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Abstract

We say that a function f defined on R or @, has a well defined weak Mellin transform
(or weak zeta integral) if there exists some function My (s) so that we have Mell(¢ x f,s) =
Mell(¢, s) My (s) for all test functions ¢ in C2°(R*) or C°(Qy). We show that if f is a non
degenerate second degree character on R or Q,, as defined by Weil, then the weak Mellin
transform of f satisfies a functional equation and cancels only for R(s) = 1. We then show
that if f is a non degenerate second degree character defined on the adele ring Ag, the same
statement is equivalent to the Riemann hypothesis. Various generalizations are provided.
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1 Introduction

It has been a standard practice, since Riemann’s 1859 paper [5], when considering the zeta

function ) .
C(S):Zﬁznl,L
e

n>1 P

to add a “gamma factor” :
™

in order to build a “completed zeta function”

T2
which satisfies the functional equation =(s) = Z(1 — s)
However the link between this gamma factor associated to the “infinite prime” and the usual
factors 1_% still remains a mistery.
The “modern” approach to the functional equation of the the zeta function, developped by
John Tate in his thesis [7], is to introduce the ring of adele Ag, consider that the function Z(s)
is the zeta integral of the function

$(a) = e @, 17, ()

and show that the functional equation of =(s) is a consequence of the equality §(¢) = ¢ using
Poisson summation formula.

This approach, however, does not manage in the same way the “infinite prime” and the
finite primes : the function e~™" seems to have nothing to do with the functions 1z, and this
“symmetry breakdown” is not consistent with the modern idea that all the places of a number
field should be put on the same footing.

In this paper, we show that the gamma factor at the infinite prime and the factors $
at finite primes are very close to be the Mellin transforms of the “same” function , from an
algebraic point of view, on R and Q,. Finding an algebraic equivalent to e~ for the finite
places does not seem to be possible, but we observe that that finding an algebraic equivalent
to e~™iz” ig straightforward : this function can be written as Q/JR(%) where YR is the standard
additive character e 2™ on R, so that its “algebraic equivalent” on the finite places could be

wp(””;) where 1), is the standard additive character on Q,.



The Mellin transforms (or zeta integral) of these functions are not well defined in the usual
sense, but it is possible to extend the definition of the Mellin transform using the fact that if
f % g is the multiplicative convolution product, we have Mell(f x g) = Mell(f) Mell(g) : We say
that a function f on R or Q, has a well defined “weak Mellin transform” at the character |z|® if
there exists a function My(s) so that for any smooth test function ¢ with compact support in
the multiplicative group R* or Qy, we have the equality Mell(¢ « f, s) = Mell(¢, s) M (s). Using
this definition, it is possible to prove that the weak Mellin transforms of lﬁm(%) and Q/Jp(%) are
well defined for R(s) > 0 and that we have

oo

o Mell(too(5)) = e~*% T2

T

[N

o For p=2, Mell(thy(L), 5) = L (2175(1 — 257 1) 4 ¥ 25(1 — 27%))

2
e For p # 2, Mell(y, (%), s) 1_;,5
We can in the similar way define on the ring of adeles Ag the weak Mellin transform ( or

weak zeta integral) of the global function f(x) = z/;(é) = 1/)00(%) ® 7,/12(%‘7).. ® wp(z—;).., show
that it is well defined for R(s) > 1, and equal to the product of the local Mellin transforms. We
then get the global formula :

Mell(w(%), 5) = e~ (2175(1 — 257 1) 4 e T 25(1 — 27%))=(s)

If we note Z;(s) this function, Z; has an analytic continuation and satisfies a functional
equation

Ef(s) =Ef(1—3)
It is possible to adapt Tate’s Thesis in order to show that this functional equation is a consequence
of the fact that the Fourier transform of 1/1(%) ( considered as a distribution) is equal to its
complex conjugate z/?(%)
=y appears to be the product of the completed zeta function Z and a non trivial entire

function e=5% (2175(1 — 2571) 4 ¢ 25(1 — 27%)). It is natural to investigate the zeroes of this
1

entire function, and it appears that all these zeroes lie on the line R(s) = 5.

This result can be generalized, and the main objective of this paper is to study how far this
generalization is possible. Let’s first remark that the function 1/1(%) belongs to a class of function
called “second degree character” by Weil in his celebrated 1964 “Acta” paper [§8]. A continuous
function f defined on a locally compact abelian group G with values in the torus T is called a
second degree character if the function f(z + y)f(x)~1f(y)~! is a bicharacter, i.e. is a group
character as a function of x and as a function of y. On Ag, the second degree characters are of the
form v (42? + bx), whith @ and b in A. Weil showed in [8] that if such a second degree character
f is non degenerate ( on Ag, this is equivalent to a being an idele), its Fourier transform can
be written as % f(£) where 7y is some scalar ( now called the Weil index) satisfying |ys| = 1.
Combining this result with Tate’s Thesis, we show that if f is a non degenerate second degree
character on Ag, and x a Hecke character on the idele group Aé, the weak Mellin transform of
f at the character |z|*x(z) is well defined for R(s) > 1 and has an analytic continuation with
possible poles at 0 and 1. If we keep the notation E;(s, x) for the analytic continuation of =y,
we have a functional equation

Er(s,x) = rlalz™x(a)E, (1 - 5, x)



For R(s) > 1, Zf can be expressed a an Euler product Zf(s, x) = [[, ¢y, (s, x) where each local
function (5, = Mell(f,, s, xv) satisfies a functional equation

Cr, (s, x0) = p(s, xo)vs,lald ™" Xu(a)Cr, (1 — 5, x0)

where p(s, xv) are the local constants defined by Tate in his Thesis. The functions (s, can
be explicitly computed._ F02r example, on R, the weak Mellin transform of the second degree
character foo(x) = e~ 2mi(52°+b2) can be described using the confluent hypergeometric function
1 I for a >0 as v
e ST I(3) s 1 wib?
= 2L F(2, 2, —
ul0) = S BB 5 )
and the functional equation of (s _ is equivalent to Kummer’s formula
e’1F1(a,b,—x) = 1F1(b—a,b, x)

The set of zeroes of Z¢(s, x) can be split in two classes : the “local ” zeroes, which are zeroes
of one of the local functions (¢, (s, xv) at some place v, and the “global” zeroes which are the non
trivial zeroes of the Hecke L-function L(s, x) associated to the Hecke character .

We prove that all the “local” zeroes lie on the line R(s) = %, so that the Riemann hypothesis
for L(s, ) is equivalent to the fact that all the zeroes of (s, x) lie on the axis R(s) = 1. This
result is valid for any number field and any Hecke L-function with the following restrictions on
the choice of the second degree character f :

e If [ is a second degree character on Ap with F' # Q, f may not be factorizable ( for
example f(x) = ¢ (xo(x)) where o is the automorphism of Ay associated to an element of
the Galois group of F over Q). We have, however to assume that this is the case, i.e. that
f(c) can be written as [[, fu(,) in order to prove that the weak Mellin transform of f is
well defined.

e If f is factorizable, f, is not necessarily of the form 1, (%x* + bx) : It can be written as
Vu(32a(z) + br) where « is any continuous additive function on F,, and we have to put
some conditions on « in order to get a functional equation.

e On C, the zeroes of the Mellin transform of f(z) = 1c(%2% + bz) do not all lie on the axis
R(s) = 1. However, if we take the second degree character f(z) = 1c(%|z|> +bz) , then all

the zeroes of (s lie on the axis R(s) = 3.

The local part of this theory can be generalized to second degree characters defined over finite
dimensional vector spaces. More precisely, if f is any continuous function defined on L™, where
L is some non discrete locally compact field, and if ¢ is a function in C°(GL, (L)), we define
the operator f +— A(¢)f by the formula

(@) (v) = /G o, PO

We show that if f is a non degenerate second degree character on L™ and ¢ € C°(GL, (L)),
then A(¢)f is a Schwartz function on L™. We then consider the maximal compact subgroups
K =GL,(0yp) if L is alocal field and K = O(n) or U(n) if L is R or C, and the invariant norms
on L™ associated to K, i.e. [[v]| = max(|v;|) or |lv]| = \/>,;|vi]>. We then define the Mellin
transform of a function in L™ y the formula

M) = [ Tl

[l




which is well defined for Schwartz functions when R(s) > 0. If ¢ is invariant for the left and right
action of K, i.e. ¢(k1gke) = ¢(g) for all k in K, the function A(¢)||v]|® is equal to ||v]|® up to a
scalar factor, which we note &s(¢). It is then immediate that if ¢ is a function in C°(GL,, (L))
satisfying the same condition, we have

M()‘((b)fa 8) = gs—n(qﬁ*)M(fa 8)

where ¢*(g) = ‘de—ltg‘gb(g’l). Using this formula, it is possible to give a definition for the weak
Mellin transform of a non degenerate second degree character on L™ similar to the definition
given for n = 1. If we note (¢(s) the weak Mellin transform of a non degenerate second degree
character f defined on L™ and if the endomorphism associated to f is a dilation, then (f(s) and
Cs(n — s) are related by a functional equation and all the zeroes of (y, lie on the axis R(s) = 5
if L is a local field or L = R.

We then show how the concept of weak Mellin transform on a vector space can be generalized,
replacing the function [|u||®, which is naturally associated to the trivial representation of K, by
similar functions v, s(z) naturally associated with spherical representations (m, Vy) of K. If we
note (f(s,m) the weak Mellin transform of a non degenerate second degree character f defined
on R™ in this way and if the endomorphism associated to f is a dilation, then we prove again

that the zeroes of (y, (s, 7) lie on the axis $(s) = 3.

