
A preliminary (accepted) version of an original paper to appear in Journal of Real-Time Image Processing
(The final publication is available at Springer via http://dx.doi.org/10.1007/s11554-015-0518-2)

Jan Bartovský · Petr Dokládal · Matthieu Faessel · Eva Dokládalová ·
Michel Bilodeau

Morphological Co-Processing Unit for Embedded Devices

June 25, 2015

Abstract This paper focuses on the development of a fully
programmable morphological coprocessor for embedded de-
vices. It is a well-known fact that the majority of morpho-
logical processing operations are composed of a (potentially
large) number of sequential elementary operators. At the
same time, the industrial context induces a high demand
on robustness and decision liability that makes the appli-
cation even more demanding. Recent stationary platforms
(PC, GPU, clusters) no more represent a computational bot-
tleneck in real-time vision or image processing applications.
However, in embedded solutions such applications still hit
computational limits.

The Morphological Co-Processing Unit (MCPU) replies
to this demand. It assembles the previously published effi-
cient dilation/erosion units with geodesic units and ALUs
to support a larger collection of morphological operations,
from a simple dilation to a serial filters involving a geodesic
reconstruction step.

The coprocessor has been integrated into an FPGA plat-
form running a server, able to respond client’s requests over
the ethernet. The experimental performance of the MCPU
measured on a wide set of operations brings as results in or-
ders of magnitude better than another embedded platform,
built around an ARM A9 quad-core processor.

J. Bartovský
Centre for Mathematical Morphology, MINES ParisTech,
Fontainebleau, France.
Faculty of Electrical Engineering, University of West Bohemia, Pilsen,
Czech Republic.
E-mail: jan.bartovsky@mines-paristech.fr

P. Dokládal, M. Faessel and M. Bilodeau
Centre for Mathematical Morphology, MINES ParisTech,
Fontainebleau, France.
E-mail: {matthieu.faessel, petr.dokladal, michel.bilodeau}@mines-
paritech.fr

E. Dokládalová
Computer Science Laboratory Gaspard Monge, ESIEE Paris, Univer-
sity Paris-Est, Noisy-le-Grand, France.
E-mail: e.dokladalova@esiee.fr

Keywords Mathematical Morphology, Hardware Im-
plementation, Pattern Spectrum, Reconstruction, Parallel
Computation

1 Introduction

Mathematical morphology is an image processing frame-
work providing a complete set of tools for filtering, multi-
scale image analysis, or pattern recognition. It is used in a
number of applications, including biomedical and medical
imaging, video surveillance, industrial control, video com-
pression, stereology or remote sensing since its very first ap-
pearance in the late 1960’s, see [21, 27–29].

Considering the hardware implementation context, sev-
eral different trends have been observed. A recent technolog-
ical advance of imaging sensors stimulated the development
of applications by means of high-resolution images that be-
came a standard. Needless to say large images impose chal-
lenging requirements on the computation platform in terms
of both performance and memory.

On the other hand, the industrial context often induces
severe real-time constraints on applications. Often these de-
manding image-interpretation applications require a high
correct-decision liability, robust but costly multi-criteria
and/or multi-scale analyses are used. Given that image pro-
cessing should not deteriorate industrial productivity, the la-
tency and computational performance are of high interest in
this context.

In embedded systems, the most important concerns are
low power consumption (and consequently low heat dissipa-
tion) and small resources occupation, which allows for better
embedding. All these considerations combined together in-
fer overwhelming requirements on the architecture of poly-
valent processing units addressing many different contexts.
The context of embedded morphology applications includes,
for instance, an augmented vision system that improves vi-
sual perception [12], or smart cameras [15].

This paper stems from a previous work [1, 2, 9] and
shows how to build around the computation pipelines an ad-
vanced, polyvalent and user-friendly computation platform

http://dx.doi.org/10.1007/s11554-015-0518-2

2

for embedded or portable applications. We have enriched the
set of supported operators by adding geodesic units, ALUs,
a fast DDR2 memory controller and a fast ethernet link to
transfer images. The computation is controlled and moni-
tored by a Xilinx MicroBlaze microcontroller that also en-
sures the communication with the outside world. The entire
platform behaves as a server and responds to client’s com-
putation requests. A provided software interface (in python
and C/C++) offers the user a convenient possibility to inter-
act with the platform.

The text is organized as follows: Section 2 makes a
short survey of existing morphological algorithms and archi-
tectures. Section 3 outlines the basic definitions of typical
mathematical morphology operations. Section 4 describes
how these operations can be efficiently computed by pro-
cessing pipelines and describes the architecture of the pro-
posed coprocessor. The following Section 5 covers the pro-
grammability and user interface to the coprocessor server.
Finally, Section 8 presents experimental results obtained on
an FPGA board and compares them to an ARM A9 embed-
ded platform.

2 State of the art

This section briefly presents the state of the art algorithms
for elementary morphology operations dilation and erosion
and their hardware implementations in FPGA. The last part
discusses the novelty and main contributions of this paper.

2.1 Algorithms

The simplest method to compute a dilation is the exhaustive
search for maximum in the scope of a structuring element
(SE) B according to the definition Eq. 1 in Section 3. This
naive solution tends to need a large number of comparisons,
which are on most platforms diadic (with two operands).
The number of comparisons is considered as a metric of
algorithm complexity, so the naive algorithm has complex-
ity O(l) as it has to carry out l−1 comparisons for a SE
containing l pixels. Such complexity suggests that the naive
algorithm is inefficient for large SEs. Pecht [25] proposed
a method to decrease the complexity based on the loga-
rithmic SE decomposition, thereby achieving O(dlog2(l)e)
complexity.

The first 1-D algorithm that reduced the complexity to a
constant is by van Herk [34], and Gil and Werman [14] (pub-
lished simultaneously in two papers and often referred to by
the authors’ initials as HGW). The computation complexity
is constant, i.e., of O(1), which means the upper bound of
the computation time is independent of the SE size. Gil [13]
proposed an improved version of HGW that lowered the
number of comparisons per element, but at the cost of in-
creased memory usage and implementation complexity.

Lemire [18] proposed a fast stream algorithm ofO(1) for
causal line SEs. This algorithm uses two queues of length

l in order to store the pixels that form locally monotonous
signal (i.e., monotonously increasing and decreasing). Al-
though it produces both erosion and dilation simultaneously,
it works with causal SEs only. This downside was solved
later by Dokládal [9] who proposed another queue-based al-
gorithm. The advantages of these queue-based algorithms
are strictly sequential access to data, zero latency, and low
memory requirements.

