along the boundaries of large grains and at triple points. This results in the exponent law -log(1-G(h)) h β with β < 1 for small h (see e.g. [START_REF] Castro | Model for crystallization kinetics: deviation from Kolmogorov -Johnson-Mehl-Avrami kinetics[END_REF]).

Hereafter in this study, small grains are neglected and we t the tessellation models on the Rayleigh distribution G r (h) by minimizing the cost functional:

h≥0 dh |G r (h) -G M (h)|, (4) 
where G M (h) is the granulometry of the Voronoï, standard and modied Johnson-Mehl models.

The size-distribution (estimated from the distribution of areas or volumes of the cells) of the Voronoï model in 2D and 3D closely follows a standard (or, according to some authors, generalized) gamma function t [START_REF] Ferenc | On the size distribution of Poisson Voronoi cells[END_REF][START_REF] Farjas | Cell size distribution in a random tessellation of space governed by the Kolmogorov-Johnson-Mehl-Avrami model: Grain size distribution in crystallization[END_REF]. Using these results, similar approximations have been proposed for the size-distribution of the Johnson-Mehl model [START_REF] Pineda | Cell size distribution in random tessellations of space[END_REF].

These approximations break down when considering the granulometry G M (h) of 2D sections of 3D models. The slope at the origin of G M (h), close to 0, is much smaller than that found in gamma ts for the 3D size-distribution. Indeed, large grains will tend to be cut by a random 2D section with higher probability than small grains. Furthermore, no gamma law has been found to t the 2D size distribution G M (h) of the Voronoï or Johnson-Mehl models (Fig. 9). Accordingly, in the following, we make use of numerical computations solely. As an additional check, we compared the correlation functions C(h) of the segmented images and of the optimized tessellation models, dened as [START_REF] Jeulin | Morphologie mathématique et propriétés physiques des agglomérés de minerais de fer et du coke métallurgique[END_REF]:

C(h) = x d 2 x D(x)D(x + h) -f 2 f (1 -f ) (5)
where the set D is obtained by coloring randomly each grain in white with probability f and averaging over congurations. Hereafter, we choose f = 1/2 and average over 30 random colorings. An example of a random coloring for the modied Johnson-Mehl model is shown in Hereafter, all computations are carried out on the optimized modied Johnson-Mehl model.

Local constitutive behavior

With the above given assumptions about the microstructure, the role of the binder is neglected in a rst approximation, and grains properties are supposed homogeneous and purely thermoelastic. Perfect interfaces are assumed.

Therefore, all that is needed is the anisotropic thermoelastic properties of the TATB single crystal and the crystallographic orientation of each grain.

Crystallographic data are essentially found in [START_REF] Cady | The crystal structure of 1,3,5-triamino-2,4,6-trinitrobenzene[END_REF]. given in an orthonormal coordinate system such that the (x, y) plane coincides with that of the (a, b) one, and that the x axis coincides with the a one (see Appendix). Since these values are derived from an approximate interatomic potential, their accuracy is to be conrmed. The second reference [START_REF] Kolb | Growth of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). I. Anisotropic thermal expansion[END_REF], is an experimental X-ray diraction determination of the variations of the lattice parameters with 

        σ xx σ yy σ zz σ yz σ xz σ xy         =         65 
        ×                 ε xx ε yy ε zz 2ε yz 2ε xz 2ε xy         -         8 
        × 10 -6 ∆T         (6) 
where σ and ε are the stress and strain tensors, respectively, and ∆T is the macroscopic temperature loading.

Elastic moduli are given in GPa, whereas the components of the thermal expansion tensor are given in K -1 . No- tice that the thermoelastic behavior, although displaying a triclinic symmetry strictly speaking, is very close to the monoclinic one. The elastic behavior is relatively close to the transverse isotropic symmetry.

5 Thermoelastic response and

Fourier numerical method

In this section, we recall the equations of thermoelasticity and present a fast numerical scheme for solving them. The correlation function of the three models are obtained by averaging over 10 random congurations of size 512 2 .