Notations

We will usually call L a locally compact field,which we always assume to be non discrete and
have characteristic zero, F' a number field and A the ring of adeles associated to F.

The standard additive character on L will be noted ¢, or ¢ if no ambiguity is possible.
Explicitly, we have ¢p(z) = e72™, c(z) = e 2™+ g (2) = 2@ where A(z) € Q is
any rational number of the form ]% satisfying A(z) —z € Z,. If Q, is a local field of residual
characteristic p, we have 1q, = ¥qg, o T'rg, /g, We note dr the Haar measure of L considered
as an additive group, and d*x the Haar measure of L* considered as a multiplicative group.
These Haar measures are normalized following Tate’s Thesis (cf [7]): dx is normalized so that
the Fourier inversion formula is valid. The Fourier transform is defined as

3(H)(y) = / F(@)b(ey)de

d*x is normalized in the following way : on R, we write d*xz = %; on C, we write d*z = 4= =

lzl¢

On Q,, we write Z, the ring of integers and Z the group of units. The additive measure of

Zyp is equal to 1, and we normalize the multiplicative measure so that the measure of Z is equal
1 dx
-1 Tz[
If S is any set, we note 1g the characteristic function of this set. For example, 1z, is the
characteristic function of Z,,.

If Qp is a general local field of residual characteristic p, with group of units O,°, we normalize
_1

d*z so that the measure of Oy is equal to (N9)~2 ( where 0 is the different of Q,). The additive
measure of the ring of integers O, is also set to (A )~ and we have

to one. We then have d*z =

1 dx

v = —
1*/\Tp|50|

(1.1)



On a L-vector space L™, we note K the maximal compact subgroup of GL, (L), ie. K =
GL,(Op) if L is local, K = O(n) if L is real, K = U(n) if L is complex.

We note Ay the group of ideles of F.. The Mellin transforms of a function ¢ defined on L*
or A} ( called zeta integral in Tate’s Thesis) are defined for s € C and a multiplicative unitary
character x as

Mell(f.s.) = [ f@)lafx(@)as

or

Mell(f.s0) = [ f(@lel*x(@)d*a

Note that on R, the definition we use is different from the usual definition of the Mellin transform,
wich considers an integral from 0 to co only. We say that a Mellin transform is well defined at
(s, x) if the associated integral converges absolutely. The functional equations proved by Tate in
his thesis can then be written in the following way :

Proposition 1 (Tate local functional equation) If ¢ is a Schwartz function on a locally compact
field L, we have for 0 < R(s) < 1 the equality

Mell(¢, s, x) = p(s, x) Mell(§(f),1 — s, X) (1.2)
where p(s,x) s a function of s and x but does not depend on ¢

Proposition 2 (Tate global functional equation) If ¢ is a Schwartz function on Ap and x a
Hecke character, then Mell(¢, s, x) is well defined for R(s) > 1, and has an analytic continua-
tion to C with possible poles at 0 and 1. If we keep the notation Mell(¢, s, x) for the analytic
continuations, we have the equality

Mell(¢, s, x) = Mell(F(4),1 — s, X) (1.3)

These results are proved in [7]

If G is a locally compact abelian group, we note S’(G) the space of tempered distributions
on G, i.e. the space of continuous linear functional on the Schwartz-Bruhat space S(G). If p is
an element of S’(L), the weak Fourier transform of u is defined, following Schwartz, by the usual
formula

<F(pn), ¢ >=< pu,§(p) > (1.4)

2 A connection between Tate’s Thesis and Weil 1964 ’Acta’
paper
2.1 second degree characters

Let’s now recall Weil’s definition ( cf [8]) of a second degree character : a continuous function
f defined on a locally compact abelian group G with values in the torus T is called a second
degree character if the function f(z +y)f(x)~1f(y)~! is a bicharacter, i.e. is a group character
as a function of  and as a function of y. For example, the function e=27(52°+52) with q and b
in R is a second degree character on R

To any such function, we can associate a continuous morphism g from G to G* by the formula

fla+y)f@)  fly) ' =<oy),z > (2.1)



and it is clear that this morphism has to be symmetic ( ie < o(y),z >=< o(x),y > ). A second
degree character is called non degenerate if the associated morphism p is an isomorphism. We
will always assume in this paper that the second degree characters considered are non degenerate
and continuous.

In [8], Weil gave two formulae describing the weak Fourier transform of a non degenerate
second degree character f. Theses formulae will be often used in the following sections. Proofs
of these results are avalaible in [8] or [1]. The alternative presentations and proofs we propose
below are given in order to show the striking connection between these formulae and Tate’s
Thesis. Indeed, both results can be proved using exactly the same methods.

2.2 The local functional equation

Proposition 3 (Weil local functional equation ) Let’s consider a non degenerate second degree
character f on a locally compact abelian group G and note o the morphism associated to f. Then
there exists a complex number vy satisfying |y¢| = 1 so that the weak Fourier transform of f is

equal to F=F(o™(x)

Remark : ¢ is now usually called the Weil index associated to the second degree character

f.
Proof : This proposition can also be written in the following form : for any Schwartz function
¢ in S(G), we have the formula

€ T z:i flo Yz xT)dx .
@3 = 5L [ fe @ (22)

Let’s first remind that a proof of the Tate local functional equation has been proposed by
Weil in [9] using the concept of eigendistribution by using the following proposition :

Proposition 4 (Weil) Let’s consider a locally compact field L and a continuous multiplicative
character x on L*. Then there exists, up to a scalar factor, one and only one distribution A,
satisfying for all Schwartz function ¢ in S(L) the formula

<Ay, d(uz) >=x(u) < Ay, 0 > (2.3)

Using this proposition, the proof the Tate local functional equation is a straightforward conse-
quence of the fact that F(f(uz))(z) = ﬁ S(HE).

It appears that the local functional equation for second degree characters can be proved in
the same way :

Let’s consider a second degree character f with associated symmetric morphism o so that we
have

fla+y)f@)fly) =< o(y),z > (2.4)

We can write this expression as

flz+y) < —o(y),r >= f(x)f(y) (2.5)

Let’s introduce for ¢t in T, v in G and v* in G* the operator tU, .- acting on functions defined
on G by the formula tU, ,«(f)(x) =tf(x +u) < u*,z >.
we can then write the definition of a second degree character f as



showing that f is an eigendistribution for the action of the operators tU, _,,) for all v in G and
t € T and that the associated eigenvalue is ¢ f(u).

Let’s recall that the Heisenberg group associated to G can be described as the set T x G x G*
equipped with the group law (¢, u, u*)(t',v,v*) = (tt' < v*,u >, u + v,u* + v*). It is immediate
that the map (¢, u,u*) — tU, ~ is a representation of this Heisenberg group, which is usually
called the Schrodinger representation.

We now remark that for g fixed, the set of operators of the form tU, _,¢, fort € Tand u € G
is a commutative group ( because ¢ is symmetric), and it is not difficult to see that this set is the
image of a maximal commutative subgroup of the Heisenberg group associated to G. The map
which sends the operator tU, _,,) to the scalar ¢f(u) in T is a character of this commutative
group.

This character restricts to the identity on the center (T, 0, 0) of the Heisenberg group ( because
f(0) = f(0+0) = f(0)2, so that f(0) = 1). We can then use the following proposition, attributed
to Cartier, which appears in [3], and is a consequence of the Stone-Von Neumann theorem:

Proposition 5 Let’s consider a maximal commutative subgroup A of the Heisenberg group, and
a character x of A restricting to the identity on its center. Let’s note p the Schriodinger repre-
sentation of the Heisenberg group. Then there exists, up to a scalar factor, one and only one
distribution A satisfying the formula

<A, p(a)(f) >=x(a) <A, f > (2.7)
for all a in A and all f in the Schwartz space

An immediate consequence of this proposition is that any distribution A in S’(G) satisfying for
all 4 in G the functional equation

Un,—o(u)(B) = f(u)A (2.8)

is equal to the second degree character f up to a scalar factor.

The Weil local functional equation for second degree characters is then a straightforward
consequence of the commutation relations between the Fourier transform and the operators
Uu,u* :

We know that f is a second degree character so that we have

fO0)=1=flu—u)=fu)f(-u) < —o(u),u> (2.9)

and f(u) < —o(u),u >= f(—u)
The commutation relation bewteen the Fourier transform and the operators U, ,- can be
described as :
FoUyu =< —u",u> Uy« _y0F (2.10)

If we take the Fourier transform of the formula U, _,.)(f) = f(u)f, we then get the formula

U—g(uy,—u(F(f)) =< u,0(u) >~ f(u)§(f) = F(—u)(F(f)) (2.11)
or, writing —p(u) = z, which is possible because p is assumed to be an isomorphism,
Us.o1(2(F() = Fle () (F()) (2.12)

We then remark that the second degree character f(o~'(z)) satisfies the same functional equation,
so that it is equal to F(f) up to a scalar factor using the proposition 5.