The 2-D dilation is usually obtained by composition of
1-D dilations, see for instance Soille [31] who approximates
circle and polygon SEs using rotated line SEs. However,
this technique covers only a limited family of shapes. The
arbitrary-shaped SE are obtained by either more complex
2-D algorithms (e.g., Urbach [33]), which are suitable for
general-purpose processors, or by fine-grained decomposi-
tion of the large SE into a set of small 2-D SEs. Xu [41] pro-
posed that any 8-convex polygon (convex on 8-connectivity
grid, hence 8-convex) is decomposable into a class of 13
nontrivial indecomposable convex polygonal SEs. Normand
[23] reduced the class of shapes to only four 2-pixel SEs by
allowing the union operator to take place in the SE decom-
position.

2.2 Hardware implementations

One of the first morphology architectures was the texture
analyzer by Klein [17]. It was optimized for linear and rect-
angular SE by decomposition into line segments. More re-
cently, Velten [35] proposed another, delay-line based archi-
tecture for binary images supporting arbitrarily shaped 3×3
SEs. The computation of dilation is realized by OR gates
(topology was not communicated, probably a tree of diadic
OR gates) achieving good performance, which was further
improved by spatial parallelism.

Clienti [4] proposed a highly parallel morphological
System-on-Chip. It is a set of neighborhood processors opti-
mized for arbitrarily shaped 3×3 SE interconnected in a par-
tially configurable pipeline. Each stage of the pipeline con-
tains 2 processors that can process 2 parallel image streams
and an ALU. The reconfiguration allows all the processors
to be connected in one chain in order to employ all proces-
sors when only one image stream is used. A reconfigurable
3x3 neighborhood morpho processor was recently used in
Gibson [12] in a hand-held augmented-vision system for vi-
sually impaired.

Another approach is called partial-result reuse (PRR).
The morphological operation by some neighborhood B1 in
an early stage is delayed by delay lines in order to be reused
later in computation by some other neighborhoodB2 obtain-
ing larger B3 decreasing thus the number of necessary com-
parisons. One of the first PRR architectures for 1-D dilation
was proposed in [26] and improved in [6]. The principle is
based on an exponential growth of the intermediate neigh-
borhoods in the partial-result reuse scheme.

Chien [3] presented more general concept of PRR that
builds the desired SE by a set of distinct partial neighbor-
hoods computed by a dedicated algorithm. As a result, it

3

supports arbitrary 8-convex polygon at the cost of some ad-
ditional comparisons.

A similar approach is based on the Normand [23] de-
composition where a convex SE is decomposed into a num-
ber of causal 2-pixel SEs, applied in sequence or in parallel.
Déforges et al. [8] make use of this decomposition, which
combined with a stream implementation, allows to conceive
a pipeline architecture supporting arbitrary convex SEs.

Recently, Torres-Huitzil [32] designed a linear systolic-
like array of processing elements without need for delay-
line internal memory storage supporting non-rectangular flat
SEs. However, prospective drawbacks can be seen in the
chosen column-based image scan requiring significant im-
age storage capability, and the need of deep parallelism to
attain real-time performance even for the mentioned 7×7
SE.

The last method mentioned in this overview is the im-
plementation of efficient 1-D algorithms. To our knowledge,
there are only few such contributions in the literature. Cli-
enti [5] published architectures for the 1-D Lemonier algo-
rithm [19] and the HGW algorithm [14,34]. Both algorithms
require a reverse scan which increases the memory require-
ments. Regarding the HGW algorithm the line can be re-
versed per blocks [5], which significantly decreases the la-
tency.

Recently, Bartovský [1] proposed an implementation of
the Dokládal algorithm [9] as a processing unit by polygonal
SEs with a strictly sequential access to data and small mem-
ory requirements. This architecture is mainly beneficial for
large SEs because only the memory varies with the size of
the SE, the computation logic remains the same.

3 Basic notions

This section describes the operators used in this paper. We
are mainly interested in compound operators composed as
concatenations of elementary operators, that are therefore
costly on sequential machines.

Let δB , εB: Z2 → R be a dilation and an erosion on
gray-scale images, parameterized by a structuring element
B, assumed to be flat (i.e., B⊂Z2) and translation-invariant,
defined as [27, 30]

δB(f) =
∨
b∈B

fb ; εB(f) =
∧
b∈B̂

fb (1)

where fb denotes translation of f by b. The hat ̂ denotes
the transposition of B, equal to the set reflection B̂ = {x |
−x ∈ B}.

For an image f , its internal, external and morphological
gradients are given by

gi(f) = f − εB(f) (2)
ge(f) = δB(f)− f (3)

g(f) = δB(f)− εB(f) (4)

The concatenation of dilation and erosion forms other
morphological operators. The closing and opening on gray-
scale images, ϕB , γB: Z2 → R, parameterized by a structur-
ing element B, are defined as

ϕB(f) = εB [δB(f)] ; γB(f) = δB [εB(f)] (5)

The residue of an opening or closing is called top-hat,

thγ(f) = f − γB(f) ; thϕ(f) = ϕB(f)− f (6)

and is used to detect objects filtered by the opening or the
closing.

Closing and opening are filters. Their concatenation
forms alternating filters γϕ, ϕγ, γϕγ and ϕγϕ. Other fil-
ters can be obtained by combining families of filters. A well
known example is the alternating sequential filter (ASF),
composed as sequence of closings and openings with a pro-
gressively increasing SE λB, with λ > 0. Let γλ and ϕλ
denote the change of scale such as γλB and ϕλB . Then λ-
order ASF (referred to as ASFλ) is composed as

ASFλ = ϕλγλϕλ−1γλ−1 . . . ϕ1γ1 (7)

starting with opening, and

ASFλ = γλϕλγλ−1ϕλ−1 . . . γ1ϕ1 (8)

starting with closing.
Let δf : Z2 → R be an elementary geodesic dilation of

image g (marker) “under” image f (mask) where g ≤ f ,
such as [36]

δf (g) = f ∧ δ3×3(g) (9)

Repeating δf (f) until stability represents the dilation-
reconstruction of g under f ; g ≤ f ,

ρf (g) = δfδf . . . δf︸ ︷︷ ︸
x times

(g) (10)

the number of iterations x=∞ by definition, and practically
until the idempotence. The marker image g is commonly ob-
tained by morphological opening γB . In this case, the oper-
ation is called opening by reconstruction γρB , defined as

γρB(f) = ρf (γB(f)) (11)

Let {γλi}, with λi > λi−1 and with λi > 0, ∀i be a col-
lection of openings, generating a size distribution aka gran-
ulometric function (see Matherons’ axioms, [21] p. 192) us-
ing some measure, e.g. integral (or sum) of the image. One
also often uses its derivative, so called granulometric or pat-
tern spectrum, defined as

PSλjB(f) =
∑
D

(
γλiBf − γλjBf

)
(12)

with D = spt(f). Notice, that instead of opening γλiB one
also may want to use the opening by reconstruction γρλiB
which even more increases the computation cost.