Thermoelastic behavior

The response of the material is characterized by:

σ ij (x) = C ij,kl (x) [ε kl (x) -α kl (x)∆T ] (7) 
where C(x) and α(x) are the elastic stiness and thermal expansion tensors of the crystal at point x. They are equal to those in (6) up to a 3D rotation that depends on the lattice directions of the local crystal. We assume the latter are distributed uniformly on the sphere and uncorrelated. The macroscopic temperature loading ∆T is supposed uniform in space. Stress equilibrium and strain admissibility read:

∂ i σ ij (x) ≡ 0, ε kl (x) = (1/2) [∂ l u k (x) + ∂ k u l (x)] , (8) 
where u(x) is the displacement vector at point x. Periodic boundary conditions are applied so that:

σ • n -#, ε #, ( 9 
)
where n is the (outward-pointing) vector normal to the boundary, and # and -# stand for periodic and antiperiodic, respectively. Furthermore, we apply a combination of strain and thermal loadings by prescribing the two quantities ε = ε and ∆T , where • is the spatial mean over the computational domain. At the macroscopic level, the eective response of the material is dened by the linear response:

σ ij (x) = C ij,kl (ε kl -α kl ∆T ) , ( 10 
)
where C is the polycrystal's eective elastic tensor and α its thermal expansion tensor. The volumetric thermal expansion coecient is α v = tr(α) = α 11 + α 22 + α 33 .

The polycrystal's thermoelastic response [START_REF] Pineda | Cell size distribution in random tessellations of space[END_REF] is computed by applying dierent combinations of strain and thermal loadings. Pure strain loading is recovered when ∆T = 0 whereas for purely thermal loading, ε = 0.

Accelerated FFT scheme for thermoelasticity

The direct [START_REF] Moulinec | A fast numerical method for computing the linear and non linear mechanical properties of the composites[END_REF] and accelerated [START_REF] Eyre | A fast numerical scheme for computing the response of composites using grid renement[END_REF] FFT schemes have been extended to thermoelasticity in [START_REF] Vinogradov | An accelerated FFT algorithm for thermoelastic and non-linear composites[END_REF] More recently, the method in [START_REF] Moulinec | A fast numerical method for computing the linear and non linear mechanical properties of the composites[END_REF] has been modied to compute the stress-free state of a thermoelastic material [START_REF] Anglin | Validation of a numerical method based on Fast Fourier Transforms for heterogeneous thermoelastic materials by comparison with analytical solutions[END_REF]. In the present work, we use the accelerated scheme. The latter exhibits higher convergence rates than the direct scheme, in particular for highly-contrasted composites [START_REF] Vinogradov | An accelerated FFT algorithm for thermoelastic and non-linear composites[END_REF][START_REF] Moulinec | Comparison of three accelerated FFT-based schemes for computing the mechanical response of composite materials[END_REF].

An alternative choice to the accelerated scheme is the augmented Lagrangian scheme [START_REF] Michel | A computational method based on Augmented Lagrangians and Fast Fourier Transforms for composites with high contrast[END_REF][START_REF] Michel | A computational scheme for linear and non-linear composites with arbitrary phase contrast[END_REF], useful for media with innite contrast of properties. Since we neglect porosity, the latter is not mandatory here.

As a rule, FFT methods are based on the Lippman-Schwinger equations.

For the thermoelastic problem ( 7), ( 8) and ( 9), they read:

ε = ε-G 0 * τ , τ = σ-C 0 : ε = C -C 0 : ε-C : α∆T (11) 
where C 0 is an arbitrary homogeneous stiness tensor, τ its associated polarization eld and G 0 is the Green operator associated to C 0 , of zero mean. Double contractions and convolution products are represented by a colon (:)

and the asterisk symbol ( * ), respectively. The accelerated scheme consists in the following iterations for the strain eld [START_REF] Vinogradov | An accelerated FFT algorithm for thermoelastic and non-linear composites[END_REF]:

ε k+1 = C + C 0 -1 : 2C 0 : ε + C : α∆T + δ(x)I -2C 0 : G 0 * C -C 0 : ε k -C : α∆T . ( 12 
)
We initialize the eld by setting ε k=0 ≡ ε. and monitor the convergence of the algorithm using stress equilibrium as criterion. In the Fourier domain, the operator ∂ i amounts to a multiplication by the component q i of the Fourier wave vector q. Accordingly, we enforce:

max j, q |q i σ ij (q)| < η max i, j, q=0 |σ ij (q)| = η max i, j | σ ij (x) | ,
where σ ij (q) is the Fourier transform of σ ij (x) and η is the error tolerance. We choose η = 10 -8 . Additional CPU and storage are required to compute the error criterion. To minimize this eect, we compute it once every ten iterations.