In order to show that this scalar factor has norm ﬁ, we use the Fourier inversion formula
0

and the elementary equality F(¢)(z) = F(¢)(—x) : Let’s suppose that F(f) = Af o o~ ! for some
A € C*. Then we have

F(=2) =F@(f))z = AT(f oo™ ")(x) = MelF(f)(e(~2)) = [AP|elf(~=) (2.13)
so that |\| = —X O

Vel
It should be noted that the local Weil formula can be generalized, replacing the Fourier

transform § with any operator M which normalizes the Heisenberg group. Indeed, the induced
automorphism of the Heisenberg group U — MU M ~! will map maximal commutative subgroups
to maximal commutative subgroups, so that M will map eigendistributions to eigendistributions.

2.3 The global functional equation

If the second degree character is constant on some subgroup ( for example, if a second degree
character defined on an adele ring A is trivial on F'), Weil also proved the following result :

Proposition 6 ( Weil global functional equation)

Let’s consider a non degenerate second degree character f on G, suppose that f is equal to 1
on a closed subgroup I' of F', and assume that the symmetric morphism o associated to f is an
isomorphism from (G,T) to (G*,T*). Then v(f) =1

Let’s recall that when applied to an adele ring Ap, with I" equal to the field F' embedded in
A, this theorem gives a proof of the quadratic reciprocity law on this field. We can write this
proposition in the following way : for any Schwartz function ¢ in S(G), we have the formula

1

B |Q| G*

/G £(2) 3(6) ()da Flo™ (2)6()da (2.14)

In order to prove his own global functional equation, Tate in his Thesis considers the integral

P(@)x ()| d™

Af
He then splits this integral using a fundamental domain for the action of F* on A} and applies
the Poisson summation formula to the sum on F*.

It appears that the same method can be used to prove the Weil global formula if G is an
adele ring : Let’s suppose that G is an adele ring Ap,that p is a bijection from F' to F', take
I' = F, and identify G with G* and I with I'* using the standard additive character ¢ on Ap.
Considering that |g| = 1 because A/F is compact, we have to prove that if f is our second degree
character and ¢ any Schwartz function,we have

A f(@)§ (o) (2)dw = A floe™ (@) ¢(w)dx (2.15)
Let’s then split the integral
f(@)p(x)dx

Ap

using a fundamental domain D for the (additive) action of F' on Ap, and apply the Poisson

summations formula :
Y fla) = F(H)() (2.16)

zeF zeF



Any element of Ar can be described in a unique way as r = x + 6 with x € F'and 6 € D
Note that we have, considering that f is trivial on F':

flx+6) = f(2)f(0)¢(xe(d)) = f(0)i(xa(d)) (2.17)

We now decompose the integral

/Gf(z)gb(z)dz = /M ;f(x + 0)p(x + 8)dé (2.18)
= | HOUX wloo®)oto + )8 (2.19)

We then apply the Poisson summation formula to the inner sum: we consider the Schwartz
function ¢

o(y) = ¥(yo(0))o(y +9) (2.20)

and compute its Fourier transform :

S(e)(y) = ¥(=0(e(d) +y)) F(P)(y + 0(4)) (2.21)
The integral is then equal to
|3 5000=50(0) + ) F) o + o(5)d8 (2.22)
€ zeF

The definition of the second degree character f allows us to write, considering that —o~1(z) =
0+ (=0 -0 ' (x))

»(=0(0(8) + 2)) = ¥(6(e(—0 — 07 (2))) = F(8)f (=0 — 07 () f(—2 ™" (2)) (2.23)
Considering that f(—o~!(x)) =1 for z € F, the integral becomes

/ X Fei 0 @) )+ o) (2.24)

Let’s write (0) = ¢’. It is immediate that o maps a fundamental domain of Ag for the action
of F to another fundamental domain D’

/6, o D (=078 +2) F(d) (@ + §')dd (2.25)
= | Je @)@ -x)de O (2.26)

3 The weak Mellin transform of second degree characters
defined over locally compact fields

3.1 definition of the weak Mellin transform

The definition of the weak Mellin transform that we will use is different than the one given for
the weak Fourier transform and uses the properties of the convolution product. If L is a non
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discrete locally compact field, we note C°(L*) the space of smooth functions with compact
support on L* considered as a multiplicative group . The expression “smooth” means as usual
C* if L is equal to R or C, and locally constant if L is a local field.

It is clear that C'S°(L*) is a commutative algebras for the convolution product and that if g
and h lies in C° (L), we have

Mell(g x h, s, x) = Mell(g, s, x) Mell(h, s, x) (3.1)
This motivates the following definition :

Definition 1 Lets’ consider a function f defined on L>* and assume that ¢x f is well defined for
all p € C°(L™). We say that the function My(s,x) is a weak Mellin transform of f at (s, x) if
for any function ¢ in C.(L™) , the Mellin transform of ¢p* f is well defined at (s,x) and satisfies
the formula

Mell(¢ x f,s,x) = My(s, x) Mell(¢, s, x) (3.2)

It is immediate that this definition extends the usual definition of the Mellin transform, so that
we will use the same notation for Mellin transforms and weak Mellin transforms.

3.2 description of second degree characters on a locally compact field

Let’s now describe more explicitly the non degenerate second degree characters when G is a
non discrete locally compact field L in characteristic zero. L is then a finite extension of Q, or
R, which we call the base field Ly of L. The group characters of G are simply the functions
of the form t(ax) with a in L. Any function of the form ¢ (3a(z)z) where « is a continuous
homomorphism of L considered as an additive group is clearly a second degree character, and
any function of the form < a, p(x) > can be written in this form using the isomorphism between
L and L* given by a — xq : Xa(2) = ¥(azx). All second degree characters f can then be written
in the form

flz) = w(%a(x)z + bx) (3.3)

where « is any continuous Z—module homomorphism from L to L satisfying ¢ (a(x)y) = ¥ (xa(y)).
Since we assume f non degenerate, « is then also Q-linear. Using continuity and the fact that
the closure of Q in L is equal to Lo, we then see that « has to be Lg-linear. For example, if o
is an element of the Galois group of L, it is immediate that z/)(%aa(z):c + bx) is a second degree
character, with a(x) = ao(z) and |a| = |al.

3.3 The existence of the weak Mellin transform of a seconde degree
character

Let’s now consider a second degree character f defined on L and suppose that o and b are defined
as in equation 3.3. We have a natural left action A of the multiplicative group L* on f by the
formula

Na)f(y) = f(a™'y) (3.4)
The integrated form of this action can be written, for ¢ € C°(L) as
A@w) = | ¢(a) f(z™y)d" (3.5)

We do not use the notation ¢ x f because the domain of A(¢)f is L, not L*

11



Proposition 7 If fis a non degenerate second degree character and ¢ € C°(L*), then \(@)f
is a Schwartz function on L

Proof :

Let’s first suppose that L is a local field, L = Q,. We have to show that A(¢)f is continuous (
i.e. locally constant) and has compact support. The continuity is immediate since ¢ has compact
support in L*. Let’s now show that the support of A(¢)f is compact.

We get, assuming y # 0 and using the commutativity of the convolution product

M) ()y) = . f@)pa™ y)d"x (3.6)

We observe that the integral on @, can be written as an integral on Q,, using the relation

Az = ﬁ% Let’s note ¢* the function ﬁqﬁ(%), which is also in C°(Qp), and write
¢*(0) = 0, so that ¢* can also be considered as a Schwartz function on Q,. We get

11 )

o) () y) = 1—7—|y| . f(x)o™ (y™ a)dx (3.7)

We now use the local Weil functional equation ( proposition 3)

1
17_\/|O‘ Qp

F(¢*)is Schwartz, so that it has compact support on Q,.We can then suppose that its support
is included in a ball of radius R. We also know that f o a~! is continuous and equal to 1 near
zero, so that there exists some € so that if |z| < €, then foa~!(z) = 1. It is then immediate that
if Jy| > ?, then the integral becomes

Fla™(2) §(0")(~zy)d= (3.8)

o/ RO IR (3.9)
1 ’Yf /. —1 *
= T—— a (2)F§ —zy)dz 3.10
T /<§f( () §(6) (=) (3.10)
considering that ‘—I;‘ < €, we get

S S TP T (3.11)

1Vl Qp
! L =0 (3.12)

- \/|a |

which shows that A(¢)f has compact support.

Let’s now consider the case L = R. The proposition can be considered as a simple application
of the method of stationary phase, but can also be proved directly in the following way, which
has the advantage of being fully similar to the local field case :

We consider the integral

@) (F)y) = . ¢(z)f(a™ y)d*x (3.13)



Considering that the support of ¢ is compact, we can exchange the derivation and integrations
signs and conclude that A(¢)(f) is C°°. In order to show that \(¢)(f)(y) is O(y%) in oo for all

n > 0, we write again ¢*(z) = ﬁ(b(%), ¢*(0) = 0 so that ¢* is a Schwartz function and replace

x with % in the integral so that it becomes

/R flay)é* (@)da (3.14)

We then use the local Weil formula

=Y Foa  (2)§(0)(—a)d 3.15
wI/lal e Y (y)%(fb )(—z)dx (3.15)
We then remark that
/% x)dx = ¢*(0) =0 (3.16)
and more generally, using §(f')(z) = 2wix F(f)(z), that

1 1

[ 5@ s = (G [ 36 ade = G @) PO =0 (317)

so that if P is any Polynomial, the expression is equal to
Rk Foa (D) = P(2)§(¢")(—a)d 3.18
S [[FeaT ()= PO (—a)ds (3.18)

Let’s choose P to be the polynomial of order n associated to the Taylor expansion of foa™*

in zero so that f o a~!(z) — P(x) = O(2™) near zero, and write
§(z) = foa t(z) — P(x) (3.19)