4

Large SE

erosion

dilation

Large SE

erosion

dilation

ALU

Operator, SE ALU Mux_{1,2}

1

INPUT

2

1

2

Mux_1

Mux_2

Stage 1

Large SE

erosion

dilation

Large SE

erosion

dilation

ALU

Operator, SE ALU Mux_{1,2}

OUTPUT

Mux_1

Mux_2

Stage n
8-bit Data

1-bit Acknowledge

1-bit Fifo full !ag

Fig. 1 Large SE pipeline architecture.

4 Hardware architecture

This section describes the hardware architecture of the
proposed morphological coprocessor that efficiently im-
plements the aforementioned sequential, costly operators.
The following description follows the bottom-up approach,
so we start with developing two basic image processing
pipelines, one for large SE operators, and one for geodesic
operators. Then we build the processing core by surrounding
these two pipelines with interconnection busses, configura-
tion registers, and image buffers in such way that it can be
used as a peripheral of the Xilinx MicroBlaze. Finally, we
describe the top-level architecture of the FPGA evaluation
platform.

4.1 Large SE Pipeline

Let us begin with the description of the Large SE pipeline.
One of the most penalizing aspects in morphological op-

erators is the number of iteration on an image. On sequential
platforms, this induces an intensive traffic between the CPU
and the memory. A considerable increase in efficiency can
be obtained when such iterations can be pipelined. This idea
is used in Clienti [5]. However, given that its pipeline is only
composed of 3×3 blocks it lacks flexibility and must be re-
configured to precisely fit application needs.

In this paper, in order to gain in flexibility we propose
two parallel pipelines of programmable large-size SE units.
To efficiently execute the largest collection of operators (in-
cluding those with two parallel branches, such as top hat or
gradient) the pipelines are interconnected by programmable
ALUs (Arithmetic Logic Unit), see Fig. 1.

Both pipelines contain several identical parts called pro-
cessing stages connected one after the other. The pipeline
is scalable by means of the number of instantiated stages,
which is hereafter denoted as n. The heart of each stage
is a pair of Large SE erosion/dilation units. The output of
both units can be connected to the ALU, or directly to the
next stage through the Mux {1,2} multiplexer. The ALU re-
sult can be routed to either input port of the next stage (or
both). This stream routing capability increases the adaptiv-
ity of the architecture to execute different algorithms. See
below (Fig. 4), a few examples of possible interconnections.

The Large SE erosion/dilation unit performs one mor-
phological dilation or erosion by a flat rectangular or octag-
onal SE of programmable size (up to 31 pixels in diameter

for rectangles and 43 pixels in diameter for octagons) and the
position of the origin. This unit takes advantage of separabil-
ity of 2-D rectangular and octagonal SEs into a sequence of
1-D SEs. The separability allows that the computation can
be separated into rows and columns for rectangles, and four
obliquous (rotated by 45o) lines for octagons. This simpli-
fies the memory manegement since the data can be stored
in small-size independent memory blocks. These blocks be-
have as queues if the 1-D dilation is computed by a queue-
based algorithm [9]. A maximum allowable size of the SE
needs to be specified prior to the synthesis. Afterwards, the
size of the SE is freely programmable by the user within the
range of the synthesize maximum size. In the same way, the
size of the image is programmable withing the maximum
specified prior to the synthesis. Such implementation has
proven to be flexible, and beneficial for high-demanding im-
age processing with large SEs. The description of the FPGA
architecture and experimental results can be found in [2] for
rectangular SEs, and [1] for octagonal SEs, respectively.

The previously published results can be summarized as
follows. The Large SE unit computes 2-D rectangular or
octagonal erosion/dilation during a single horizontal image
scan with minimal latency. The experimentally obtained av-
erage processing rate is approximately 2.5 clock cycles per
pixel, i.e., approx. 50 Mpx/s at 125 MHz clock frequency.
The memory requirement is another important parameter of
an image processing implementation because it limits the
number of units that fit in the FPGA. The most significant
memory requirement of the Large SE unit is given by the set
of queues, such as

R = NH × (bpp+ dlog2(H − 1)e) [bits] (13)

where N denotes the image width, H the height of the SE,
bpp the number of bits per pixel, and d.e the ceiling oper-
ation. For example, let N = 1024 px, H = 31 px, and
bpp = 8 bits. The memory requirement is then

R = 31744× 13 [bits] (14)

The memory occupation of the pipeline is then linear factor
of the memory occupation of one stage and the length of the
pipeline.

The ALU performs simple dyadic, arithmetic operations
on two inputs. Each input can be connected to either an im-
age stream or a programmable constant. The supported op-
erations are as follows: no operation; negation (logical com-
plement); bit-wise AND, OR, XOR; saturated addition, sub-
traction; infimum and supremum.

In order to ensure that the ALU has both input pixels
at the same coordinates in respective images, both image
streams have to be synchronized. The synchronization is
done at two levels.

1. Algorithm level: Consider, e.g. the inner or outer mor-
phological gradient Eqs. 2,3, with B a 3× 3 window, or
the opening/closing residues Eqs. 6. Computing the di-
lation introduces a delay in δB(f) of one row plus one
column (distance from the center of B to the lower-right

5

3x3 SE

erosion

dilation

ALU
Line bu�er

Operator, SE ALU

1

INPUT

2

1

Stage 1

OUTPUT

3x3 SE

erosion

dilation

ALU
Line bu�er

Operator, SE ALU

Stage m

8-bit Data

1-bit Acknowledge

1-bit Fifo full !ag

Fig. 2 Geodesic pipeline architecture.