The convergence of the FFT algorithm depends strongly on the choice for the homogeneous tensor C 0 . For simplicity, we restrict ourselves to isotropic tensors C 0 dened by a shear modulus µ 0 and bulk modulus κ 0 . For binary media with two isotropic phases (µ β , κ β ) β=1,2 , it has been shown that the following choice is optimal [START_REF] Michel | A computational scheme for linear and non-linear composites with arbitrary phase contrast[END_REF][START_REF] Moulinec | Comparison of three accelerated FFT-based schemes for computing the mechanical response of composite materials[END_REF]:

µ 0 = µ 1 µ 2 , κ 0 = √ κ 1 κ 2 .
This, however, does not apply to polycrystals, and so we explore numerically varying values of µ 0 and κ 0 . For our model material, the scheme will not converge for small values of µ 0 and κ 0 such as µ 0 = κ 0 = 1 GPa. Convergence is obtained only by increasing the moduli. It was found to be roughly optimal for µ 0 = κ 0 = 10 GPa. In all computations carried out hereafter, the number of iterations was less than 50.

6 Thermoelastic response of the polycrystal

Field distributions

We compute the full-eld thermoelastic response of the optimized modied Johnson-Mehl model discretized on a grid of 1024 3 voxels. We apply a purely thermal loading ∆T = 1 and three purely elastic loadings: hydrostatic strain loading ε m = ε kk /3 = 1, tension along x, ε xx = 1 and shear along y and z, ε yz = 1/2. The histograms P σij (t) and P εij (t) of the stress and strain components are represented in Fig. 14 for thermal and hydrostatic loadings and in Fig. 15 for the tension and shear loadings.

The latter are formally dened as:

P σij (t) = x d 3 x δ(t -σ ij (x)), P εij (t) = x d 3 x δ(t -ε ij (x)).
Accordingly, P σij (t)dt (resp. P εij (t)dt) is the probability that σ ij (x) (resp. ε ij (x)) is comprised in the range [t; t + dt]. We also compute histograms of the Von Mises equivalent strain and stress elds: The mean strain and stress components, however, show a nearly-Gaussian distribution, except when approaching the tail of the distribution. These remarks also hold when tensile loading is applied (Fig. 15). 

ε eq (x) = (2/3)ε (x) : ε (x), (13) 
σ eq (x) = (3/2)σ (x) : σ (x), (14) 
ε (x) = ε(x) -ε m (x)δ ij , σ (x) = σ(x) -σ m (x)δ ij , with ε m = ε kk /3, σ m = σ kk /3.

Local elds

2D sections of the mean stress σ m and equivalent strain and stress elds are represented in Fig. 16, for hydrostatic compression and thermal loading. The same elds are represented in Fig. 17 for tensile and shear loading. Only one quarter of the full 2D section, of size 512 × 512 voxels, is shown. Some numerical artifacts are visible, in the form of oscillations (tantamount to Gibbs' eect), for instance in the map for the mean stress component σ m under thermal loading. These eects are a consequence of the underlying discretization used in the Fourier method [START_REF] Willot | Fourier-based schemes with modied Green operator for computing the electrical response of heterogeneous media with accurate local elds[END_REF].

Overall, highest values for the equivalent strain eld ε eq preferentially occur along the grains edges, and, in particular, near corners. The equivalent stress eld σ eq shows the same tendency, whereas the mean strain and stress components ε m and σ m are less localized. For shear loading ε yz = 1/2, the uctuations of the mean stress eld σ m are lower than the equivalent strain and stress elds. 

Eective response

We now compute the eective elastic and thermal expansion tensors by applying strain loadings along 6 independent directions ε ij = 1 (i ≤ j) as well as thermal loading with no deformation ∆T = 1, ε = 0. The eective strain-stress relation read, in Voigt notation: shown in blue and red resp. with green and yellow in-between. One quarter (512 × 512 voxels) of the complete system (1024 × 1024 voxels) is represented.

        σ xx σ yy σ zz σ yz σ xz σ xy         =         26 
        ×                 ε xx ε yy ε zz 2ε yz 2ε xz 2ε xy         -         8 
        × 10 -5 ∆T         ( 
As expected, the eective elastic tensor C in the relation above is nearly isotropic, since we chose uncorrelated crystal orientations in all directions. We identify it with an isotropic tensor C iso of bulk and shear moduli κ and µ, by minimizing:

inf κ,µ i,j |C ij -C iso ij (κ, µ)| max i,j |C ij | . (16) 
We nd κ = 17.2 and µ = 7.4 GPa for the bulk and shear moduli of the polycrystal, respectively, and α v = 2.50 10 -4 K -1 for the volumetric thermal expansion coefcient. In next section, we estimate the relative accuracy of these results.