The integral becomes

] (—z)da (3.20)
Vlallyl
Let’s suppose for example y > 1 and write 2’ = f’ we get
1,/
e [ 6(—)§(67)(—a' y)da’ (3.21)
Vlayl Jr Yy

and split the integral in according to the condition |2/| < 1 and |2/| > 1 :

z z

([ S50 v+ [ ARy (322)
\/IayI <t VY 1> VY

In the first integral, we remark that §(¢*) is bounded ( it is a Schwartz function) and that
) (%) < K( f_) for y large enough, so that the expression is bounded by K. for some constant
K’. In the second integral, we use the fact that d( \/y) is bounded by K (1 + (7) ) for some K

( 0(x) is the sum of a polynomial and a function of module 1) that §(g)(—x,/y) is bounded by

(z—\l/y)Q” for y large enough to get the result
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In order to show that the derivatives of A\(¢)f are also fast decreasing, we remark that for
y # 0, we can exchange the integration and the derivation signs in the expression

d I P AN
L0 = % [ r@edT (323)
so that we get p
- [ 1@18 DT = Az (324

since 1¢/(z) is also in C2°(R*), we see that the expression is fast decreasing when y — oo

The proof is the same for the case L = C : We consider C as a R vector space, z = = + iy
and observe that the Fourier transform maps multiplication with x or y to differential operators.
As a consequence, If a Schwartz function ¢*(z) = ¢*(x + iy) has all its derivatives in zero equal
to zero, then we have

/Cx"ym F(") (@ +iy)dz =0 (3.25)

and the proof can be carried in the same way using the real Taylor expansion in zero of foa™!(z)
considered as a function of x and y. O

Remark : this proposition can be extended without difficulty to division rings but not to split
simple algebras (i.e. GL, (D) where D is a division ring and n > 2).

Proposition 8 If f is a non degenerate second degree character defined on a locally compact
field L, then the weak Mellin transform of f is well defined for R(s) > 0.

Proof : In order to prove that the weak Mellin transform of a second degree character f is
well defined, we have to prove that for each pair (x, s) with R(s) > 0, there exists a constant M
which does not depend of the choice of ¢ so that Mell(f x ¢, x, s) = M Mell(¢, x, $)

Using the fact that A\(¢)(f) is a Schwartz function, it is immediate that the Mellin transform
of f* ¢ is well defined for R(s) > 0

Let’s now show that if we have two functions ¢ and g in C°(L*), we have for (s) > 0 the
equality

Mell(f x ¢, x, s) Mell(p, x, s) = Mell(¢, x, s) Mell(f x i, x, $) (3.26)

Since all the Mellin transforms appearing in this equality are well defined for R(s) > 0, it is
enough to prove that we have the equality

(5 0) %= 6% (f ) (3.27)

The associated double integral is absolutely convergent since both ¢ and p are in C°(L*) and
f is bounded, so that we can change the order of the integrals and get the result.

Let’s now take any function p in C°(L*) satisfying Mell(u, s) # 0 and Mell(f * p, s) # 0. If
no such function exist, then we can say that the weak Mellin transform of f at (x,s) is equal
to zero and there is nothing else to prove. If we can find such a pu, we then have for any ¢ in
C (L) the equality

~ Mell(f * p, x, s)

Mell(f x ¢, x, s) = Mell( x.5) Mell(¢, x, s) (3.28)

which shows that the weak Mellin transform of f is well defined and equal to W O

If f is a non degenerate second degree character, we will note (¢(s,x) the weak Mellin
transform of f at the multiplicative character |x|®x(x).
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3.4 The functional equation of (y

Let’s first give an elementary equality for (y : Using the formula Mell(¢(az), s) = |a| ~*x(a) Mell(¢, s, x)
which is valid for ¢ € CZ°(L*), It is immediate that we have

Ctan) (8, X) = o] 7" x(a)Cy () (3.29)

Let’s now show that (; has an analytic continuation :

Proposition 9 for ¢ € C°(L*) and f a second character defined on L, The Fourier transform
of the Schwartz function (@) f(y) is equal to the Schwartz function —E=\(¢*)(foa1)(y) where

Vial
the function ¢*(x) is defined by the formula ¢*(x) = ﬁqﬁ(%)

Proof : Since we know that A(¢)(f) is Schwartz, It is enough to show that this is true in the
weak sense, i.e. we have to show that for any Schwartz function ¢, we have the equality

/L/\(fb)(f)(y)S(w)(y)dy = \;ﬁ g M) (f o a™ ) (y)e(y)dy (3.30)

The first integral is equal to

| [ @t niasemay (331)

The double sum is absolutely convergent since F(¢) and ¢ are summable on L and L* |, so
that we can exchange the order of the integrals and use the Weil local functional equation :

| [ rem 5w (3.32)
Lx L
=L | ([ el we)ewdpoas (3.33)
Vial Jo<
Writingt:%
_ s LN F o ) g
=T [ e e o ey (3.34)
:J% 20T welw)dy O (3.35)

This leads to the following formula :

Proposition 10 If fis a non degenerate second degree character on L, we have for 0 < R(s) < 1

the formula

Cr(5,%) = —Z=p(5,X)C oa-1 (1 — 5, %) (3.36)

Vel

Where p(s, x) is the local factor appearing in Tate’s local functional equation.

Proof : We know by Tate’s Thesis that if ¢ is a Schwartz function, then Mell(p,s,x) =
p(s,x) Mell(F(p), 1 — s, %) for 0 < R(s) < 1 so that we get

Mell(A()(f), 5, X) = pls, X) Mell(—Z=X\($*)(F o a™ ") (y), 1 — 5,%) (3.37)

Vil
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using the definition of weak Mellin transforms, we get that for any function ¢ in CX(L*), we
have

Mell(9, 5, )G (s, X) = J%p(s, X) Mell(9, 5, X)Coq 1 (1 = 5, ) (3.38)
and we get the result by choosing any function ¢ so that Mell(¢, s, x) #0 O
It is then immediate that (; has an analytic continuation for #(s) < 0 with possible poles at
the poles of p(s, x). The previous formula is not really a functional equation since {; and ¢ Foa1
are not the same functions. We can however get true functional equations from this under some
additional hypothesis on f.
Let’s for example suppose that f is of the form

f(x) = ¥(5a® + ba) (3.39)
We then have a(x) = ax and
= 1 1 45 b T
— (=2 _ = F(Z 4
Foa™ (@) = Y(~5-a® — 2a) = (%) (3.40)
so that we have -
Coa—1 (8, x) = lal*x(a)Cs (5, X) (3.41)
which leads to the functional equation
Cr(s,%) = 505, )|l 2 ~*X() (1 = 5, ) (3.42)

One can also suppose consider an element o of the Galois group of L and a function f of the
form

f(z) = 1/;(%0(:0)95 + bx) (3.43)
with o(a) = a and o(b) = b
We then have a(z) = ao(z) and using (o (y)) = 1(y) ( because the trace of o(y) is equal to
the trace of y) and o~ !(z) = o7 (£) we get

Foa™ (@) = 0§20 (5) + b (5) = dlso(@)e + 0(0)) (3.44)
= $(50(2)2 +b2) = F() (3.45)

which leads to the same functional equation.

3.5 The weak Mellin transform of @/)p(”;—Q) on Q,

Let’s now prove the results given in the introduction for the Mellin transform of lﬂp(%) on Q,
for p a rational prime :

2

Proposition 11 o On Q, with p # 2, the weak Mellin transform of 1,(%) at the character

|x|® is equal to ﬁ.

e OnQay, The weak Mellin transform 0f1/)2(§) at the character |z|* is equal to —— (2175 (1—
2571) 4 T 25(1 — 279))



Proof : We take the function 125 as test function ¢, note that the Mellin transform of this
test function at any unramified character is equal to 1 for any value of s, compute explicitly
)‘(125 )(f) and take the Mellin transform of the result:

For p # 2, Let’ s consider the integral

1y (w)w(ly%z)dxx (3.46)

Mz = [ 1@ e = [ :

Q7 x »
If the valuation of y is positive or zero, it is immediate that the result is equal to 1 because v
is equal to 1 on Zjp. If the valuation of y is negative strict, we replace the integral on Q, by an

integral on Q, and use the local Weil formula (proposition 3) :

=7 : T “/’(592502)(12;7(50) — 1z, (x)dz (3.47)
“T s,
_ L oL 1
TNy, (=512, (@) = L1z, (2))de (3.48)

and we remark that the restriction of the function 1/1(—% é) to Z, and lZp is equal to 1 because
y P

the valuation of y is negative strict. The integral is then equal to zero. We then have
/\(12; )f =1z, (3.49)

so that, taking Mellin transform, we get

1
Cr(s)= 1= s (3.50)
Lets’ now consider the case p = 2. We have to compute the integral
1
Nz )i = [ vGads @it (3.51)
2

If the valuation of y is equal or greater than 1, the result is 1 because the function w(%nyQ)

remains equal to 1. Let’s now suppose that the valuation of y is zero. We can suppose that y is
equal to 1 because A(lzg )(f) is clearly unramified (i.e. invariant under the action of Z,). We

then have to compute the integral
2
x
P(=)d*z (3.52)
7 2
2
For x € Z5, we can write x = 1 + 2z with z € Zy and it is immediate that 1/)(12—2) =y(3) =
e™ = —1, so that the integral is equal to —1. Let’s now suppose that the valuation of y is equal

to —1, for example y = % We then have to compute the integral

e

2
/ ()< a (3.53)
zy 8
any element of Z; can be written as x = k + 4z with z € Zy and k equal to 1 or 3. We have
.T2 k2 1 i
) = w(5) = v(5) = €7 (3:54)