A

A

B
B

Y

comparator

Y = max(A,B)

A > B

0

1≈

T

T

input
T x T x T

output

horizontal vertical

Fig. 3 3×3 dilation unit for the geodesic pipeline.

pixel). This stream f must be delayed accordingly so
that the ALU can compute the difference. This is done
by turning off the dilation/erosion in the other Large SE
block. The computation memory changes into a large
FIFO buffer used to delay the stream.

2. Implementation level: The previous delay increases with
the size of the SE B. Moreover, the dilation/erosion algo-
rithms are asynchronous, see [9] for details. That means
that that the delay of the Large SE block can (up to a
few pixels) vary. This small delay is compensated by the
FIFO memories. In the case that either FIFO is temporar-
ily empty, the empy FIFO stalls the ALU until data be-
come available again.

This synchronization mechanism is automatic, and re-
mains hidden to the user.

The Measurement unit computes simple metrics of the
whole image, namely the sum, infimum, and supremum.
This measurement is useful in image analysis applications,
such as pattern spectrum, and can be obtained on-the-fly at a
low cost. The measurement results can be read out through
the configuration registers.

All programmable parameters including the SE dimen-
sions, operation, multiplexers and ALU settings, as well as
measurement results, are stored in a bank of per-stage con-
figuration registers.

4.2 Geodesic pipeline

A significant subset of morphological operators relies on the
reconstruction using the geodesic dilation/erosion by 3 × 3
SE. Even though the Large SE pipeline supports geodesic
operations, using it would be inefficient. A better solution is
to devise a dedicated Geodesic pipeline, see Fig. 2.

This Geodesic pipeline contains several equal stages
connected one after another. The pipeline is scalable by

means of the number of stages instantiated, which is here-
after denoted as m. The heart of each stage is a 3×3 ero-
sion/dilation unit. The output of this unit is connected to the
ALU, along with the buffered Mask image. The ALU result
is the Marker input of the next stage.

We have used a m=16-stage pipeline in our application.
The length of the pipeline is a trade-off between the memory
occupation, and the number of iterations before idempotence
of a geodesic operation. Given that, geodesic operations re-
quire content-dependent number of iterations it is beneficial
to have longer pipelines to reduce the number of iterations
through the memory.

The 3×3 dilation is outlined in Fig. 3. It also takes ad-
vantage of separability of the rectangle into the horizontal
and vertical segments, which are implemented using a well-
known approach of delay elements (registers T for the hor-
izontal segment, and line buffers xT for the vertical seg-
ments) and comparators. The T registers provide a unitary
delay, whereas the xT line buffers provide one-image-line
delay each. The xT line buffers are parametrized by the the
image width to adapt automatically to the image size.

Notice that the delay-line dilation is better adapted for
small (3 × 3 SEs) because it has a smaller area occupation
and it is synchronnous. Conversely, the queue-based dilation
architecture offers better flexibility due to the programmable
SE size and is therefore used in Large SE blocks.

The ALU is the same as described above. The reason
for the Line buffer is to synchronize the Mask image and
the dilated Marker image, which is delayed by N+1 pixels
(recall N is the width of the image).

4.3 Pipeline configurations

The interconnection pattern of the pipelines is thought for
maximum polyvalence. The architecture Fig. 4(a), with one,
twin Large SE pipeline, and one geodesic pipeline, can be
programmed into one of the following patterns (b-f) using
global and pipeline multiplexers.

The configuration Fig. 4(b) can be used to compute ele-
mentary operators such as the gradient (Eqs. 2-4), an open-
ing, closing (Eqs. 5) or its residues (Eqs. 6). The geodesic
pipeline, unused here, appears in grey. The example in
Fig. 4(c) connects all the Large SE units into one, long
pipeline, suitable for long concatenations of erosions and
dilations as in sequential filters (Eqs. 7, 8) or granulome-
tries (Eq. 12). A morphological reconstruction (Eq. 10) is
implemented by the geodesic pipeline Fig. 4(d). With both
pipelines active and concatenated, as in Fig. 4(e), one can
compute openings/closings by reconstruction Eq. 11. The
same configuration can also be used in granulometry when
the opening by reconstruction Eq. 11 is used Eq. 12.

Such variety of operators allows to fully appreciate
the potential of this platform offering a long and flexible
pipeline to process data with limited accesses to the memory.
Finally, the two pipelines can also be used independently and
in parallel on the same input data as in Fig. 4(f).

6

D/E

D/E

3x3 3x3

D/E

D/E

Geodesic pipeline

Large SE pipeline

(a) Architecture

D/E

D/E

3x3 3x3

D/E

D/E

IN
OUT

Geodesic pipeline

Large SE pipeline

(b) Top hat / gradient

D/E

D/E

3x3 3x3

D/E

D/E

IN

OUT

Geodesic pipeline

Large SE pipeline

(c) Pipeline

D/E

D/E

3x3 3x3

D/E

D/E

IN

OUT
Geodesic pipeline

Large SE pipeline

(d) Reconstruction

D/E

D/E

3x3 3x3

D/E

D/E

IN

OUT
Geodesic pipeline

Large SE pipeline

(e) Opening by reconstruction

D/E

D/E

3x3 3x3

D/E

D/E

IN

OUT

Geodesic pipeline

Large SE pipeline

(f) User ad-hoc

Fig. 4 (a) The interconenction architecture of the pipelines, and (b-f) various possible interconnection patterns of the Large SE and Geodesic
pipelines.

MPMC

Input

FIFO bu!er

VFBC read control

VFBC read control

Input

FIFO bu!er
vfbc_rd

PLB

VFBC1

VFBC3

vfbc_rd

vfbc_cmd

vfbc_cmd

PLB interface

Large SE

pipeline

Geodesic

pipeline

C
o

n
"

g
u

ra
ti

o
n

re
g

is
te

rs

Image output

Image input

Geodesic Bank 1- m Control

Mux_in_1

Mux_in_2

Mux_geo_1

Mux_out_1

Mux_out_2Mux_geo_2

Large SE Bank 1-n

REG 1

REG 2

REG n

REG 1

REG 2

REG n

REG 1

REG 2

REG n

REG 1

REG 2

REG n

Start

Reset
Ready
State

......