Representative volume element

We rst examine the eect of discretization on a voxel grid, or resolution. To check our result's sensitivity with respect to resolution, we perform similar computations on a microstructure model discretized on a coarser grid of 512 3 voxels. Both the 1024 3 and 512 3 model contain about 12, 000 grains, but the germs and apparition times are dierent in the two models. The resolution in the 512 3 images is 1.57 µm per voxel and 785 nm per voxel in the 1024 3 image. Results for the 512 3 voxels grid yield: 

        σ xx σ yy σ zz σ yz σ xz σ xy         =         26 
        ×                 ε xx ε yy ε zz 2ε yz 2ε xz 2ε xy         -         8.253 8.487 8.242 -0.102 -0.036 -0.028         × 10 -5 ∆T         . ( 17 
)
We recover the same eective estimates up to small corrections. Furthermore, the error ( 16) with respect to isotropy is equal to 0.4% for both grids. Resolution has therefore little impact on the eective properties. Note that these results concern the eective properties only. Local elds are generally more sensitive to resolution than the macroscopic properties, typically along grain boundaries [START_REF] Anglin | Validation of a numerical method based on Fast Fourier Transforms for heterogeneous thermoelastic materials by comparison with analytical solutions[END_REF] (see also [START_REF] Willot | Fourier-based schemes with modied Green operator for computing the electrical response of heterogeneous media with accurate local elds[END_REF] in another context).

We now examine the representativeness of the model, i.e. the statistical accuracy of the estimates for the polycrystal properties with respect to the number of grains.

Recall that the apparent elastic moduli and thermal co-ecients are computed by taking averages over the stress tensor eld. Since the latter is a stationary and ergodic random function in space, it follows that [START_REF] Kanit | Determination of the size of the representative volume element for random composites: statistical and numerical approach[END_REF]:

D 2 σij (V ) D 2 σij ∼ A σij 3 V , V A σij 3 , (18) 
where

A σij 3 (µm 3 
) is the integral range for the eld σ ij , D 2 σij (V ) is the variance of the spatial means σ ij (x) V computed on a volume V , and D 2 σij is the point variance of the eld σ ij (x), i.e.:

D 2 σij = σ 2 ij -σ ij 2 . With N = V /A σij 3 1, relation (18) reads D 2 σij (V ) ∼ D 2
σij /N so that, in terms of uctuations, V acts as N independent subvolumes of size A σij 3 .

Expression [START_REF] Cady | The crystal structure of 1,3,5-triamino-2,4,6-trinitrobenzene[END_REF] allows one to estimate the size of the representative volume element V RV E with respect to the requested accuracy 2 as:

V RV E = 4D 2 σij A σij 3 2 σ ij 2 , (19) 
when V A σij 3 . As a consequence of the term 1/ 2 on the right-hand side, the RVE size increases strongly when decreases. To increase the accuracy by an order of magnitude, the size of the RVE has to be multiplied by about 4.6. For instance, if we assume a volume containing 512 3 voxels gives a result accurate up to the n-th digit, a volume of about 2350 3 voxels is necessary for computing the (n + 1)-th digit.

Hereafter, we introduce the variances D 2 κ (V ) and D 2 αv (V ), computed on the elds σ m with dierent loading conditions: hydrostatic strain loading ε m = 1 with no thermal loading ∆T = 0, for D 2 κ (V ), and purely-thermal loading ∆T = 1, ε = 0 respectively. We also introduce D 2 µ (V ), the variance of the means of the eld σ yz when shear loading ε yz = 0.5 and ∆T = 0 is applied. We computed the three variances using one conguration of size µ , are represented in Fig. 18. For small values of , the volume V is less than the integral range (V < A σij ) and the asymptotic expansion 18 does not hold. On the contrary, when 400 µm, estimates of the variances are not accurate because of the small number of subvolumes, equal to 8. In an intermediate regime of about one and a half decade for κ and one decade for α v we nd the asymptotic expansions:

D 2 κ ( ) D 2 κ ∼ A κ 3 3 , D 2 αv ( ) D 2 αv ∼ A αv 3 3 , (20) 
where the point variances are D 2 κ ≈ 200.6 GPa 2 , D 2 αv ≈ 6.7 10 -6 GPa 2 and the corresponding integral ranges equal A κ 3 ≈ 38 3 µm 3 and A αv 3 ≈ 45 3 µm 3 . On the 1024 3 system size, A κ 3 = 49 3 voxels and A αv 3 = 57 3 voxels. The relative accuracy κ of the estimate for the bulk modulus κ as a function of is given by Eqs. 19 and 20:

κ = 2D κ A κ 3 3κ 1 3/2 (21) 
For pure-thermal loading ε = 0, ∆T = 1, the volumetric thermal expansion is α v = -σ m /κ. Accordingly, the relative accuracy for the volumetric thermal expansion is:

αv = 2D αv A αv 3 α v κ + 2D κ A κ 3 3κ 1 3/2 (22) 
For the 1024 3 system:

κ ≈ 0.6%, αv ≈ 2.2%, (23) 
i.e. κ = 17.2 ± 0.1 GPa and α v = 2.50 10 -4 ± 0.06 10 -4 K -1 . Conversely, a system size of 2.5 mm containing about 38000 grains (3250 3 voxels at the resolution employed here) would be necessary to achieve a accuracy of 0.1% on the bulk modulus. The same relative accuracy for the thermal expansion would require a volume of size 6.2 mm containing about 5.6 million grains (7940 3 voxels at the resolution employed here).

Regarding the shear modulus µ, data are insucient to obtain an asymptotic t of D 2 µ ( ) as in Eq. 20. However, we nd that D 2 µ ( )/D 2 µ ≈ 1.58 10 -3 for = 402 µm, which allows to compute the relative precision of our computation as

µ ≈ 0.5%, (24) 
i.e. µ = 7.40 ± 0.04 GPa.

Analytical bounds

We now compare FFT results for the thermal expansion coecient α v and bulk modulus κ with available analytical bounds (Fig. 19). For polycrystals with full triclinic anisotropy, Gibiansky and Torquato. [START_REF] Gibiansky | Thermal expansion of isotropic multiphase composites and polycrystals[END_REF] give an upper and lower bound for α v that depend on the value of κ (note that it does not depend on µ). The latter extend bounds previously given in the context of composites with isotropic phases [START_REF] Schapery | Thermal expansion coecients of composite materials based on energy principles[END_REF][START_REF] Rosen | Eective thermal expansion coecients and specic heats of composite materials[END_REF]. The bulk modulus is itself comprised between Hill's lower and upper bounds [START_REF] Hill | The elastic behaviour of a crystalline aggregate[END_REF]. The two bounds in [START_REF] Gibiansky | Thermal expansion of isotropic multiphase composites and polycrystals[END_REF] accordingly delimit a region of acceptable values for α v and κ in α v -κ coordinates system.

The bounds are complemented with two sets of upper and lower bounds for the bulk modulus and the 

            (25)
The two sets of bounds in [START_REF] Ghorai | Bounds on the eective thermal-expansion coecient of a polycrystalline aggregate[END_REF] are the third-order bounds and the narrower T-matrix bounds, that extend previous works [START_REF] Middya | Self-consistent Tmatrix solution for the eective elastic properties of noncubic polycrystals[END_REF][START_REF] Zeller | Elastic constants of polycrystals[END_REF]. They form rectangular regions.

As expected, FFT results lay between the Gibiansky-Torquato bounds, which are valid for arbitrary crystal anisotropy. The FFT estimates are close to the upper bound. The TATB crystal is not strictly-speaking transversely isotropic. Despite this, numerical estimates lay in-between the two sets of bounds. They provide quite narrower estimates of the bulk modulus κ than bounds for the triclinic crystals.

Eect of a soft interphase

Our numerical result for the bulk modulus of the polycrystal, κ = 17.2 GPa, is much stier than experimental data, of 7.2 GPa. However, the softening of the binder, purportedly located in-between crystals, has not been taken into account in the FFT computations. In this section, we carry out additional computations that attempt to incorporate its eect on the eective properties.