If the valuation of y is equal to —2 or lower, we use the local Weil formula in the same way as
for the case p # 2 and find that the result is zero. We can then write

Mg ) f = oz, = 1y +eT 14, (3.55)
taking Mellin transform, we get

27 Tins 1 1-s s—1 Zigs —s
o LT = @ - 4T (1-277) O (3.56)

Cr(s) =

3.6  the value of (s(1)

Proposition 12 Let’s consider some non degenerate second degree character f defined on a
locally compact field f, and note o the associated endomorphism. We have on Qy the equalities

1
GO =T (3.57)
p

and on R and C v
¢y = 2L (3.58)
Vel
Remark : 1 is then never a zero of (f(s).
Proof : Let’s consider the case L = Qy, some test function ¢ and compute

Mell(M@). 1) = [ A@)f@)lald* s (3.59)
1 1
= A z)dx = A 0 3.60
1 [, A0 = 500N (3.60)
using proposition 9
LW e Feat(0) (3.61)

11— 35Vl

we have seen that foa~!(0) =1

S S VN N SPVE R 3,62
1—ﬁm/@;lwl¢(w) z (3.62)
_ 1y
T JE Mell(s, 1) (3.63)

The proof is the same for R and C
O
The Weil indices associated to second degree characters of the form (ax?) are explicitly
described in [4] for all locally compact fields. For example, the Weil index of the function

1/’]1&(%) = e ™o’ ig equal to e~ 7. Let’s note 7, the Weil index of the second degree character

¥(%2?), and consider more general second degree characters :

Proposition 13 The Weil index of the second degree character f(z) = ¢(%a* + bx) is equal to
b2
V5= Ya¥(—35)
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proof : We consider the integral

/L F(@)o(@)de = /L 950 4 ba)o(a)da (3.64)

Let’s write ¢p(x) the function ¢(x)i(bxz). This is again a Schwartz function. We use the Weil
local functional equation associated to the second degree character ¢ (%2?) :

- / ¢(gx2)¢b(x)dx (3.65)
L

W / D) §() (@) da (3.66)

- \/IF —ix2) F(6)(@ + b)der (3.67)
writing y = x + b .
= WW / w(—%@—bm(qﬁxy)czy (3.65)
\/W 57 (U7 = 2ub + %) §()(y)dy (3.69)
L / sGE? D) 36wy O (3.70)

3.7 The function (,;(s) considered as a function of b

Let’s consider a family of second degree character of the form f, ,(z) = ¢(3az? + bz) and note
Ca,b(s) the weak Mellin transform at s of f, 5. We consider in this subsection the function (4 4(s)
as a function of b. Let’s note D; the distribution on S(L) defined for R(s) > 0 by the formula

< Dy, 5= /@X (@)l d* (3.71)

We have the following alternative definition of (4 4(s) :

Proposition 14 The function (. 5(s) considered as a function of b (or, more precisely, as a dis-
tribution on the variable b) is equal to the weak Fourier transform of the distribution 1/1(%302)Ds.

Remark : The Fourier transform and the map ¢ — ¢(%2?)p both belongs to a group of unitary
operators called the metaplectic group (cf [8]). The function (,(s) considered as a function
of b is then the image of Dy under the action of a metaplectic operator. Considering that the
distribution D, can be defined, up to a scalar factor, by the fact that it is an eigendistribution
for the dilation group ( cf [9]), which is also a subgroup of the metaplectic group, we see that
the function (4 5(s), considered as a function of b, can also be defined, up to a scalar factor, as
an eigendistribution for a subgroup of the metaplectic group conjugate to the dilation group.

Note also that a consequence of this proposition is that (, 4(s) considered as a function of b
is never a square integrable function, and is never the zero function.

Proof : we have to prove that if ¢ is a Schwartz function on F, then

| Galoetiin= [ wGhs@wllay (372)
beF

yeF X
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Considering that §(¢) is a Schwartz function, the right hand side is simply the Mellin transform
of the Schwartz function 1 (%y?) F(¢)(y) at s.
Let’s choose a function ¢ € C°(F*) so that Mell(¢, s) # 0 and consider the product

([ Cap(s)p(b)db) Mell(, s) = Ca,p(s) Mell(¢, s)¢(b)db (3.73)
beF beF

using the definition of the weak Mellin transform

= [ Mell(A()fup. 5)p(b)db (3.74)
beF
= [ (| @l s (3.75)
beF JxeFX

We remark that this double integral is absolutely convergent for 0 < $(s) < 1 since we have

IA(@) fap(y)| < K (3.76)
and, using Weil formula,
K/

M) fap(y)] < Tl (3.77)

where K and K’ do not depend of b . As a consequence, we can exchange the integration signs
and get

/ ( / M) fop () o (B) D) ] " (3.78)
xeF'X beF

We now remark that the inner integral can be described as
r _
[ 2@ fareio= [ [ swuele? < by i seard @19
beF beF JyeFXx

and that the double integral is again absolutely convergent so that we can again exchange the
summation signs and get

[ oG e s oy (3.50)
yeFx
let’s reintroduce the operator A(¢)
= MO (52* §()(@) (@) (3.81)
If we insert this in the former expression, we get
Mell(A(@) (52 §(£) (@), ) (3.82)
= Mell(¢, 5) Mell(w(ng §(f)(@),s) (3.83)

If R(s) is not in the interval ]0, 1], we use the unicity of the analytic continuation since both
expressions are analyticins [
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3.8 The zeroes of (f(s,x) on a local field

In this section, we will study the zeroes of (f(s, x) on a local field L = Q, We split the study in
two parts : x =1 on the unit group ( unramified character) and y # 1 on the unit group.

3.8.1 unramified character

Let’s consider a local field Q, and a unramified character on Q,, i.e. a character of the form |z|°
Let’s note @ an uniformizer, O the ring of integer, O* the group of units, and ¢ = N'p = ||~}
We also note d the different ideal and define d by the formula o = p?

Theorem 1 Let’s consider a non degenerate second degree character on Qy, of the form f(z) =
V(3ax? + bx). Then all the zeroes of (s(s) lie on the line R(s) = 1

Proof : We remark that the zeroes of (y do not change if we replace f(x) with f(cz) with
¢ # 0. We can then suppose that |a| is equal to ¢% or ¢9~ 1.
It is immediate that Mell(1px, s, x) is equal to the measure of O, i.e. (Nd)~2 so that we

have the formula

Cr(5,%) = (N)2 Mell(A(1ox ) f, 5) (3.84)
Let’s then compute
Mot ) = [ tox ) )is (3.85)
writing z = %
- / Low (2)f(y2)d= (3.86)
q 7 Qo

an element of Qp is in O* if and only if it is in O but not in wO

= — 1 [ fu2)l0() ~ 10(Z))dz (357)
s =
=1 [, - et (3.85)
Let’s define the function 6 as
Or(y) = A flyz)lo(z)dx (3.89)
we then have 1 )
Mlox)fly) = T—1s() - ff(yW)) (3.90)

q

so that if the Mellin transform of 6 is well defined at some s with R(s) > 0, we have

Mell()\(lox)f, S) = 1 L

(1 —q* 1) Mell(8y, s) (3.91)

1
q

Considering that 1 is never a zero of (¢, we then see that the zeroes of (; are the same as the
zeroes of Mell(6y, s) Let’s now give an explicit description of 65 and Mell(0y, s).
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We know by the definition of the local different and our choice of the haar measure that the
Fourier transform of 1¢ is (M)~ 21,-1 so that we get using the local Weil formula ( proposition
3)

o5t = S /@ FE )N 31,1 (2))de (3.92)
P
write z = zw? so that dz = (N?)~ldz
1 oyr 1 - Z
= (No)> \/ﬂﬂm ; f(m))lo(z)dz (3.93)
p
when then have the functional equation
1
0 3.94

Let’s now first suppose that the valuation of a is equal to —d. The functional equation
becomes, considering that 65 is unramified ( i.e. invariant under the action of O*)

0r(y) = wﬁéf%) (3.95)

In order to compute 0, we can then suppose that the valuation of y is > 0.