Output

FIFO bu!er

VFBC write control

VFBC write control

Output

FIFO bu!er
vfbc_wr

VFBC2

VFBC4

vfbc_wr

vfbc_cmd

vfbc_cmd

Morphological Co-Processor Unit

Fig. 5 Architecture of the Morphological Co-Processor Unit. (Legend: Black line denotes an image data bus; grey line denotes configuration
and control; MPMC=Multi-Port Memory Controller; VFBC=Video Frame Buffer Controller; PLB=Peripheral Local Bus)

4.4 Morphological Co-Processor Unit (MCPU) Schematics

The pipelines are integrated into the MCPU, supposed to en-
sure their correct operation, using a set of multiplexers, con-
figuration registers, and image buffers and a memory con-
troller, see Fig. 5.

The configuration registers store the necessary config-
uration for all the processing units in both pipelines, the
global control, and measurement results. Notice that there

is one bank of registers for each stage of the processing
pipelines. All the registers are accessible to any PLB mas-
ter by simple read and write instructions.

Image data are transferred by four Video Frame Buffer
Controller (VFBC) channels [38]. Two VFBC channels are
dedicated to reading input image data from the DDR2 mem-
ory, and other two for writing the output image data to the
DDR2 memory. The image transfers are independent of each
other, so the processing can run in-place (the output image

7

TEMAC

DDR2

memory

512 MB

PHY PC client

GPIOInterruptTimer

MPMC

Micro-

Blaze

Processing

pipelines

Con�guration registers

Morphological Co-Processor Unit

Virtex 5 FPGA

Development platform HTG-V5-PCIE2

vfbc1

vfbc3

vfbc2

vfbc4

sdma

plb

Image

bu!ers

Fig. 6 Overall Platform architecture. Black line denotes image data
transfers, grey line denotes configuration and control.

is written in place of the input image). The VFBC allows us
to read and/or write image data to the DDR memory with
a FIFO-like data-flow control (full, almost full, empty, al-
most empty flags), so the data stream can be stalled by either
endpoint if necessary. The image data in both directions are
buffered in Input or Output buffers, respectively.

The MCPU is intended to be used as a peripheral in a
higher-level environment. We have tested it as a peripheral
of the Xilinx MicroBlaze as described in the following sec-
tion.

4.5 Top-level architecture

The architecture we have built for evaluation purposes, is
outlined in Fig. 6. The proposed MCPU is a coprocessor
running as a peripheral of the MicroBlaze CPU synthesized
on a Virtex 5 development platform. This platform is also
provided with an ethernet link. The architecture consists of
two main parts: (i) the MCPU core, and (ii) the MicroBlaze
processor environment.

This platform plays several roles: i) the MicroBlaze con-
figures and sends operators to MCPU to execute, ii) provides
working memory storage capacity, and iii) handles the com-
munication with the outside world. The images are received
via the enternet link and stored in memory.

A very important aspect of every image processing plat-
form is the memory for storing images; either input, out-
put, or intermediate result. The MCPU uses the Xilinx pro-
prietary Multi-Port Memory Controller MPMC [40] that
provides a multi-port interface to a high-capacity off-chip
DDR2 memory. The MPMC is capable of handling 4 simul-
taneous image data streams of approx. 50 Mpx/s each that
are required by the processing core to sustain the maximal
performance.

The MicroBlaze processor uses the Peripheral Local Bus
(PLB) to control all the peripherals and to transfer the con-
figuration data, which are small in size, among the peripher-
als. We used the MicroBlaze version 7.30.b running at 125

MHz with 2048 Bytes of instruction cache and 2048 Bytes
of data cache.

5 User interface - programmability

The platform can be accessed via a tri-speed Ethernet inter-
face using either TCP/IP or UDP/IP protocols (implemented
as lightweight lwIp). The MCPU runs a server able to accept
images and operations to execute via the ethernet link from
a superior client.

In order to achieve a proper function of the MCPU
server, the client has to perform the following tasks: com-
municate properly with MicroBlaze, send the image data,
configure and run the processing core, read the results.

We have provided a software interface (integrated in
MorphM [22]) to handle these tasks. This interface is avail-
able at two levels: i) a low-level interface in C/C++, and ii)
a high-level interface in C/C++ and Python.

The low-level interface gives the user the possibility to
directly control all the features of the computing blocks,
such as the sizes of the 1-D segments composing the SE,
handle delays, synchronization, multiplexors, turn on/off in-
dividual computing units, allocate images in the memory,
start and monitor a computation, wait for the end, etc.

The high-level interface offers the user a more intuitive
way to execute the most frequent morphological operators.
It contains a set of macro functions that hide the low-level
programming burden and provide the user the possibility to
use the platform on a higher level of abstraction. For ex-
ample, it can automatically map an arbitrarily long ASF or
granulometry to the pipelines. This involves programminc
correct SE sizes at every stage, chain the Large SE units
in a stream, store the intermediate result in the memory
whereever needed, and control the execution and monitor its
end.

The MCPU is intended to be as polyvalent as possible,
able to perform various operators with different computa-
tion schemes. The list of supported operators includes dila-
tion, erosion, opening, closing, reconstruction, opening and
closing by reconstruction, top hat, gradient, ASFλ, pattern
spectrum, and pattern spectrum by reconstruction. All these
operators proceed in the following steps: send the image (if
necessary), calculate the configuration based on the passed
arguments (either SE or λ), execute the processing pipelines,
and read the output image and/or measurement results. No-
tice that operators with large values of SE or λ may not fit
into the pipelines. In this case, several iteration are automat-
ically executed. This is especially true for the reconstruction
that may need hundreds of iterations.

Only a few features of the MCPU are set prior to the
synthesis, such as the width of the buses or the number of
stages in the pipelines. These features remain immuable af-
terwards. All other parameters are programmable via the
configuration registers.

8

6 Application Example

In this section, we illustrate how MCPU can be used in a real
image processing application.

Consider detecting defects in manufactered surfaces,
where the defects appear as changes in local textural pat-
terns. Cord et al. [7] follow a probabilistic approach, consid-
ering textural variations as realizations of random functions.
Taking into account information of pixel neighbourhoods,
the texture for each pixel is described at different scales. By
means of statistical learning, the most relevant textural de-
scriptors are selected for each application.

The preparatory steps of this technique consist of the fol-
lowing (refer to [7] for details and references):

1. A collection of morphological descriptors is chosen,
such as dilations, erosions, openings and closings, each
for various SE shapes, such as segments oriented in 0◦,
45◦, 60◦, 90◦, 120◦ and 135◦, squares and circles and
each for different sizes. Each pixel is assigned a vector
with as elements the values from these descriptors.

