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Abstract

In this paper, we consider a model allowing the analysis of multivariate data, which can

contain data attributes of different types (e.g. continuous, discrete, binary). This model is

a two-level hierarchical model which supports a wide range of correlation structures and can

accommodate overdispersed data. Maximum likelihood estimation of the model parameters is

achieved with an automated Monte Carlo Expectation Maximization (MCEM) algorithm. Our

method is tested in a simulation study in the bivariate case and applied to a dataset dealing

with beehive activity.

Key words: Continuous data ; Count data ; Mixed mode data ; Monte Carlo EM ; Overdis-

persion ; Poisson-log normal distribution.

1 Introduction

Data with attributes of different types are encountered in many fields. For instance in ecological

studies, abundance data of several species measured at different sites can be counts (discrete),

species coverage, weights (continuous), occurrence (binary). Nevertheless, there is a lack of classes

of distributions which can take into account these different types of data and are easy to adapt to

different situations, while allowing a wide range of correlations between the variables.
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The scope of this article is to provide a maximum likelihood estimation method adapted to a

model describing multiple response data which can contain variables of different types (discrete,

continuous, binary) and which supports a wide range of correlation structures.

The model of interest generalizes the multivariate Poisson log normal (MPLN) model studied

by Aitchison and Ho (1989). The MPLN model is a multivariate log normal mixture of independent

Poisson distributions. This model provides a parametric class of distributions for the analysis of

multivariate count data, that is able to describe a wide range of correlation and overdispersion situa-

tions. Unlike other multivariate discrete distributions, such as the multivariate Poisson distribution

(first proposed by McKendrick and Wicksell), the MPLN model supports negative correlation be-

tween counts. Moreover, it can fit overdispersed data, whereas in the multivariate Poisson model

the marginal mean and variance coincide (see Aitchison and Ho, 1989 for a detailed comparison

between the MPLN model and the multivariate Poisson model). It seems therefore better suited to

model multivariate count data such as species count data in ecological studies, which is generally

overdispersed and can be negatively correlated.

The general model that we deal with in this article is a two-layer hierarchical model, in which

the hidden layer is a multivariate Gaussian distribution, and the observed layer is a multivariate

distribution formed by independent univariate distributions chosen according to the type of variable.

We chose the multivariate normal distribution for the hidden layer because it has been extensively

studied and it provides a full range of correlations between variables (including negative correlation).

The hierarchical structure of the model allows overdispersion in the marginal distributions.

Very recently, Chagneau et al. (2010) proposed a spatial model for random variables of different

types with a Bayesian estimation procedure based on MCMC simulations. The principle of our

approach is similar in that the dependence between variables is expressed at the hidden level of a

hierarchical model and the obtention of different types of variables is achieved by using different

conditionally independent univariate distributions and link functions. In this paper, we formalize

these multivariate hierarchical models for conditional distributions belonging to the exponential

class and present some of their properties in a non spatial framework.

Then, we provide a maximum likelihood estimation procedure for these models easy to adapt to

different distributions from the exponential family. This procedure is based on an extension (Wei

and Tanner, 1990; Booth and Hobert, 1999) of the Expectation-Maximization (EM) algorithm of

Dempster et al. (1977). See McLachlan and Krishnan (2008) for a broad presentation of the EM

2
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algorithm and its extensions.

In the next section we present the general model and its properties for given conditional distri-

butions in the observed layer. The maximum likelihood based estimation procedure is presented in

Section 3. In Section 4 we test our method on simulated bivariate data of different types. An appli-

cation on a real dataset concerning the honey-bee hive activity in the South of France is presented

in Section 5. Our results and perspectives are discussed in Section 6.

2 Multivariate hierarchical model

2.1 Definition of the general model

Let Y1, . . . , Yn denote a random sample of size n of the d-dimensional random vector Y = (Y1, . . . , Yd).

In practice Yi could correspond to the abundances of d species observed at location i. Throughout

this article i labels the observation and j the variable.

We define the following hierarchical model for Y :










Yi|θi ∼ L (g−1(θi))

θi ∼ Nd(µ, Σ),

where Nd(µ, Σ) is the d-dimensional normal distribution with mean vector µ and covariance matrix

Σ, g is a set of link functions and L is a multivariate distribution with parameters g−1(θi).

In this article only the case where L is formed by d independent univariate distributions L =

L1 × . . . × Ld is considered. The choice of Lj and g−1
j , for j ∈ {1, . . . , d}, depends on the type of

data (discrete, continuous, ordinal, binary). Note that the variables are not necessarily of the same

type, different univariate distributions and different link functions can be used for the d variables.

In the remainder of the article, the choice of L will be restricted to exponential families. This is

not a very restrictive choice since the exponential family encompasses a broad set of parametric

distributions including the most commonly-used (such as Gaussian, Poisson, Bernoulli, Binomial,

Gamma).

The probability density fY of Y is defined by:

fY (y; µ, Σ) =
∫

Rd
fY |θ(y|θ)fθ(θ|µ, Σ) dθ, (1)

where fY |θ denotes the conditional probability density function of Y , given the variable θ, fθ is the

multivariate Gaussian density and a realization of a random vector is denoted by the corresponding

3
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lower-case letter. Since the distributions of the d variables are conditionally independent given θ,

we have:

fY |θ(y1 . . . yd|θ) =
d

∏

j=1

fYj |θ(yj |θ). (2)

Unless conjugate distributions are chosen, there is no simplification of the multiple integral in

equation (1) for most choices of L and g−1. Nevertheless, in some cases, as will be seen in Section

2.3, its first two moments can be obtained in terms of the moments of θ by using conditional

expectation results and properties of the chosen distributions. Conversely, the moments of the

hidden variable θ can then be written in terms of the moments of the data Y and used to initialize

the parameters in the estimation procedure presented in Section 3.