The function g(z) = f(yz), if restricted to x € O, it is an additive character : If x and z are
in O, we have

g(x +2)g()g(2) = flyz +yz) fya) f(yz) = Y(ay*az) = 1 (3.96)

Indeed, we have |ay?rz| < |a| = ¢ which shows that ay?rz € 0~!. Considering the definition of
67 and the fact that O is an additive group, we then have 6;(y) = (N9)~2 if and only if f(zy) = 1
for all x € O, because the integral of an additive character on a compact abelian group is equal
to zero if the character is not trivial on this group, or the measure of this group if the character
is trivial. Tt is then immediate that if 0;(y) = (N9)~2, then 6;(z) = (Nd)~2 for all z having
a higher valuation than y. We can then write the restriction of 0 to @ as (N?)"21_ . (y) for
some k > 0. Using the functional equation, we get that if the valuation of y is < 0, we have

0(y) = w|31|<fva>-%1wm<§> (3.97)

Let’s first suppose that k& = 0. Note that it implies that vy = 1 (using the functional equation
with y = 1) We then have, avoiding double counting for |y| =1, the following description of 6 :

1

0s(y) = (ND) "2 (lo(y) + (1 - Lloly pi

) (3.98)

We then see that the Mellin transform of 6 is well defined for 0 < R(s) < 1 and compute that

Mell(0y, s) = (Nb)fl(l —1q—s +1 zs;s_l) (3.99)

— (Na)71 _ s—1 s—1 ]
T A-¢)(1-g¢) I=¢"+¢(1-q7) (3.100)
o)~ (1- l) (3.101)

T 1)) q
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We then have

Ci(s,x) = (VD)2 Mell(A(1px ) f, s) = (N'D)2 (1= Mell(0), ) = (3.102)
q
= (No)™2 L (3.103)
= pp= .
and there is no zero.
Let’s now suppose that £ > 1 We then have
_1 1 1
05(1) = W) ™3 (Lo y) + 7y i lwvo () (3.104)
and the Mellin transform is
L q—ks qk(s—l)
Mell(6 = - 3.105
cllO.) = W) (T + 1 (3.105)
The roots of (f(s) are then the roots of the equation
G- ) 4yt - g7 = (3.106)
Let’s write X = ¢*~2 so that |X| = 1 if and only if R(s) = 1. The equation becomes
X 11
X*1- )+ XxF1-=—)=0 3.107
(= Z2) Xt - ) (3.107)
X
pp X2 DL x2k=1 2y (3.108)

Va Vi
The number of solution of this polynomial equation cannot be greater than 2k. Let’s then show
that we have exactly 2k solutions on the unit circle : we write X = e*® so that if we choose some

square root of v¢, the equation becomes, after multiplication with \/%_fe_““b
. Yo A/ . -
ﬁf61k¢ _ \/\/_af el(k—1)¢ — Jafel(l—kﬁﬁ + ﬁfe—zke — 0 (3109)
This expression is twice the real part of ﬁfe”w - %ﬁei(k’lw, and it is clear ( because q>1)

that when ¢ moves from zero to 27, this expression has 2k sign changes, so that it has 2k distinct
Zeroes.
Lets’ now suppose that |a| = ¢®~!. The functional equation of § becomes

11
O(y) = vf/q—0(— 3.110)
) =g o) (
the same argument gives that there exists some k > 0 so that for y € O, we have
0(y) = (N0) " 2d5r0(y) (3.111)

using the functional equation, we then get the following expression for 6, valid for any value of
k>0:
1

@y

0y) = (N0) F (1oro(y) +waﬁlwk< ) (3.112)

The Mellin transform of € is then well defined for 0 < R(s) < 1 and we have

—ks k(1—s)
Mell(6, s) = (No) H (—L— + MLyl —
0.0 = 0o+ g

And a similar argument allows to prove that all the roots of this equation satisfy R(s) = 5 O

) (3.113)
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3.8.2 ramified characters

We consider a ramified character x on the unit group of Q and extend it to a character of Q,
writing x(w) = 1 ( cf Tate’s Thesis).
We then have the following theorem :

Theorem 2 Let’s consider a non degenerate second degree character on Qy of the form w(%xQ +
bx) and let’s assume that Cr(s,x) is not identically zero as a function of s. Then all the zeroes

of Cr(s, x) lie on the line R(s) = 3

Remark : its is clear that if y is odd, the weak Mellin transform of w(%xQ) at (s,x) is always
equal to zero.

Proof : In order to compute (s, x) we consider the test function ¢g(x) = x(2)lox (x) which
satisfy Mell(¢g, s, x) = (/\/‘0)_% for all values of s. We note f the conductor of x and define n so
that { = p”

We recall from Tate’s Thesis ([7], p 322 )that if y is ramified, the local factor p(x, s) appearing
in Tate’s local functional equation is described by the formulae

_1
p(s,x) = (N (§0))" 2 po(x) (3.114)
where the term po(x) satisfies |po(x)| = 1 and is described by the formula

po(xX) = (N2 D x(e)w(

€
wd—i—n

(3.115)

where {e} is a set of representatives of the cosets of 14 § in O*
Proposition 15 The Fourier transform of ¢, (x) = x(x)1ox (x) is equal to x(—l)po(x)q_n_gdqﬁ;( (w"tir)

Proof : Considering that O is a compact multiplicative group, we remark that the Mellin
transform of ¢, at the character x’ is equal to zero if x’ # x on O* and (NO)*% if ¥ =y on
O*. Using Tate’s local functional equation, we then see that the Mellin transform of F(¢,)at
X' (x)|z]* is equal to zero for x’ # x. For x' = x, we get that

Mell(§(6y ), X, 5) = (ND) "2 x(—=1)p(s, x) = (M)~ 2 (N(72))~ 2 x(—1)po(x) (3.116)

d

—d (s_Llyp _d_ntdy oy
= q 7¢I (“1)po(x) = x(~Dpo(x)g~ 2= HHD (3.117)

We then observe that the function x(fl)po(x)q*%d(bx(w"*dz) has the same Mellin trans-
form as §(¢, ) for all multiplicative characters x, so that these two functions have to be equal on
Qy . The equality for z = 0 is immediate [

Let’s now consider a second degree character of the form

fla) = 1/1(%502 + bx) (3.118)
with a # 0 We have
AGIIW) = [ FDox@0d (3.119)
1
R /@p fyz)dx(2)dz (3.120)
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using the local Weil formula and the proposition 15, we get

- il\/ﬁ|y| ¢ x(=1)po(y) A f( ~)ox(—m" ) dz (3.121)

writing & = w" %z, the expression becomes

1 vro 1 nd —
= T | FCamoxtas (3122)

P

so that if we note 0 ¢(y) = M¢x)f(y), we have the functional equation

n+d

1
Or.x(y) = vrpo(x
f (y) f \/—|y| fX yawn+d)

(3.123)

We can again suppose without loss of generality that the valuation of a is equal to —n — d or
—n—d+1.

We write a = uco~ "~ 9% with |u| = 1 and § is equal to 0 or 1, so that the functional equation
becomes s
01.0) = 1000 il (=) (3.124)
£x\Y) = TxPolX Iy f.x Sy .

In order to compute 7 5(y), we can then suppose that the valuation of y is higher or equal to
zero. Considering the integral

Or.x(y / fyz)x (3.125)

We split OPX in cosets modulo the subgroup 14§, so that x is constant on each coset, and choose
a representative z; of each coset.

1
=11 Z/f(yzi(l +a))x(zi)dx (3.126)
Tg i U
We then remark, considering that f is a second degree character, that we have for x € |

flyzi +yziz) f(yz:) f(yzix) = Y(axy®z]) = 1 (3.127)

Indeed, if z is in §, the valuation of x is higher or equal to n, so that the valuation of ax is higher
or equal to —d, and the valuations of y and z; are positive or zero. The integral can then be
written as

1
-1 zi:{f(yzz')x(zz')/ff(yziw)dw} (3.128)

The change of variable 2’ = z;z in the last integral shows that it is a constant as a function of
i, so that we get

Fe))( /f f(y)de) (3.129)

We then remark that if x; and x5 are in f, then the valuations of #; and x5 are higher than
n, so that the valuation of ax; is higher or equal to —d and we have again

flz1 4+ 22) f(z1) f(22) = Y(aziz2) = 1 (3.130)
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Considering that the restriction of f(z) to f is then an additive character, the restriction of
f(yx) to f is also an additive character if the valuation of y is positive or zero. As a consequence,
there exists a unique k € Z so that f(yx) is equal to 1 for a € f if the valuation of y is equal
or higher than k, and not constant on f if the valuation of y is lower than k. We then have
05 (y) = 0 if the valuation of y is lower (strict) than k. If k& < 0, then 6 (y) = 0 thanks to the
functional equation and there is nothing else to prove.

We then suppose k > 0. We now show that 6 (y) is also equal to zero if the valuation of y
is equal or higher than k£ + 1

Let’s consider the sum >, x(2;)f(zy). If f(zy) is constant as a function of z for z € O*, it
is immediate that this sum is zero because Yy is assumed to be ramified. More generally, we can
compare f(z;y) and f(z;y) using the formula

flyz) = fy(z — 20)) f(yzi)(ay®zi(z; — z1)) (3.131)

Let’s now suppose that the valuation of y is equal to & + 1 or higher. Then the definition of k
shows that f(y(z; — z;)) is equal to 1 if z; — z; € 2f. We also have under the same conditions
Y(ay®zi(z; — z;)) = 1 : the valuation of y? is at least equal to 2, the valuation of a is at least
equal to —n — d the valuation of z; is 0 and the valuation of z; — z; is assumed to be higher than
n — 1.

We then see that if z; and z; are in the same cosets modulo 1 + Zf, then f(ziy) = f(z;y).
Let’s then renumber the z;, writing z; = 2; where j indicates to which coset of 1+ %f it belongs.

We then have
> oxE)f ) =D xR Fzmy) = > > x(zik) (3.132)
i 7,k J k

with o; = f(z;,y) for any choice of k

However the character x is constant on the subgroup 1+ § but not on the subgroup 1+ %f (
this is the definition of f), and for j fixed, the set of z;  is a full set of representatives of cosets
modulo 1 + f inside a coset modulo 1 + % The sum over k is then equal, up to a scalar, to an
integral of a non constant multiplicative character on a subgroup, so that it is equal to zero.

We then see that if the valuation of y is equal to k + 1 or higher, then 6 (y) = 0, and that
if it is lower than k and positive, then we also have 0 (y) = 0.