2. A dimension reduction in a set of independent variables
by Principal Component Analysis.

3. A supervised learning using Linear Discriminant Analy-
sis.

4. A variable selection based on forward selection.

Done in this way, the approach is generic, and the selected
descriptors application specific. After validation, we know at
this stage which descriptors apply best to separate the classes
– defect/no defect.

The two-step on line classification application shall exe-
cute on the MCPU.

1. The vector of values for all selected sizes of a descriptor
is a local pattern spectrum with this SE. The descrip-
tors for every SE shape and size are efficiently computed
MCPU and the descriptors stored in the DDR2 memory.

2. The LDA classification is a weighted linear combination
of the descriptor values for every pixel which, coded in
C, can run on the MicroBlaze controller. The resulting
image is then trasferred out via the ethernet link.

7 Experiment setup

The proposed MCPU architecture has been implemented
in VHDL and targeted to the Xilinx platform HTG-V5-
PCIE2, equipped with one medium-size Xilinx Virtex-5
FPGA chip XC5VSX95T [39]. We report here two different
setups with parameters to fully utilize the available FPGA
resources and keep high flexibility at the same time. Using
the XC5VSX95T – a medium-size Virtex 5 family FPGA,
with 14,720 slices and 244 36Kb-size RAM blocks – we
could implement 4 to 5 (resp.) Large SE stages and 16
geodesic stages in two pipelines on the chip. The implemen-
tation results and setup specification are outlined in Table 1.
Notice that the reported “Supported SE per unit” is given by

the maximum FIFO length as synthesized on the chip. After
the synthesis, the user can freely program his own SE size
withing this range.

Table 1 Implementation results, Xilinx Virtex-5 FPGA XC5VSX95T
[39]

Parameter Setup 1 Setup 2
Supported SE per unit Rectangle 31× 31 Octagon 43× 43

Large SE stages n 5 4
Geodesic stages m 16 16

Image width N 1024 1000
FPGA Slice 13534 14684

FPGA BRAM 233 243
Clock frequency 125 MHz 125 MHz

Recall that the SE size multiplied by the image width is
the determinant factor of the memory occupation per Large
SE stage, ref Eq. 13. The memory occupation for the Large
SE pipeline is linear factor of its length. The architecture is
therefore linearly scalable – factor of the image width, SE
size and number of stages (and also bits per pixel) withing
the limitation of the FPGA size.

8 Performance Comparison

In this section we compare this architecture with other em-
bedded solutions: software solutions (Sec. 8.1) and existing
hardware platforms (Sec. 8.2).

8.1 Software solutions

We compare the performance of the proposed architecture
against another embedded solution, an ARM processor. In
our case, we use the Sabre platform [11] by Freescale, which
can be seen as another example of hand-held platform. The
Sabre uses quad-core ARM A9 processor at 1GHz, 1GB
of DDR3 memory up to 533MHz, and runs Linux with
TCP/IP stack. We have created benchmarks for two image
processing libraries: (i) the well-known OpenCV [24], and
(ii) highly optimized Smil [20]. For the sake of complete-
ness, we have also included the single-thread results of the
OpenCV at desktop PC Intel Xeon E5620, 2.40 GHz, with
24 GB memory, running a Fedora, release 20, linux.

The benchmark in Table 2 includes a set of aforemen-
tioned morphological operators on natural gray-scale pho-
tos 1000×1000 px. It includes an elementary 3× 3 dilation,
large opening and opening by reconstruction, alternating se-
quential filter, pattern spectrum and pattern spectrum by re-
construction. Apart from the 3 × 3 dilation, the common
property of all these operators is the large number of op-
erations, which is even undetermined for the reconstruction,
and therefore, a high cost.

The experimental results show that the proposed MCPU
architecture delivers performance by orders of magnitude
superior to that of the Sabre platform, and even comparable

9

Table 2 Performance results of selected operators. Image is natural photo 1000×1000 px, time results are in milliseconds (unless seconds are
specified).

Operator Shape of SE Size of SE or λ MCPU OpenCV at Sabre Smil at Sabre OpenCV at Xeon
Dilation Rectangle 3×3 21.9 32.7 8.4 0.58
Opening Rectangle 151×151 24.3 2450 1083 38.6
Opening Octagon 151×151 41.9 246 s 2453 2301

Opening by recon. Rectangle 151×151 544 47.6 s 22.1 s / 2110? 1940
Opening by recon. Octagon 151×151 512 289 s 21.1 s 4356

ASF Rectangle λ = 11 64.2 4530 1987 57.1
ASF Octagon λ = 11 83.3 77 s 3872 814

Pattern spectrum PS Rectangle λ = 11 62.3 2570 1098 53.8
Pattern spectrum PS Octagon λ = 11 62.7 21.2 s 1782 249

PS by recon. Rectangle λ = 11 2530 190 s 85.3 s / 18.2 s? 8920
PS by recon. Octagon λ = 11 2410 201 s 81.5 s 8751

note ?: The second result is obtained by an algorithm based on hierarchy queues.

Table 3 Comparison of several FPGA and ASIC architectures concerning morphological dilation and erosion. N , M stand for the image width
and height of respective architectures.

Processing unit Hardware System Application Example ASF6

Technology Supported Throughput fmax Number Supported Image FPS Latency
SE [Mpx/s] [MHz] of units image scans [frame/s] [px]

Clienti [4] FPGA arbitrary 3×3 403 100 16 1024×1024 6 66.7 5NM + 84N
Chien [3] ASIC disc 5×5 190 200 1 720×480 45 12.2 44NM + 84N
Déforges (a) [8] FPGA arbitrary 8-convex 50 50 1 512×512 13 14.7 12NM + 84N
Déforges (b) [8] FPGA arbitrary 8-convex 50 50 13 512×512 1 50 84N
This paper FPGA regular polygon 195 100 13 1024×1024 1 185 84N

with a desktop PC, for all high-cost operations, i.e., all in
Table 2 but the 3× 3 dilation. MCPU outperforms the other
platforms (or is at least equivalent) whereever a high num-
ber of operators are sequentially applied to the image. Such
a significant speed-up is allowed by possibility to thoroughly
exploit the inter-operator parallelism via the pipelined com-
putation. This is especially true for the opening and pattern
spectrum by reconstruction whenm = 16 geodesic dilations
are computed at the same time. The speed-up becomes less
significant for simple operators with small SEs, the perfor-
mance for 3× 3 dilation is worse than that of Smil at Sabre.
This is due to a much higher clock of the ARM and the
Xeon processors (1GHz and 2.40 GHz, respectively). How-
ever, the majority of applications of mathematical morphol-
ogy need a long sequence of operators that take advantage
of the proposed parallelism.