Remark : A more general form of the model could be defined by allowing the dimension of θi to

differ from the dimension of Yi, but for the sake of simplicity we chose the same dimension d. This

could be used to introduce spatial correlations.

2.2 Exponential families

If the density of Lj , the conditional distribution of the jth variable given θ, belongs to an exponential

family, it can be written in the form:

fYj |θ(yj |θ) = cj(yj) exp(
rj

∑

l=1

ηjl(θ)Tjl(yj) − bj(ηj)),

where:

− rj is the number of parameters of Lj ,

− ηj = (ηj1, . . . , ηjrj
) is the vector of natural parameters of Lj , which can be expressed in terms

of θ and the link funtion gj ,

− Tj = (Tj1, . . . , Tjrj
) is the vector of minimal sufficient statistics of Lj , which can be written

in terms of Yj ,

− and bj(ηj) a normalization factor.

We have the following conditional moments for l ∈ {1, . . . , rj}:

E(Tjl|θ) =
∂b(ηj)
∂ηjl

, (3)

V(Tjl|θ) =
∂2b(ηj)

∂η2
jl

. (4)

4
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Suppose for example that Lj is the Poisson distribution with mean λθ = g−1
j (θj) and g−1

j is the

exponential function:

Yj |θ ∼ P(eθj ).

Then rj = 1, ηj = log(λθ) = log eθj = θj , Tj = Yj and bj(ηj) = eηj . We can verify that equation (3)

and (4) hold:

E(Tj |θ) = E(Yj |θ) =
∂b(ηj)

∂ηj
= eηj = elog(λθ) = λθ,

V(Tj |θ) = E(Yj |θ) =
∂2b(ηj)

∂η2
j

= λθ.

Suppose now that Lj is a two-parameter distribution, say the Gamma distribution with the usual

shape parameter kθ and scale parameter λθ, which can be expressed in terms of θ by using two link

functions, gj1 and gj2:

kθ = g−1
j1 (θ),

λθ = g−1
j2 (θ).

Then rj = 2, ηj = (kθ − 1, − 1
λθ

), Tj = (log(Yj), Yj) and b(ηj) = −(η1 + 1) log(−η2) + log(η1Γ(η1)).

We can verify that the first moments of Y obtained using equation (3) and (4) are indeed the mean

and variance of the Gamma distribution:

E(Tj2|θ) = E(Yj |θ) =
∂b(ηj)
∂ηj2

= −ηj1 + 1
ηj2

= kθλθ,

V(Tj2|θ) = E(Yj |θ) =
∂2b(ηj)

∂η2
j2

= kθλ2
θ.

2.3 Submodel examples

2.3.1 Multivariate Poisson-Log Normal model (MPLN)

The MPLN model (Aitchison and Ho, 1989) is obtained when L is formed by d independent Poisson

distributions and g−1 is the exponential function. For all observations i ∈ {1, . . . , n} and variables

j ∈ {1, . . . , d} we write:










Yij |θij ∼ P(eθij )

(θi1, . . . , θid)T ∼ Nd(µ, Σ),

where the superscript T denotes the transpose of the matrix and P is the univariate Poisson

distribution.

5
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The unconditional moments of this distribution can be calculated by using properties of the

lognormal distribution and of the conditional expectation (Aitchison and Ho, 1989; Tunaru, 2002):

E(Yj) = E[E(Yj |θj)] = eµj+ 1
2

σjj
def
= mj ,

V(Yj) = E[V(Yj |θj)] + V[E(Yj |θj)]

= mj + m2
j (eσjj − 1),

cov(Yj , Yj′) = E[cov(Yj , Yj′ |θ)] + cov[E(Yj |θj),E(Yj′ |θj′)]

= mj mj′ (eσjj′ − 1),

cor(Yj , Yj′) =
eσjj′ − 1

√

(eσjj − 1 + m−1
j )(eσj′j′ − 1 + m−1

j′ )
,

where Σ = (σjj′) and j, j′ ∈ {1, . . . , d} for j 6= j′. Some interesting features of the model appear:

(i) V(Yj) ≥ E(Yj), so there is overdispersion for the marginal distributions with respect to the

Poisson distribution,

(ii) the signs of the correlation between observed variables and the correlation between the hidden

normally distributed variables θ correspond,

(iii) the range of correlation is not as wide as that of the corresponding normal distribution:

|cor(Yj , Yj′)| < |cor(θj , θj′)|.

Aitchison and Ho (1989) studied the regions of count correlation and overdispersion attainable

by the bivariate Poisson-log normal model for different mean counts m.

2.3.2 Bivariate Poisson-Normal model

Data of different types (e.g. continuous and discrete) can be obtained by using different distributions

and link functions for the variables. We define the bivariate Poisson-Normal model by:


























Yi1|θi1 ∼ P(eθi1)

Yi2|θi2 = g−1
2 (θi2)

(θi1, θi2)T ∼ N2(µ, Σ),

where g−1
2 could be for instance the exponential function, if a positive continuous variable is needed.

Notice that the likelihood is easier to compute here than for the MPLN model, because the variable

θ2 is observed in this model.

6
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The moments of this distribution can be calculated in a similar way to the previous model.

E(Y1) = E[E(Y1|θ1)] = eµ1+ 1
2

σ11
def
= m1,

V(Y1) = E[V(Y1|θ1)] + V[E(Y1|θ1)]

= m1 + m2
1 (eσ11 − 1),

cov(Y1, Y2) = E[θ2 E(Y1|θ1)] − E[E(Y1|θ1)] E(θ2)

= m1σ12,

cor(Y1, Y2) =
σ12

√

(eσ11 − 1 + m−1
1 ) σ22

.

The same properties hold: overdispersion for the count variable Y1 and large correlation range

between variables, but smaller than the correlation range between θi1 and θi2.