The binder is not resolved in optical microscopy but its thickness is not larger than 300 nm, the diraction limit of optical microscopy. With current FFT methods, the resolution required to incorporate the binder is unattainable and a dierent approach is sought for. Hereafter, we assume it is a higly-soft elastic layer of constant thickness ω located in-between crystals, with bulk modulus κ bind and shear modulus µ bind . When ω is much smaller than the size of the crystals, such interphases act as imperfect interfaces of the soft type [START_REF] Benveniste | A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media[END_REF][START_REF] Bövik | On the modelling of thin interface layers in elastic and acoustic scattering problems[END_REF]. Vanishingly thin interfaces can not be handled in FFT computations. We therefore model the binder as an interphase with thickness ω = 4 voxels = 6.28 µm and we choose:

κ bind = 1.65 (GPa),
µ bind = 0.67 (GPa).

The approach followed here is a crude simplication.

First, contrary to the present model, the interphase thickness between crystals is likely to vary in the actual material. Second, the amount of porosity in the binder, not taken into account here, is unknown in the material. This system must be inverted to derive the six components of the thermal strains as functions of the six lattice parameters for each temperature value. Then, the thermal strains ε ij (T ) are given by:

ε ij (T ) = α ij (T -T 0)
which allows the six components of the thermal expansion tensor α ij to be determined by a linear regression procedure.

Figure 1 :

 1 Figure 1: Typical optical microscopy (reected polarized non analyzed light) micrograph.

Figure 2 :

 2 Figure 2: An example of SEM micrograph obtained after etching (resolution: 134 nm per pixel). The deformation bands have disappeared, the binder has been removed from the intra-granular porosity, and some intra-granular cracks are visible.

Figure 3 :

 3 Figure 3: A part of the result of manual segmentation. The grey square corresponds to the magnied image of Fig. 4.

Figure 4 :

 4 Figure 4: The reference image taken for the remainder of the study (scale : 134 nm per pixel).

Figure 5 :

 5 Figure 5: Response to quasi-static cyclic uniaxial compression.

Figure 6 :

 6 Figure 6: Response to quasi-static cyclic hydrostatic compression.

Figure 7 :

 7 Figure 7: Response to slow thermal cycles.

Figure 8 :

 8 Figure 8: Granulometry by openings G(h) of the reference image (black line) and t by the cumulative function of a Rayleigh distribution (red line). The value h 0 = 18.5 µm is the median size of the granulometry of the reference image. Bottom right, embedded image: log-log plot of the function -log(1 -G(h)).

Figure 9 :

 9 Figure 9: Fit of the 2D-section granulometry of the Voronoï and Johnson-Mehl models with a Gamma distribution γ(α, βh)/Γ(α) of parameters α = 5.0, β = 0.26µm -1 .

Figure 10 :

 10 Figure 10: Granulometry by openings G(h) of the reference image (black) and of various optimized models: standard Voronoï and Johnson-Mehl tessellations (blue and green lines respectively) and of the modied Johnson-Mehl model (purple). The granulometry of the models are obtained by averaging over 10 random congurations of size 512 2 .

Fig. 12 .

 12 Fig. 12. The resulting function C(h) is nearly isotropic so that we identify C(h) to the function C(h) with h = |h|.Comparisons between the segmented SEM image and the optimized models are represented in Fig.13. The latter conrms the size of the larger grains of roughly 100 µm in diameter. This is the minimum value of h where C(h) ≈ 0. At this distance, points separated by h become uncorrelated. Overall the three models t reasonably well with the correlation function of the SEM segmented image.

The

  TATB crystal is triclinic, with the following lattice parameters : a = 9.01 ¦ A, b = 9.028 ¦ A, c = 6.81 ¦ A, α = 108.59 • , β = 91.82 • , and γ = 119.97 • , with two molecules per elementary cell. TATB molecules are quasiplanar and assemble together in hydrogen bonded planes, whereas the planes are only bonded by weak van der Waals forces. This peculiar structure explains the very strong anisotropy of the crystal.Little is found in the specialized literature about the thermoelastic behavior of TATB, but two references provide the required data. The rst one[START_REF] Bedrov | A molecular dynamics simulation study of crystalline 1,3,5triamino-2,4,6-trinitrobenzene as a function of pressure and temperature[END_REF], consists in a molecular dynamics study of the elastic behavior, as a function of temperature and pressure, and provides the 21 elastic moduli at ambient conditions. The values are

Figure 11 :

 11 Figure 11: 2D-sections of the Voronoï (a), standard (b) and modied (c) Johnson-Mehl models. The models are optimized to mimic the granulometry of the reference image (d). All images are shown at the same scale.