Evaluated using the Xilinx Power Estimator tool [37],
the total on-chip power consumption is 4.424 W (1.237 W
for input/output ports, 1.625 W of dynamic and 1.562 W of
static consumption). The consumption of the Sabre platform
is≈3 W during intensive workload [10]. The thermal design
power of the Intel Xeon E5620, 2.40 GHz CPU is ≈80 W
during intesive workload [16].

8.2 Existing HW solutions

The Table 3 offers a comparison of our architecture with a
few others that support flat, non-rectangular SE. The Pro-
cessing Unit section of this table provides a comparison on

the basis on a single 2-D δ/ε unit only. Clienti [4] yields a
high throughput for an elementary SE 3×3. The Chien [3]
ASIC chip achieves a reasonable throughput with a small
5×5 diamond SE. The Déforges [8] unit supports 8-convex
SEs decomposed as a concatenation of elementary 2-pixel
SE. (Lower throughput is probably due to a less powerfull
device than that of the other implementations.)

For all other architectures (except this paper) the flexibil-
ity to control the size and shape of the SE after the synthesis
remains unclear. Nonetheless, all architectures can use the
homothecy to obtain larger SEs. This requires using a long
processing pipeline as in Clienti [4] or Déforge et al. [8](b).
Iterating over the memory significantly decreases the overall
throughput.

The Hardware System section of the table lists the num-
ber of units synthesized on the chip. The performance of
every architecture for an ASF6 as example is given in the
third section of the table. The FPS decreases drastically as
the number of iterations over the image increases, as for
Chien [3] or a single unit of Déforges et al. [8]. The de-
crease is less significant for Clienti [4] who uses a 16-unit
long pipeline. However, the units are small 3×3, and still 6
images scans are needed.

Only the Déforges et al. [8] pipeline and this paper ar-
chitecture can embed the entire ASF with no or a limited
decrease in performance.

10

9 Conclusions

This paper proposes a novel programmable morphologi-
cal coprocessor for embedded devices based on FPGA de-
vices. We have integrated previously published efficient di-
lation/erosion processing units and geodesic units into a Mi-
croBlaze platform, which provides DDR memory storage
and Ethernet connectivity, and thus created a very power-
ful coprocessor that supports a wide range of operators from
a simple dilation to the pattern spectrum by reconstruction.

The coprocessor was experimentally evaluated at a Vir-
tex5 development kit and compared to the quad-core ARM9
Sabre platform by Freescale running OpenCV and Smil li-
braries. The performance results for various compound op-
erators (except the 3×3 dilation) show a significant speed-up
of at least one order of magnitude. The results of MCPU do
even compare to that of a Xeon desktop workstation.

The future work will be focused on development of a
compiler for MCPU that will automatically map a given ap-
plication to the architecture. The current interface provides
a user with a high-level programming interface. In the fu-
ture, this compiler shall optimize the execution of concur-
rent operators, branching and simultaneous co-execution of
an application on MCPU and the client.

References

1. J. Bartovský, P. Dokládal, E. Dokládalová, M. Bilodeau, and
M. Akil. Real-time implementation of morphological filters with
polygonal structuring elements. Journal of Real-Time Image Pro-
cessing, 10(1):175–187, 2012.

2. J. Bartovský, P. Dokládal, E. Dokládalová, and V. Georgiev. Par-
allel implementation of sequential morphological filters. Journal
of Real-Time Image Processing, 9(2):315–327, 2014.

3. S.-Y. Chien, S.-Y. Ma, and L.-G. Chen. Partial-result-reuse archi-
tecture and its design technique for morphological operations with
flat structuring elements. Circuits and Systems for Video Technol-
ogy, IEEE Transactions on, 15(9):1156 – 1169, sept. 2005.

4. Ch. Clienti, S. Beucher, and M. Bilodeau. A system on chip dedi-
cated to pipeline neighborhood processing for mathematical mor-
phology. In EURASIP, editor, EUSIPCO 2008, Lausanne, August
2008.

5. Ch. Clienti, M. Bilodeau, and S. Beucher. An efficient hardware
architecture without line memories for morphological image pro-
cessing. In ACIVS ’08, pages 147–156, Berlin, Heidelberg, 2008.
Springer-Verlag.

6. D. Coltuc and I. Pitas. On fast running max-min filtering. IEEE
Transactions on Circuits and Systems II, 44(8):660 –663, aug
1997.

7. A. Cord, F. Bach, and D. Jeulin. Texture classification by statisti-
cal learning from morphological image processing: application to
metallic surfaces. J. of Microscopy, 239:159–166, 2010.

8. O. Déforges, N. Normand, and M. Babel. Fast recursive grayscale
morphology operators: from the algorithm to the pipeline architec-
ture. Journal of Real-Time Image Processing, pages 1–10, 2010.

9. P. Dokládal and E. Dokládalová. Computationally efficient, one-
pass algorithm for morphological filters. Journal of Visual Com-
munication and Image Representation, 22(5):411–420, 2011.

10. Freescale. i.MX 6Dual/6Quad Power Consumption Measure-
ment, Rev. 0, 10/2012. http://cache.freescale.com/
files/32bit/doc/app_note/AN4509.pdf.

11. Freescale. SABRE reference designs, 2014. http://www.
freescale.com/sabre.

12. R. M. Gibson, A. Ahmadinia, S. G. McMeekin, N. C. Strang, and
G. Morison. A reconfigurable real-time morphological system for
augmented vision. EURASIP Journal on Advances in Signal Pro-
cessing, 2013(1), 2013.

13. J. Gil and R. Kimmel. Efficient dilation, erosion, opening, and
closing algorithms. IEEE Trans. PAMI, 24(12):1606–1617, 2002.

14. J. Gil and M. Werman. Computing 2-d min, median, and max
filters. IEEE Trans. Pattern Anal. Mach. Intell., 15(5):504–507,
1993.

15. M. Holzer, F. Schumacher, T. Greiner, and W. Rosenstiel. Opti-
mized hardware architecture of a smart camera with novel cyclic
image line storage structures for morphological raster scan image
processing. In Emerging Signal Processing Applications (ESPA),
2012 IEEE International Conference on, pages 83–86, Jan 2012.