2.3.3 Bivariate Binomial-Poisson model

We define the bivariate Binomial-Poisson model by:


























Yi1|θi1 ∼ B(nb, logit−1(θi1))

Yi2|θi2 ∼ P(eθi2)

(θi1, θi2)T ∼ N2(µ, Σ),

where B denotes the univariate binomial distribution, with parameters nb the number of Bernoulli

trials and success probability logit−1(θi1), where logit−1(x) = 1
1+e−x .

The moments of this distribution cannot be written in a closed form (see Appendix A) but

their properties can be studied by simulation or numerical computation. We studied the range of

the count correlation coefficient cor(Y1, Y2) for given values of µ1, µ2, σ11, σ22. The results given in

Figure 1 show once more that there is a direct correspondence between the signs of cor(Y1, Y2) and

r=cor(θ1, θ2), while the range of cor(Y1, Y2) is smaller.

2.3.4 Bivariate Gamma-Poisson model

This is another example of model combining variables of different types (continuous vs discrete),

which uses an exponential family with two parameters, the Gamma distribution. We define the

7
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Figure 1: Evolution of the correlation between Y1, Y2 with r, (the correlation between θ1, θ2) for

the Binomial-Poisson model, obtained by simulating 100 samples of size n = 1000 with parameters

µ1 = µ2 = σ11 = σ22 = 1 and nb = 10

bivariate Gamma-Poisson model by:


























Yi1|(θi1, θi2) ∼ G (kθ, λθ)

Yi2|θi1 ∼ P(eθi1)

(θi1, θi2)T ∼ N2(µ, Σ),

where the shape parameter kθ and the scale parameter λθ of the Gamma distribution G depend on

θ, by defining the mean and variance of the Gamma distribution by:

E(Yi1|θi1, θi2) = kθλθ = eθi1 ,

V(Yi1|θi1, θi2) = kθλ2
θ = eθi2 .

This yields:

kθ = g−1
11 (θ) = e2θi1−θi2 ,

λθ = g−1
12 (θ) = eθi2−θi1 .

This model could be interpreted in the following way in an ecological framework: Suppose two

species abundances were observed over n locations. Y1 denotes the weight or surface occupied by

species 1, and Y2 counts of species 2. This model assumes that the expected values of these two

variables depend on an unobserved variable θ1, say resource availability. This unobserved factor θ1

8
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is linked to another unobserved variable θ2, which only influences the variance of the abundance of

species 1. θ2 could be for instance a third species which is a competitor of species 1 but has no

influence on species 2.

3 Maximum likelihood estimation via the MCEM algorithm

The model that we propose has several interesting properties: it is easy to adapt to different types

of data and provides a wide correlation range between variables. The price to pay for these advan-

tages is the increased computational complexity required for parameter estimation. It is therefore

important to have a generic estimation procedure that is easy to adapt to different distributions L

and link functions g and thus does not depend on their specific properties. For the MPLN model,

Aitchison and Ho (1989) used a maximum likelihood estimation procedure (mix of Newton Raphson

and steepest ascent) based on a numerical integration procedure which depends on the specific form

of the MPLN likelihood. Tunaru (2002) and Chagneau et al. (2010) use a Bayesian estimation

procedure (MCMC algorithm). We built a maximum likelihood estimation procedure based on the

EM algorithm.

Let Φ denote the unknown parameter vector (µ, Σ). Since θ is not observed, the Expectation-

Maximization (EM) algorithm of Dempster et al. (1977) is well suited for the maximum likelihood

estimation of Φ; see McLachlan and Krishnan (2008) for a complete review of the EM algorithm and

its extensions. The idea behind the EM algorithm is to complete the observed data y = (y1, . . . , yn)

with the latent variable vector θ, write the complete-data loglikelihood :

lc(Φ; y, θ) =
n

∑

i=1

(log fY |θ(yi|θi) + log fθ(θi; Φ)) (5)

and maximize the conditional likelihood expectation, given the observed data y, in terms of Φ.

The EM algorithm is a two-step iterative algorithm that proceeds as follows: At iteration t + 1,

the current parameter Φ(t) is known.

− E-step (Expectation): the conditional expectation of the complete-data log-likelihood given

the observed data y and the current parameter estimates is computed:

Q(Φ, Φ(t)) = E
Φ(t) [lc(Φ; Y , θ)|Y = y]. (6)
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− M-step (Maximization): the parameter estimates are updated by:

Φ(t+1) = arg max
Φ

Q(Φ, Φ(t)).

The algorithm is stopped if some convergence criterion is satisfied. In our case, the expression of

the Q-function (6) contains an integral over the θ-values in R
d, so the E-step cannot be solved

analytically. We use therefore an extension of the EM to approximate Q in the E-step, namely

the Monte Carlo EM (Wei and Tanner, 1990), and more specifically the automated MCEM version

proposed by Booth and Hobert (1999).

3.1 Expectation step:

Since the first term of equation (5) does not depend on the parameters Φ, the Q-function can be

written:

Q(Φ, Φ(t)) = E
Φ(t) [log fθ(θ; Φ)|Y = y] + c(y), (7)

where c is independent of Φ.

To calculate the expectation term in equation (7) the density fθ|Y (θ|y; Φ(t)), given by:

fθ|Y (θ|y; Φ) =
fY |θ(y|θ)fθ(θ; Φ)

fY (y; Φ)
, (8)

has to be evaluated. The evaluation of fY (y; Φ) is difficult because of the integral in equation

(1). The solution offered by Monte Carlo EM is to simulate at each EM iteration t and for each

observation yi a random sample θ
(t)
i1 , . . . , θ

(t)
iN from the distribution fθ|Y and to replace Qi, the

conditional expectation of the complete-data log-likelihood at observation site i, with a Monte

Carlo approximation of the expectation:

Qi(Φ, Φ(t)) ≃ 1
N

N
∑

k=1

log fθ|Y (θ(t)
ik |yi; Φ) + c(yi).