Considering that the restriction of 65 to y € @*O> has to be of the form Cx(y) for some
constant C' = 0y ¢(ww®) ( because it is immediate from the definition of 6 ¢ that if w is a unit,
we have 67 ¢ (wx) = x(w)0y 5 (x)), we can then write that if the valuation of y is positive or zero
we have

0r.x(y) = CX(y)1mrox (y) (3.133)
Using the functional equation 3.124, we can then write that for y € Q,, we have
¢ 1 1
0(y) = CX(W)1orox (y) + vpo(x) —x(—)Clgrox (—— 3.134
(1) = CX) Lo ) + 15000 L3 ()l () (3.134)

If uy;é is in w*O*, then ly| = ¢" 19, so that the expression can also be written as

_ o C s
= XW)C{lzrox (u) + 7720 ()X (W) 54" * larms0x (1)} (3.135)
Let’s note w the espression 'yfﬁo(x))z(u)g. It is clear that |w| =1 We get
Mell(0, s,x) = (ND)"2C(q " + wqg =3 qk+9)s) (3.136)
O

N[

and it is immediate that the zeroes of this function lie on the axis R(s) =
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3.9 The function (s(s,x) on R

If a second degree character f is defined on R, then the automorphism « associated to f has to
be R-linear, so that it can be written as a(x) = ax. Any non degenerate second degree character
f on R is then of the form

fz) = w(g:ﬁ + by) = e~2mi(§a"+ba) (3.137)

with a € R* and b € R. and the functional equation
1o % _
Cr(s,x) = v¢p(s, x)|al2 X (a)Cr (1 = 5, x) (3.138)

is then always valid. With this description of f, we introduce the notation (7 (s, x) = Ca(S, X)-
We have only two unitary characters y on the unit group : the identity and the sign function
sgn(z), which we note +(z). Note that since e=27(57") is even, we have Ca,0(s,£) =0 for all s.

We have the following description of the weak Mellin transform of a second degree character

Proposition 16 The weak Mellin transform of the second degree character 1/1(%302 + bx) at the
character |z|® for a >0 is
e=sT r'(s) s 1 mib?

s F a)a)
Ja ws ! 527

Cap(s) = ) (3.139)

Remark : the functional equation of (, is then consistent with Kummer’s formula
e*1F(a,b,—x) = 1F1(b—a,b,x) (3.140)

Indeed, the functional equation can be written

e 5T s 1 mib? (1-9)% 1—-s 1 mib?
—1Fi(=,=,—) = 27 % F; -, — 3.141
\/as 1 1(2a2a a ) ’Yf|a| 1—s 1 1( 2 325 a ) ( )
which simplifies to
s 1 mib? i 1—s 1 mib?
(= = —)= TR (—, =, —— 3.142
11(2,2, a) vre 151 ( 5 9’ a) ( )
using Kummer formula, we get
—mi  mib2
eF et = (3.143)
and this formula is a consequence of proposition 13.
Proof of proposition 16 : We remark that the formula
Fiﬁ
g(e—2wi(%az2+bz)) — e - 627”'(%‘1(%)2"'17%) (3144)
ai

is valid not only for a € R% and b € R, but also for a € C with I(a) < 0 and R(a) > 0 and
b € C. We can then define (, ,(s) using the same method for any a € C with S(a) < 0, R(a) > 0
and b € C, and looking at the proof of proposition 7, it is not difficult to see that (,4(s) is a
continuous function of a provided a does not cross the lines R(a) = 0 or I(a) = 0. It is however

27



not difficult to compute (,,0(s) when $(a) < 0 and R(a) > 0 : this is a regular Mellin transform,
and we get

Caols) = ( (3.145)
Thanks to the continuity of (,0(s) as a function of a , this formula is also valid for a € R,

Let’s now suppose that a is fixed in R} and consider (,; as a function of b . We observe that
Ca,» considered as a function of b, is the limit of the functions (43, which are analytic in b € C,
when o’ € C, 3(a’) < 0 converges to a € R*, and that the convergence is uniform if b stays in
some compact set.

As a consequence, (q p is an analytic function of the variable b ( as a uniform limit of complex
analytic functions of b), so that we can describe it using its Taylor expansion in zero.

bk
Cab Z v L o (3.146)

k>0

We remark that (,(s) is an even function of b, so that all the odd derivatives in zero are
equal to zero. In order to evaluate the even derivatives, we use the following proposition :

Proposition 17 For s fized, (. (s) satisfies the equations

%Cf(s) = —miCs(s +2) (3.147)
52
S5Sr(8) = (=2mi)* ¢ (s +2) (3.148)
and
%Ca,b(s) 412 ng Cab(s) = (3.149)

Proof : The function e~27(52°+%) gatisfies the equations

ge*%i(%fzﬂw) = (—mi)ale2mi(5e +be) (3.150)
a

0? (g2 i(2a?

5 G p2mi(§attbr) (727”')1'26727”(596 +bx) (3.151)

so that we mainly have to prove that we can exchange integration and differentation signs.
Let’s for example consider the first equation. We have to prove that the Mellin transform of
%/\(gb)e’Q“i(%IZ*bx) converges absolutely and find a uniform bound for the associated absolute
integral. We remark that this expression is equal to

0 a2
A . 727T1(EI +bx) 3.152
e ) 3.152)
The function g(z) = %6’2”(%#“’1) = —mig2e~2mi(52°+b2)) jg 0> and its Fourier transform is

also C*° and can be computed explicitly using the commutation relation of the Fourier transform
and differential operators.

We can then use the proof of proposition 7 in the real case, and show that the Mellin transform
of A(¢)g is well defined for R(s) > 0 with an absolute bound which remains finite if a stays in
some compact in R* which does not contain 0. As a consequence, the Mellin transform of the
complete expression is also well defined for %(s) > 0, and we have a uniform bound for the
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integral defining the Mellin transform which allows to exchange the differentiation and Mellin
integration signs.

WeD then have for R(a) > 0
gb—jcca’b(s)(b =0)= ““"V%@,b(s)(b = 0) = (—4nmi)te F7£2 : d%wlas) (3.153)
= (—4mi)te S%%(g)(gl)--(g(kzl))(ﬁ) (3.154)
= (miyet D2 (8 ﬁi%) (3.15%)
_ e\_/a_ Fg) (4“3;(5)k (3.156)
The Taylor expansion of (q(s) becomes
Con(s) = ﬁ_ Fﬁ %(3%% (3.157)

Writing (2k)! = (2.4.6..2k)(1.3.5.2k — 1) = (4")k!(3) (5 +1)..(5 +k— 1) = 4¥k!(3),, we recognize
a Kummer confluent hypergeometric function 1 Fy

e (S mib? e=s % r'(s) s 1 wib?
_ > e TN pE 2T O 3.158
i BT e R (315

Proposition 18 The weak Mellin transform of Vg (%2 + bx) at the character sgn(z)|x|® is

—(s+1)F (2 s+1 3 mib?

ap(s, )= -2 i< F y = 3.159
Cap(8, %) i o 7T211(2 > a) ( )
Proof : We start from the equality
ge*%i(%zzﬂ’z) = —2mige2mi(5a’ +bo) (3.160)
ob
which leads, after exchanging the integration and derivation signs, to the identity
0
%Ca,b(s) = 27y p(s + 1; %) (3.161)
so that we have
ab(s,+ a 3.162
Coalon ) = 3 (s — 1) (3162)
1 e—(s—D% —1 1 miv?
= ‘ 1 (571) (S—a_a&) (3163)
2 N 55 b’ 2 "2 a
We then use the elementary formula
o (@)ps1 28«
—1F( — = —1F 1 1 3.164
5511 g B b~ B 1a+1,8+41,2) ( )

to get the result [
Let’s now look at the location of the zeroes of (g p.
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Proposition 19 Let’s suppose that 1Fi(u,v,z) = 0 with z imaginary and v € RY. Then we
have R(u) = §

Proof : It is well known that the function 1 Fy(u, v, z) considered as a function of z is a solution
of the Kummer differential equation

2f"2)+ (v —=2)f"(z) —uf =0 (3.165)

We can suppose without loss of generality that the zero of 1 Fy(u, v, z) has a positive imaginary
part, so that we can write it as z = it with o € R.
We consider the function for ¢ > 0

B(t) = e~ 5 1 Fy(u, 0, it) (3.166)

witha:v—%.

Elementary calculations show that the Kummer differential equation becomes

o a?
" (t) = <1>(1t)(—T +oz - t2 + 2i(2u — v)) (3.167)
consider for ¢ > 0 the function
W(t) = ®(t)®'(t) — ®(t)®'(t) € iR (3.168)

The derivative of W (t) can be computed as

W'(t) = o(t)®" (t) — @(t)@"(t) (3.169)
using equation 3.167
= |®(t)?|(—2i(2a — v) — 2i(2u — v)) (3.170)
= —4i|®()%|(2R(u) — v) (3.171)
We then have
W (ty) — W(ty) = / ’ W (t)dt = —4i(2R(u) — v) / t2|@(t)2|dt (3.172)

Considering that ®(t) is square integrable on the interval [0, ¢o] ( because v > 0), it is immediate
that W (t) converges to some value when ¢ converges to zero, and it is not difficult to check that
this value is zero. Considering that we also have W (ty) = 0, we get

0 = W(to) — W(0) = —4i(2R () — v) /0 * (02 at (3.173)

which shows that 2R(u) —v =0 O

Theorem 3 Let’s consider a non degenerate second degree characters f defined on R, a unitary
character x on {—1,1} and assume that s(s, x) is not the zero function as a function of s. Then

all the zeroes of Cy(s,x) lie on the line N(s) = 5

[

Proof : this is an immediate consequence of the previous propositions.
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3.10 The function (s(s,x) on C
On C we will study the second degree characters of the form ¢¢(%2% + bz) and ¢ (%]z|? + bz).