Figure 12 :

 12 Figure 12: A random coloring of the modied Johnson-Mehl model in Fig. (11c) used to compute the correlation function (Fig. 13).

Figure 13 :

 13 Figure 13: Correlation functions C(h) of the reference image (black) and of various optimized models: standard Voronoï and Johnson-Mehl tessellations (blue and green lines respectively) and modied Johnson-Mehl model (purple).

  For hydrostatic strain loadings and thermal loading, the shear components ε xy,xz,yz and σ xy,xz,yz have zero mean and are symmetrical with respect to 0. This does not hold for the other components. The dilatational strain components ε xx,yy,zz , in particular, display a change of convexity.

Figure 14 :

 14 Figure 14: Strain (a,c) and stress (b,d) eld histograms computed on a system of size 1024 3 voxels. Each histogram is normalized such that +∞ -∞ P (t)dt = 1. Thermal loading ∆T = 1, ε ij = 0 (a,b) and hydrostatic strain loading ε m = 1, ∆T = 0 (c,d) are applied.

Figure 15 :

 15 Figure 15: Strain (a,c) and stress (c,d) eld histograms computed on a system of size 1024 3 voxels. Tension along the x direction ε xx = 1 (a,b) and shear loading along the y, z plane ε yz = 1/2 (c,d) is applied.

15 )∆T = 0, ε m = 1 σFigure 16 :

 15116 Figure 16: 2D sections of the mean stress σ m , Von Mises equivalent strain ε eq and stress elds σ eq (left to right), with applied hydrostatic strain loading ε m = 1, ∆T = 0 (top) and thermal loading ∆T = 1, ε m = 0 (bottom). The x axis is oriented top to bottom and the y axis left to right. To highlight the eld patterns, the highest and lowest 0.3% values are thresholded. The resulting threshold values are indicated between brackets. Lowest and highest values are

∆T = 0, ε xx = 1 σFigure 17 :

 117 Figure 17: 2D sections of the mean stress σ m , Von Mises equivalent strain ε eq and stress elds σ eq (left to right), with applied strain tensile loading ε xx = 1, ∆T = 0 (top) and shear strain loading ε yz = 1/2 (bottom). The x axis is oriented top to bottom and the y axis left to right. To highlight the eld patterns, the highest and lowest 0.3% eld values are thresholded. The resulting threshold values are indicated between brackets. Lowest and highest values are shown in blue and red respectively with green and yellow in-between. One quarter (512 × 512 voxels) of the complete system (1024 × 1024 voxels) is represented.

1024 3 ,

 3 that we divided into a set of non-overlapping cubic subvolumes of length = V 1/3 , for increasing values of = 1, ..., 512 (in number of voxels) or = 0.785, ..., 402 (in µm). The three variances, normalized by the point variances D 2 κ , D 2 αv and D 2

Figure 18 :

 18 Figure 18: Variances D 2 κ,µ ( ) and D 2 α V ( ) of the apparent elastic moduli and of the thermal expansion coecient as a function of the length (µm) of a cubic volume of size V = 3 , in log-log plot. Dotted lines: t D 2 κ ( ) (38/ ) 3 , D 2 αv (V ) (45/ ) 3 for large .

Figure 19 :

 19 Figure19: Bounds for the thermal expansion coecient α v and for the bulk modulus κ, represented in α v -κ coordinates: Gibiansky & Torquato's bounds[START_REF] Gibiansky | Thermal expansion of isotropic multiphase composites and polycrystals[END_REF] for polycrystals with triclinic anisotropy (blue and black lines), Hill's bounds[START_REF] Hill | The elastic behaviour of a crystalline aggregate[END_REF] for the bulk modulus (red vertical lines), third-order and T-matrix bounds (green) of Ghorai & Dutta[START_REF] Ghorai | Bounds on the eective thermal-expansion coecient of a polycrystalline aggregate[END_REF] for polycrystals of crystals with hexagonal symmetries. The FFT results are marked by a black open dot.

Figure 20 :

 20 Figure 20: Longitudinal strain eld ε xx in polycrystal with binder. Applied thermal loading: ∆T = 1; applied strain: ε ij = 0. Min. (blue): -8.7 × 10 -4 . Max. (red): 2.0 × 10 -4 . The x direction is vertical on the map.

Figure 21 : 4 K - 1 .

 2141 Figure 21: Mean and equivalent stress histograms related to Fig. 20. Blue: in the binder; red: in the crystals.
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