Since the observations yi are independent, we have:

Q(Φ, Φ(t)) =
n

∑

i=1

Qi(Φ, Φ(t)).

In our case it is difficult to sample from fθ|Y so we use an alternative of the MCEM algorithm

based on importance sampling proposed by Booth and Hobert (1999).
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Student importance sampling

The random sample θ
(t)
i1 , . . . , θ

(t)
iN is simulated from the importance density ht, which has the same

support as fθ|Y . The importance sampling Monte Carlo estimate of Q is defined for a given obser-

vation i by the following expression:

Qi(Φ, Φ(t)) ≃ 1
N

N
∑

k=1

wik log fθ(θ(t)
ik |Φ) + c(yi),

where wik are the importance weights defined by:

wik =
fθ|Y (θ(t)

ik |y; Φ(t))

ht(θ
(t)
ik )

∝
fY |θ(y|θ)fθ(θ(t)

ik ; Φ(t))

ht(θ
(t)
ik )

and evaluated up to the normalizing constant fY (y; Φ(t)) (which does not depend on Φ and therefore

has no effect on the M-step).

The importance density ht we use is a multivariate Student t-distribution, as Booth and Hobert

(1999) suggested. This has proved to be a very efficient choice when the unknown distribution

is approximately ellipsoidal and has a mode (Evans and Swartz, 1996). Its expectation mt and

covariance matrix Σt are re-evaluated at each step in order to be approximately:

mt = E
Φ(t) [θ|y],

Σt = V
Φ(t) [θ|y].

These quantities are obtained at each MCEM iteration by an iterative algorithm, which corresponds

to the procedure used to obtain Penalized Quasi Likelihood (PQL) estimators in GLMM models

(Breslow and Clayton, 1993). This algorithm is provided in Appendix B and has to be adapted to

the distributions Lj and link functions gj used.

Size of the importance sample

The size N of the importance sample is re-evaluated at each step in order to obtain a compromise

between the speed of the first iterations and the final precision of the estimation. N is increased

with the number of iterations by using the automatic procedure proposed by Booth and Hobert

(1999) based on a normal approximation of the Monte Carlo error. The algorithm is initialized

with a small value of N , in order to allow a fast evolution at the start when the current estimator

of the parameter may be far from the true value, and N is increased if ‖Φ(t+1) − Φ(t)‖ is small

compared to the Monte Carlo error, which means that the (t + 1)th iteration was useless because it

was “swamped” by Monte Carlo error.
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3.2 Maximization step

In our case, the M-step has an explicit solution. The parameter estimates are obtained by the

following expressions:

µ(t+1) =

n
∑

i=1

N
∑

k=1

wikθ
(t)
ik

n
∑

i=1

N
∑

k=1

wik

, (9)

Σ(t+1) =

n
∑

i=1

N
∑

k=1

wik(θ(t)
ik − µ(t+1))(θ(t)

ik − µ(t+1))T

n
∑

i=1

N
∑

k=1

wik

, (10)

which represent the weighted average and the weighted empirical variance of the importance sample

simulated at the final iteration. These expressions are obtained by deriving QN with respect to µ

and Σ and solving the equation ∂QN /∂µ = 0 and ∂QN /∂Σ = 0 respectively. The reader is referred

to Appendix C for a detailed proof of equation (10) in the bivariate case. The proof of equation (9)

does not pose any difficulty.

3.3 Stopping rule

The following stopping rule is used:

max
l

|Φ(t+1)
l − Φ

(t)
l |

√

V(Φ̂l) + δ1

< δ2, (11)

where δ1 = 0.001, δ2 = 0.01 and l labels the parameters. The asymptotic variance of the parameter

estimates V(Φ̂) is obtained by using an estimate of the observed Fisher information evaluated at

the current parameter estimate (Booth and Hobert, 1999; Tanner, 1991).

Dividing by
√

V(Φ̂l) instead of |Φ(t)
l |, which is used in standard convergence criterions for deter-

ministic EM algorithms, avoids unnecessary iterations when the estimate is very small compared to

its standard error. The algorithm is stopped when rule (11) is satisfied for 3 consecutive iterations,

in order to “reduce the risk of stopping the algorithm prematurely because of an unlucky Monte

Carlo sample” (Booth and Hobert, 1999).
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4 Simulation studies

Results for two of the submodels presented in Section 2, namely the bivariate Poisson-lognormal

model (BPLN) and the Binomial-Poisson model, are shown in this section. The Poisson-Normal

model is in fact easier to estimate than the bivariate Poisson-lognormal model, since there is only

one hidden variable θ1 instead of two. The results of this submodel are very similar to those of the

BPLN submodel and therefore not presented here.

The range of parameters which can be estimated and problems of ”practical” identifiability of

parameters are studied briefly in the context of the BPLN model. In the Binomial-Poisson case we

discuss the precision of the asymptotic standard deviation of the parameter estimates for different

sample sizes.

Computer code (in R) is available from the authors upon demand.

4.1 BPLN model

A result of a single run of our estimation procedure is given in Figure 2.

µ1 µ2 σ2
1 r σ2

2

true value ϕ 1 0 0.5 -0.3 2

mean estimate ϕ̄ 1.00 0.00 0.49 -0.30 1.98

mASD 0.05 0.10 0.07 0.10 0.27

ESD 0.05 0.09 0.07 0.08 0.23

% IC95 96 99 97 95 97

Table 1: Results for the BPLN model obtained on ns = 100 runs with samples of size n = 400.