16. Intel. Intel Xeon Processor E5620 (12M Cache, 2.40 GHz, 5.86
GT/s Intel QPI). http://ark.intel.com/products/
47925/Intel-Xeon-Processor-E5620-12M-Cache-
2_40-GHz-5_86-GTs-Intel-QPI.

17. J.-C. Klein and J. Serra. The texture analyser. J. of Microscopy,
95:349–356, 1972.

18. D. Lemire. Streaming maximum-minimum filter using no more
than three comparisons per element. CoRR, abs/cs/0610046, 2006.

19. F. Lemonnier and J.-C. Klein. Fast dilation by large 1D structuring
elements. In Proc. Int. Workshop Nonlinear Signal and Img. Proc.,
pages 479–482, Greece, Jun. 1995.

20. Faessel M. Smil simple morphological image library. http:
//smil.cmm.mines-paristech.fr, 2014.

21. G. Matheron. Random sets and integral geometry. Wiley New
York, 1975.

22. Morph-M. Morph-M documentation. http://cmm.ensmp.
fr/Morph-M, 2012.

23. N. Normand. Convex structuring element decomposition for sin-
gle scan binary mathematical morphology. In Discrete Geometry
for Computer Imagery, volume 2886 of LNCS, pages 154–163.
Springer Berlin, Heidelberg, 2003.

24. OpenCV. OpenCV documentation. http://opencv.org,
2014.

25. J Pecht. Speeding-up successive minkowski operations with bit-
plane computers. Pattern Recognition Letters, 3(2):113 – 117,
1985.

26. I. Pitas. Fast algorithms for running ordering and max/min cal-
culation. Circuits and Systems, IEEE Transactions on, 36(6):795
–804, June 1989.

27. J. Serra. Image Analysis and Mathematical Morphology, vol-
ume 1. Academic Press, New York, 1982.

28. J. Serra. Image Analysis and Mathematical Morphology, Volume
2, Theoretical Advances. Academic Press, London, 1988.

29. J. Serra and L. Vincent. An overview of morphological filtering.
Circuits Syst. Signal Process., 11(1):47–108, 1992.

30. P. Soille. Morphological Image Analysis: Principles and Applica-
tions. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.

31. P. Soille, E. J. Breen, and R. Jones. Recursive implementation
of erosions and dilations along discrete lines at arbitrary angles.
IEEE Trans. Pattern Anal. Mach. Intell., 18(5):562–567, 1996.

32. C. Torres-Huitzil. FPGA-based fast computation of gray-level
morphological granulometries. Journal of Real-Time Image Pro-
cessing, pages 1–11, 2013.

33. E. R. Urbach and M. H. F. Wilkinson. Efficient 2-D grayscale
morphological transformations with arbitrary flat structuring ele-
ments. IEEE Trans. Image Processing, 17(1):1 –8, jan. 2008.

34. M. van Herk. A fast algorithm for local minimum and maximum
filters on rectangular and octagonal kernels. Pattern Recogn. Lett.,
13(7):517–521, 1992.

35. J. Velten and A. Kummert. Implementation of a high-performance
hardware architecture for binary morphological image processing
operations. In Circuits and Systems, 2004. MWSCAS ’04. The
2004 47th Midwest Symposium on, volume 2, pages II–241 – II–
244 vol.2, 25-28 2004.

36. L. Vincent. Morphological grayscale reconstruction in image anal-
ysis: applications and efficient algorithms. Image Processing,
IEEE Transactions on, 2(2):176–201, Apr 1993.

http://cache.freescale.com/files/32bit/doc/app_note/AN4509.pdf
http://cache.freescale.com/files/32bit/doc/app_note/AN4509.pdf
http://www.freescale.com/sabre
http://www.freescale.com/sabre
http://ark.intel.com/products/47925/Intel-Xeon-Processor-E5620-12M-Cache-2_40-GHz-5_86-GTs-Intel-QPI
http://ark.intel.com/products/47925/Intel-Xeon-Processor-E5620-12M-Cache-2_40-GHz-5_86-GTs-Intel-QPI
http://ark.intel.com/products/47925/Intel-Xeon-Processor-E5620-12M-Cache-2_40-GHz-5_86-GTs-Intel-QPI
http://smil.cmm.mines-paristech.fr
http://smil.cmm.mines-paristech.fr
http://cmm.ensmp.fr/Morph-M
http://cmm.ensmp.fr/Morph-M
http://opencv.org

11

37. Xilinx. Xilinx Power Estimator (XPE). http:
//www.xilinx.com/products/design_tools/
logic_design/xpe.htm.

38. Xilinx. Video Frame Buffer Controller v1.0. http:
//www.xilinx.com/products/devboards/
reference_design/vsk_s3/vfbc_xmp013.pdf,
October 29 2007.

39. Xilinx. Virtex-5 family overview. http://www.xilinx.
com/support/documentation/data_sheets/
ds100.pdf, February 6 2009.

40. Xilinx. LogiCORE IP Multi-Port Memory Controller (MPMC)
(v6.03.a). http://www.xilinx.com/support/
documentation/ip_documentation/mpmc.pdf,
March 1 2011.

41. J. Xu. Decomposition of convex polygonal morphological struc-
turing elements into neighborhood subsets. IEEE Trans. Pattern
Anal. Mach. Intell., 13(2):153–162, 1991.

http://www.xilinx.com/products/design_tools/logic_design/xpe.htm
http://www.xilinx.com/products/design_tools/logic_design/xpe.htm
http://www.xilinx.com/products/design_tools/logic_design/xpe.htm
http://www.xilinx.com/products/devboards/reference_design/vsk_s3/vfbc_xmp013.pdf
http://www.xilinx.com/products/devboards/reference_design/vsk_s3/vfbc_xmp013.pdf
http://www.xilinx.com/products/devboards/reference_design/vsk_s3/vfbc_xmp013.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/ip_documentation/mpmc.pdf
http://www.xilinx.com/support/documentation/ip_documentation/mpmc.pdf

	Introduction
	State of the art
	Algorithms
	Hardware implementations

	Basic notions
	Hardware architecture
	Large SE Pipeline
	Geodesic pipeline
	Pipeline configurations
	Morphological Co-Processor Unit (MCPU) Schematics
	Top-level architecture

	User interface - programmability
	Application Example
	Experiment setup
	Performance Comparison
	Software solutions
	Existing HW solutions

	Conclusions