Our algorithm converged in about 60 iterations. The size N of the importance sample was

plotted to illustrate the automatic increase of N with the number of iterations. N increased from

an initial value of 10 to 10000 at convergence of the algorithm. The boxplot at the final iteration

indicates the results obtained on ns = 100 datasets of size n = 400 simulated with the same

parameters (µ1 = 1, µ2 = 0, σ2
1 = 0.5, σ2

2 = 2, r = −0.3). These results show that our estimation

is centered on the true value of the parameters, and the variance of the estimators is reasonably

small.

Each run of our algorithm provides an estimation of the asymptotic standard deviation (ASD)

13
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Figure 2: MCEM simulation result for the BPLN model. The true values of the parameters are

represented by the horizontal dashed line. The boxplots at the last iteration were obtained on 100

datasets simulated with the same parameters with n = 400

of the parameter estimates. Let ϕ denote an element of the set of parameters Φ. The final estimates

of the parameters (ϕ̂), the mean asymptotic standard deviation (mASD), the empirical standard

deviation (ESD) and the percentage of ASD leading to a 95% confidence interval (ϕ̂ ± 1.96 ASD)

containing the true value ϕ (% IC95) are given in Table 1. The ESD was calculated for each

parameter ϕ by the following formula :

ESD(ϕ̂) =

√

∑ns
s=1(ϕ̂s − ϕ̄)2

ns − 1
,

where ns is the number of runs of our algorithm, ϕ̂s is the estimate of ϕ obtained at run s and ϕ̄

is the mean calculated over the ns simulations.

Parameter identifiability and estimation limits:

Due to the properties of the Poisson distribution, the correlation coefficient r of the BPLN model

is not identifiable for some parameter values: a large mean associated with a small variance for the

variable eθ leads to a bad estimation of r (see Table 2), because a Poisson distribution with high

14
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mean will have a high variance, so the variance of the Poisson will erase or ”swamp“ the correlation

between variables.

E(eθ) V(eθ) µ = E(θ) σ2 = V(θ) r

true value ϕ 2 2 0.49 0.41 -0.9

estimate ϕ̄ ± 1.96 ESD 0.475 ±0.2 0.41 ±0.23 −0.78 ± 0.35

true value ϕ 2 100 -0.94 3.26 -0.9

estimate ϕ̄ ± 1.96 ESD -0.97 ±0.18 3.35 ±0.2 −0.88 ± 0.2

true value ϕ 100 2 4.61 2 · 10−4 -0.9

estimate ϕ̄ ± 1.96 ESD 4.6 ± 0.02 10−3 ± 2 · 10−3 −0.09 ± 1.8

Table 2: Identifiability of the correlation coefficient r for the BPLN model. Results obtained over

100 datasets of size n = 400 simulated with parameters µ1 = µ2 = µ, σ2
1 = σ2

2 = σ2 and r = −0.9.

4.2 Binomial-Poisson model

The final estimates obtained on ns = 500 data samples of size n = 400 simulated according to the

Binomial-Poisson model with parameters µ1 = 0, µ2 = 0, σ2
1 = 2, σ2

2 = 1, r = −0.8 and nb = 10 are

given in Figure 3 and in Table 3.

One of the advantages of this estimation procedure is the possibility to obtain with a single run

of our algorithm the asymptotic standard deviation (ASD) of the parameter estimates. The ASD

is very reliable when the data size is large, so our algorithm can be run only once to obtain the

parameter estimates with an accurate confidence interval. To show this, we compared the precision

of the mean ASD (mASD) with the empirical standard deviation (ESD) calculated over 500 runs.

To take into account the variability of the ASD estimates over the ns simulations, we tested for

each run if the true value of the parameter was in the 95% confidence interval obtained using the

corresponding ASD estimate (% IC95). The percentage of positive tests are given above each plot

and in Table 3.

Influence of sample size on the ASD estimates:

To see if the ASD remains reliable with smaller sample sizes, we performed a similar procedure on

100 runs of our algorithm on data samples simulated according to a Binomial-Poisson model with

parameters µ1 = 2, µ2 = 1, σ2
1 = 2, σ2

2 = 1, r = 0.8 and different sample sizes.
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Figure 3: Histograms of the parameter estimates of the Binomial-Poisson model over 500 runs and

true values (bold line). The 95% confidence interval was computed using the mean asymptotic

standard deviation (dashed lines). The percentage of ASD leading to a 95% confidence interval

which contains the true parameter value is given above each plot. Bottomright: example of a

dataset simulated with these parameter values (both θ and Y are represented)
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µ1 µ2 σ2
1 r σ2

2

true value 0.0 0.0 2.0 -0.8 1.0

mean estimate 0.00 -0.01 2.00 -0.80 1.00

mASD 0.08 0.08 0.22 0.05 0.14

ESD 0.08 0.08 0.22 0.05 0.14

% IC95 94.4 93.8 94.4 95.6 96.2

Table 3: Results for the Binomial-Poisson model obtained on 500 runs with samples of size n = 400.

µ1 µ2 σ2
1 r σ2

2

size n true value 2.0 1.0 2.0 0.8 1.0

400 mean estimate 2.00 1.00 1.99 0.81 1.00

200 2.00 0.99 2.03 0.81 1.00

100 1.98 0.99 1.92 0.82 1.04

50 2.00 0.96 2.11 0.82 1.02

30 1.98 1.01 1.88 0.82 0.91

Table 4: Mean estimates of the parameters of the Binomial-Poisson model over 100 runs for different

sample sizes. The Standard deviation of the estimates are given in Table 5.

The resulting mean parameter estimates are given in Table 4 and the evolution of the ASD

with the sample size is provided in Table 5 for n ∈ {30, 50, 100, 200, 400}. As expected, the mean

estimates and the ASD become worse when the sample size becomes smaller, but they remain

meaningful to test for example for a positive or negative correlation.

5 An application to beehive data

In this section we illustrate our model on two bivariate datasets extracted from a survey of the

activity of honey-bee colonies over a large observatory in the south of France.

5.1 Beehive dataset

300 hives nested in 20 apiaries were weighed every two days during 24 days in June 2009. The

variation with time of the weight of individual hives was modeled by a logistic curve in order to

estimate the maximum weight gain over this period for each hive. This weight gain is a continuous
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size n µ1 µ2 σ2
1 r σ2

2

400 mASD 0.10 (94%) 0.06 (96%) 0.26 (96%) 0.05 (94%) 0.10 (95%)

ESD 0.10 0.06 0.26 0.04 0.09

200 mASD 0.14 (91%) 0.09 (96%) 0.37 (92%) 0.07 (93%) 0.15 (95%)

ESD 0.15 0.09 0.40 0.06 0.15

100 mASD 0.19 (97%) 0.13 (92%) 0.50 (90%) 0.09 (90%) 0.22 (93%)

ESD 0.16 0.14 0.57 0.12 0.25

50 mASD 0.28 (94%) 0.18 (96%) 0.79 (94%) 0.14 (90%) 0.31 (95%)

ESD 0.29 0.19 0.80 0.12 0.31

30 mASD 0.36 (93%) 0.23 (95%) 0.98 (83%) 0.22 (90%) 0.39 (86%)

ESD 0.35 0.22 1.05 0.17 0.35

Table 5: Evolution of the mean asymptotic standard deviation (mASD) and the empirical standard

deviation (ESD) with the sample size for the Binomial-Poisson model estimated in Table 4. The

percentage of ASD leading to a 95% confidence interval which contains the true parameter value

are given between brackets. These results were computed over 100 runs of the algorithm.

variable that corresponds mainly to the production of honey during the 24 day period (in kg) and is

denoted WG. The number of capped brood cells was measured in each hive at day 0, 12 and 24 (D0,

D12, D24) and is used as a proxy for new bee recruitment (C0, C12, C24). Since the development

from a capped cell to an emerging bee is 12 days for a working bee, the counts at a 12-day interval

are considered non-overlapping, and thus the sum of C0, C12 and C24 is used to estimate the new

bee recruitment over the whole period.

The number of ectoparasite mite Varroa jacobsoni was measured for each honey-bee colony on a

sample of 20 g of adult bees (corresponding to approximately 150 bees) at D0 and D24 (V0, V24).

The Varroa mite has an economic impact on the beekeeping industry and may be a contributing

factor to colony collapse disorder (CCD). A recent study by Guzmán et al. (2010) shows that it is

the main factor for collapsed colonies in Ontario, Canada.
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We considered 3 variables from this dataset for each hive: the total number of capped brood

cells (C=C0+C12+C24 divided by 100), the total number of parasites (V=V0+V24) and the weight

gain (WG), which is a positive continuous variable.

0 50 100 150

0
50

10
0

20
0

C=(C0+C12+C24)/100

V
=

V
0+

V
24

Figure 4: Number of capped cells (C)

and number of Varroa mite (V) for 259

beehives (hives with missing data were

excluded)

0 10 20 30 40 50 60 70

0
50

10
0

15
0

C=(C0+C12+C24)/100

W
G

Figure 5: Number of capped cells (C)

and weight gain in kg (WG) for 269

beehives (hives with missing data were

excluded)

5.2 Results

The BPLN model was used to fit the bivariate distribution of capped brood cell number (C) and

bee mite number (V) given in Figure 4. The Poisson-Normal model was used for the count variable

C and the continuous variable WG (Figure 5). An exponential inverse link function was used for

the continuous variable, in order to satisfy the condition WG > 0, so WG = Y2 = eθ2 .

The estimation results for the two models are given in Table 6. As expected, the number of

capped brood cells C is negatively correlated to the number of parasites V, whereas the hive weight

gain is positively correlated to C. The estimates of the parameters µ1 and σ2
1, which correspond to

the count variable C in both models, are very close, so the estimation procedure is stable. In the

Poisson-Normal model the maximum likelihood estimators of µ2 and σ2
2 are obtained in 1 iteration

and correspond to the empirical marginal mean and variance of the continuous variable log(WG)

= θ2.
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C–V C–WG

Parameter Estimate ASD Estimate ASD

µ1 4.32 0.03 4.33 0.02

σ2
1 0.18 0.02 0.16 0.01

r -0.26 0.06 0.33 0.06

µ2 3.59 0.06 2.71 0.04

σ2
2 0.95 0.09 0.43 0.06

Table 6: Estimation results and asymptotic standard deviation (ASD) of the BPLN model (variables

C and V) and of the Poisson-Normal model (variables C and WG). Index 2 for the parameters refers

respectively to the number of Varroa mites V (count variable) in the first case and to the weight

gain WG (continuous variable) in the second case.

6 Discussion

In this article a general parametric model for multivariate data of various types is presented and a

maximum likelihood estimation method, based on a variant of the Monte Carlo EM proposed by

Booth and Hobert (1999), is provided. The hierarchical structure of the model and the estimation

procedure are easy to adapt to different distributions and link functions which are used to obtain

data of different types in our model. It also provides the asymptotic standard deviation of the

estimators, which are a useful indication of the precision of the estimation for a small computational

effort.

Limits of this method are first due to the model, some parameters cannot be estimated and

there may be identifiability issues for some parts of the parameter domain, as shown in Section 4.

Estimation issues can arise when the variance of the hidden model is too high.

Possible extensions of this model include spatial studies, GLMM models with multivariate ran-

dom effects of different types (McCulloch and Searle, 2001), and mixture models. A spatial auto-

correlation model could be introduced in the data, in a similar way to the work of Chagneau et

al. (2010), but in a maximum likelihood framework without prior distributions on the parameters.

This model could also be used in the context of GLMM models, the field in which this estimation

procedure was proposed by Booth and Hobert (1999), when multivariate random effects can be

defined (see for example Lai and Yau, 2008; Wang et al., 2006). Finally, the class of distributions
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we defined in this paper could be used in a multivariate finite mixture model in a clustering context.

It would allow clustering of all kinds of variables and even to data containing attributes of different

types, which, to our knowledge and according to Fraley and Raftery (2002), has not been achieved

yet. Moreover, our MCEM estimation procedure would be a direct extension of the EM procedure

which is traditionally used to estimate multivariate mixture models.

Appendices

A Unconditional moments of the bivariate Binomial-Poisson model

Let us recall the bivariate Binomial-Poisson model given in Section 2.3.3:


























Y1|θ1 ∼ B(nb,
1

1+e−θ1
)

Y2|θ2 ∼ P(eθ2)

(θ1, θ2)T ∼ N2(µ, Σ),

For sake of simplicity, we omit the index i in this appendix section and write θ1 instead of θi1.

Let Φ denote the vector of unknown parameters (µ1, µ2, σ11, σ22, σ12). To initialize our MCEM

estimation procedure, an approximation of the parameter vector Φ can be obtained by the method

of moments.

The moment estimators of µ2, σ22 are obtained directly by using the following equations (given

in Section 2.3.1):

E(Y2) = eµ2+ 1
2

σ22
def
= m2, (12)

V(Y2) = m2 + m2
2 (eσ22 − 1)

def
= v2. (13)

Equations (12) and (13) yield:

µ̂2 = 2 log(m2) − 1
2

log(v2 − m2 + m2
2),

σ̂22 = log(v2 − m2 + m2
2) − 2 log(m2).
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To obtain moment estimators for µ1, σ11, σ12, we write the following statistics:

E(Y1) = nbE

( 1
1 + e−θ1

)

= nb

∫

R

1
1 + e−θ1

1√
2π

e
− 1

2

(θ1−µ1)2

σ11 dθ1 = nbF1(Φ),

E(Y 2
1 ) − E(Y1) = nb(nb − 1)E

( 1
(1 + e−θ1)2

)

= nb(nb − 1)F2(Φ),

E(Y1Y2) = E(E(Y1Y2|θ1, θ2)) = E(
nb

1 + e−θ1
eθ2) = nbF3(Φ),

where:

F1(Φ) =
∫

R

1
1 + e−θ1

1√
2π

e
− 1

2

(θ1−µ1)2

σ11 dθ1

F2(Φ) =
∫

R

1
(1 + e−θ1)2

1√
2π

e
− 1

2

(θ1−µ1)2

σ11 dθ1

F3(Φ) =
∫∫

R2

eθ2

1 + e−θ1

1
2π|Σ|1/2

e− 1
2

(θ−µ)Σ−1(θ−µ)dθ1dθ2.

With the change of variable Z1 = θ1−µ1√
σ11

, we have dZ1 = dθ1√
σ11

, θ1 =
√

σ11Z1 + µ1 and F1(Φ)

becomes:

F1(Φ) =
∫

R

1
1 + e−(

√
σ11Z1+µ1)

1√
2π

e− 1
2

Z2
1 dZ1

With the change of variable ZT = (θ − µ)T |Σ−1/2|, we have θ = |Σ1/2|Z + µ. We have to find:

Σ1/2 =







a b

b c






.

such that a > 0, c > 0 and ac − b2 ≥ 0 (Σ1/2 has to be positive definite). The solution is:

a =
σ11 + ∆

H

c =
σ22 + ∆

H

b =
σ12

H
.

where ∆ =
√

σ11σ22 − σ2
12 and H =

√
σ11 + σ22 + 2∆. Thus we have:

θ1 = aZ1 + bZ2 + µ1

θ2 = bZ1 + cZ2 + µ2

and F3(Φ) becomes:

F3(Φ) =
∫∫

R2

ebZ1+cZ2+µ2

1 + e−(aZ1+bZ2+µ1)

1
2π

e− 1
2

ZT Zdθ1dθ2.
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The Newton-Raphson iterative procedure was used to obtain moment estimators for µ1, σ11, σ12.

We need to compute the derivatives:

∂F1

∂µ1
=

∫

R

e−(
√

σ11Z1+µ1)

(1 + e−(
√

σ11Z1+µ1))2
Φ0(dZ1)

∂F1

∂σ12
= 0

∂F1

∂σ11
=

∫

R

Z1

2
√

σ11

e−(
√

σ11Z1+µ1)

(1 + e−(
√

σ11Z1+µ1))2
Φ0(dZ1)

∂F2

∂µ1
=

∫

R

2e−(
√

σ11Z1+µ1)

(1 + e−(
√

σ11Z1+µ1))3
Φ0(dZ1)

∂F2

∂σ12
= 0

∂F2

∂σ11
=

∫

R

− Z1√
σ11

e−(
√

σ11Z1+µ1)

(1 + e−(
√

σ11Z1+µ1))3
Φ0(dZ1)

∂F3

∂µ1
=

∫∫

R2

R1R2

(1 + R1)2
Φ0(dZ1, dZ2)

∂F3

∂σ12
=

∫∫

R2

(b12Z1 + c12Z2)R1(1 + R2) + R1(a12Z1 + b12Z2)R2

(1 + R2)2

∂F3

∂σ11
=

∫∫

R2

(b11Z1 + c11Z2)R1(1 + R2) + R1(a11Z1 + b11Z2)R2

(1 + R2)2
,

with the notations:

R1 = e−(aZ1+bZ2+µ1)

R2 = e(bZ1+cZ2+µ2)

a11 =
∂a

∂σ11
=

(σ22 + 2∆)H2 − (σ11 + ∆)(σ22 + ∆)
2∆H3

a12 =
∂a

∂σ12
=

σ12(σ11 − H2 + ∆)
∆H3

b11 =
∂b

∂σ11
= −σ12(σ22 + ∆)

2∆H3

b12 =
∂b

∂σ12
=

σ2
12 + ∆H2

∆H3

c11 =
∂c

∂σ11
=

σ22H2 − (σ22 + ∆)2

2∆H3

c12 =
∂c

∂σ12
=

σ12(σ22 − H2 + ∆)
∆H3

.
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Distribution p = g−1(θ) λ = E(Yj |θ) g(λ) ∂g(λ)/∂λ v = V(Yj |θ)

Poisson(p) eθ p = eθ log(λ) e−θ eθ

Binomial(nb,p)
1

1 + e−θ
nbp =

nb

1 + e−θ
log

λ

1 − λ

(1 + e−θ)2

nbe−θ
nbp(1 − p) =

nbe−θ

(1 + e−θ)2

Table 7: Expressions of λ, v and gλ(λ) for the Poisson distribution and the Binomial distribution

with fixed number of trials nb.

B PQL estimators of the conditional moments for different distri-

butions and link functions

The parameters mt and Σt of the multivariate Student t distribution used in the E-step of the

MCEM to obtain an importance sample, are re-evaluated at each step in order to be approximately:

mt = E
Φ(t) [θ|y],

Σt = V
Φ(t) [θ|y].

The Penalized Quasi Likelihood (PQL) estimators of these conditional moments are obtained by

using a Laplace approximation of the likelihood and a Fisher scoring maximization procedure.

At iteration (t+1) of the MCEM algorithm, the Fisher scoring iterative algorithm is used, given

by:

m
(k+1)
t = m

(k)
t + (W (m(k)

t ) + Σ−1)−1
(

W (m(k)
t )∆(m(k)

t )(y − λ(m(k)
t )) − Σ−1(m(k)

t − µ)
)

,

Σ
(k+1)
t =

(

W (m(k+1)
t ) + Σ−1

)−1
,

where µ and Σ are the current estimators of the mean and variance of θ (from the MCEM iteration

t), and the matrices λ(m(k)
t ), W (m(k)

t ) and ∆(m(k)
t ) are defined (for a single-parameter exponential

distribution) by:

λi =
∂b(η)

∂η
= E(Yj |θ),

vi =
∂2b(η)

∂η2
= V(Yj |θ),

gλ(λi) =
∂g(λi)

∂λi
,

W (λ) = diag
( 1

vig2
λ(λi)

)

,

∆(λ) = diag(gλ(λi)),
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where diag(xi) denotes a diagonal matrix with diagonal element xi (at row and column i) and with

the notations of section 2.2. The PQL estimators of mt and Σt should thus be adapted to the

model by calculating these expressions for the chosen distributions L and link functions g (cf table

7).

C Maximum likelihood estimators of the multivariate normal pa-

rameters in the M-step of the MCEM

The maximum likelihood estimator of Σ is obtained by deriving QN with respect to Σ and solving

the equation ∂QN /∂Σ = 0. This is equivalent to solving ∂QN /∂Γ = 0 where Γ = Σ−1. The result,

provided in equation (10), is recalled here:

Σ̂ =

n
∑

i=1

N
∑

k=1

wik(θik − µ̂)(θik − µ̂)T

n
∑

i=1

N
∑

k=1

wik

Proof of (10) in the bivariate case:

QN (Φ, Φ(t)) =
n

∑

i=1

E
Φ(t) [log(fθ(θi; µ, Σ))|Yi = yi]

=
1
N

n
∑

i=1

N
∑

k=1

wik

(

log(fθ(θik|µ, Σ))
)

= c +
1

2N

n
∑

i=1

N
∑

k=1

wik

(

− log |Σ| − (θi − µ)T Σ−1(θi − µ)
)

= c + u(Σ)

where c = − 1
2N

n
∑

i=1

N
∑

k=1

wik log(2π) is a constant.

Let Γ = Σ−1. Then |Σ| = |Γ|−1 and u(Σ) is replaced by:

v(Γ) =
1

2N

n
∑

i=1

N
∑

k=1

wik

(

log |Γ| − (θi − µ)T Γ(θi − µ)
)

.

Solving ∂u(Σ)/∂Σ = 0 is equivalent to solving ∂v(Γ)/∂Γ = 0. We denote Γ = (γll′) where
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l, l′ ∈ {1, 2} , µ = (µ1, µ2) and θ = (θ1, θ2). We have:

∂v(Γ)
∂γ11

=
1

2N

n
∑

i=1

N
∑

k=1

wik

(γ22

|Γ| − (θ1 − µ1)2
)

∂v(Γ)
∂γ22

=
1

2N

n
∑

i=1

N
∑

k=1

wik

(γ11

|Γ| − (θ2 − µ2)2
)

∂v(Γ)
∂γ12

=
1

2N

n
∑

i=1

N
∑

k=1

wik

(

− γ12

|Γ| − 2(θ1 − µ1)(θ2 − µ2)
)

and γ12 = γ21. ∂v(Γ)/∂Γ = 0 is equivalent to:

γ11

|Γ| =
∑n

i=1

∑N
k=1 wik(θ2 − µ2)2

∑n
i=1

∑N
k=1 wik

γ22

|Γ| =
∑n

i=1

∑N
k=1 wik(θ1 − µ1)2

∑n
i=1

∑N
k=1 wik

γ12

|Γ| =
−2

∑n
i=1

∑N
k=1 wik(θ1 − µ1)(θ2 − µ2)
∑n

i=1

∑N
k=1 wik

.

Since:

Σ = Γ−1 =
1

|Γ|







γ22 −γ12

−γ12 γ11







we have:

σ11 =
γ22

|Γ|

σ22 =
γ11

|Γ|

σ12 = −γ12

|Γ| .

It follows that:

Σ̂ =
∑n

i=1

∑N
k=1 wik(θ − µ̂)(θ − µ̂)T

∑n
i=1

∑N
k=1 wik

.
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