The characters on the unit group of C* are of the form cn(z) = ()" with n € Z If f
is a second degree character, we will then note (s(s,n) the weak Mellin transform of f at the

character (s, c¢,)

3.10.1 second degree characters of the form ¢ (%|z|? + bz)

We consider second degree characters which can be written as f(z) = ¢(%|z|> + bz) with a € R%,
and b € C.
We note Zg (s, n) the weak Mellin transform of ¢(%|z|* + bz) at the character |z[&c, ()

Proposition 20 The weak Mellin transform of vc(%|z|*> 4 bz) at the character |z|Ecy(2) is for

n=>0
e~ T T(s 27i|b|?
Zap(s,0) = — (QW()S)llFl(S;L o ) (3.174)
and forn >0
—%i(s—%)F(SJrﬂ) 1 V27— 9 ~|b|2
nt T \n n iy
Zap(s,n) = (-1) = (27r)sfl E( NG b)"1F1(s+ 5 1+n, ) (3.175)

Remark : As a consequence of proposition 19, the zeroes of Z, ;(s,n) lie on the axis R(s) = %

Proof : We have, writing z = = 4 1y

1/1(2|Z|2 +bz) = e 2milalz|*+b24b2) _ ,—2mi(alz|*+2R(b)z—2S(b)y) (3.176)
2

We make the same observation as in the real case : We consider the right expression and remark
that if we take a € C, $(a) < 0, and replace R(b) and (b) with complex values, then we can still
define using the same method its weak Mellin transform, which is continuous as a function of a,
R(b) and I(b). However, If we suppose that S(a) < 0, then it has a well defined regular Mellin
transform, which is analytic in R(b) and J(b). We can then use the same method as before :
first compute Z, (s, n) for b = 0 and then use the Taylor expansion of Z, 5 at b = 0.

Let’s first remark that for n # 0, we have Z,o(s,n) = 0 : the function 1 (%[z[?) is invariant
if we replace z with uz with |u| = 1. For n = 0, the computation of Z, (s, 0) is straightforward
and gives v

Zao(s,0) = Mell(e_%”alzlz, |23, co) = pr W (3.177)

Let’s now suppose that b # 0 and n = 0 We consider the equation ( using the Wirtinger

operator %)

%e*?ﬂ'i(%a|z|2+bz+%é\z\2+52) _ 7271_1-2,6727”'(%a|z|2+bz+%é\z\2+52) (3178)
Which leads, using the same kind of argument as in the real case , to
0 . 1
%Zaﬁb(s, n) = —2miZgp(s + T 1) (3.179)
we also have 9 )
%Za,b(s, n) = —2mwiZy (s + 3 1) (3.180)
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Let’s now write the Wirtinger Taylor expansion of Z, ;(s) near zero :

Zab(s) o Zap(s)(b=0) Lk (3.181)
a,b\S) = Ao ang Za,b\s = .
nS0p0 oPbo™b pln!
The Wirtinger derivatives with p # n cancel so that we get
a2n |b|2n
= —Z7, b=0 3.182
2; gupgp e =0 g (3.182)
n>0
\2n |b|2n
=3 (=2m0)*" Zay(s + 1) g (3.183)
’ (nl)?
n>0

_ € 2 F(S) (2(727&)2'@ 1 (7)”% |b|2” (3184)

as  (2m)s—1 = (2m)™ (n!)2

e=Ts5 T(s) omi |b|2"
= —— 3.185
e (o G (3.18)

n>0
We recognize again a confluent hypergeometric function
e~ T I(s) 2mi|b|2

= Fi(s,1 3.186
as (2m)s—1! (i1, a ) ( )

In order to compute Z, (s, n) for n > 0, we use the formula

1 o"

Zap($,n) = T 7
olsm) (=2mi)™ Ob™

Zas(s — 3,0) O (3.187)

3.10.2 second degree characters of the form v (%z* + bz)

We note (q(s,n) the weak Mellin transform of the second degree character fo5(2) = ¥c(%2* +
bz). In order to compute ¢, (s, n), we use the same method as for the real case or for Zg ;(s) :
Compute (q4 p(s) for b = 0, then use a Taylor expansion to compute (4 5(s) for all b.
Let’s first compute (4 5(s,n) for b=10:
Proposition 21 If n is odd, then
Ca0(s,m) =0 (3.188)
If n is even, then
, . (s +
Guol5:7) = lal~"c_ (a) (—) =0 2T 5 (3.189)

Remark : we then see that for n = 0, (4,0(s,0) cancels for even positive integer values of s, so
that the zeroes of (0 are not all on the line R(s) = 3.

Proof : The function 1(z?) is even, and the function ¢, is odd if n is odd, which proves the
first formula, because the multiplicative convolution of any function with an even function gives

an even function. If n is even, we use the fact that C is quadratically closed, i.e. that the map
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z + 22 is onto. A consequence of this property is that for any Schwartz function ¢ on C and n
even, we have
Mell(g(a?),5,m) = [ olafal* (e =2 [ oyl (L)t DY = 5 ell9,3.5)
T C* |:C| C* |y| 4 2 ’ 2’ 2

(3.190)

and this equality can easily be generalized to weak Mellin transforms. We observe, however, that

for n even and 0 < R(s) < 1, the weak Mellin transform of the function t¢¢(z) is well defined and

equal to the the function p(c,||®) appearing in Tate’s local functional equation ( cf [7], p 319) :

(2m)' (s + 5)
(2m)sT((1 - s) + 2]

Indeed, Let’s consider a function ¢ in C°(C*). We want to compute the Mellin transform of

Mell(vc(2), s,n) = p(cn||®) = (—i)™! (3.191)

Nope(z) = [ dlpic ds (3192)
We can, however describe this integral as
= [ o)y = 5(67)(2) (3199)
clyle 'y

where the function ¢* is defined to be ﬁd)(i) and is a Schwartz function on C. However we
know by Tate’s thesis that

Mell(¢™, s,n) = p(cp|]®) Mell(F (™), 1 — s,—n) (3.194)
= pleall*) Mell(A(@), 1 — 5,1 — n) (3.195)
We then see that the weak Mellin transform of v is well defined and that we have
1
Mell(¢a 1- 5 7”) = T s p(cf’l’lHl_s) (3196)
plenl]®)

which shows that p(cy||?) is indeed the weak Mellin transform of ¢(z). It is then immediate
that the weak Mellin transform of ¢(az) is equal for n even to

Mell(i(az), 5,m) = lalg*c—n(a)p(cal|*) (3.197)
so that we get

a
=z

22,

)

)

)

Mell((22%), 5,m) = 3 Mell (i St y@plegllf)  (3198)

NNV
o3

which proves the formula for n even [
Let’s now consider the case b # 0.

Proposition 22 The function (,(s,n) satisfy the equations

aCa,b(San) _ . l
Db — —2miCap(s + 5+ 1) (3.199)
aCa,b(San) _ . l .

%0 = —2miCu (s + 51 1) (3.200)
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Proof : these formula can be considered to be the Mellin transform of the formulae

6 a 9 B i a 2

% (§z +bz) = 271'@,21/1(22 +02) (3.201)
and 5

(222 = —omizp(L22

661/1(2,2 + bz) 271'@,21/1(22 +02) (3.202)

the justification of the exchange of derivation and integration signs is done as in proposition 17
O
Let’s now give an explicit description of the weak Mellin transform of 1/1@(%22 +bz). Consid-
ering that we have (,5(s) = |a|™®c_2 (a)CL%(s), we can suppose that a =1

Proposition 23 The weak Mellin transform of 1/1@(%22 + bz) at the character |z| is equal to

Cuo(s) = Wl*s{r(l = §)1F1(2, 5 T3 5 i)
s+1
» (%) s+1.3 s+1.3 o9
— 4 |b| o 25;1)1F1( 5 ,2,7er )1F1(T, §,mb )} (3.203)
Proof :
We use the Wirtinger Taylor expansion
ortn bPh"
Cip(s) = n_CLb(S)(O)— (3.204)
RSO0 oPbo™b pln!
—27ib)P (—27ib)" +n
- ¥ ( )|(' ) Cuols + 55— p =) (3.205)
00 pln!
. T N\ lp—n]| s n ‘p7n|
, 2mib)P (2mib)" (—i) "z T(§+ B2+
— 7-(-1—6 Z ( ™ )[( 'ﬂ-l ) ( Zlﬂ (2 - 4p = Tpizﬂ (3206)
n>0,p>0,p+n even pn: w2 F(l 27 4 + 4 )

RS iyl GV Vi) L(§ + mexgend) (3.20)

In! _ s _ min(p,n)
n>0,p>0,p+n even p F(l 2 2 )

We can split the sum in two : the first sum S; is for n and p even, the second sum S, for n and
p odd.
= 7!17%(S) + S) (3.208)

The first sum S; becomes, writing p = 2k and n = 2l

Si= 3 (it (2y/7ib)?* (2y/mib)?"  T(5 4 max(k,1))

@RI2D) T(1— 3 —min(k, 1))

(3.209)
k,1>0

We now use the elementary formulas involving the pochhammer symbol :
S

F(g + max(k,l)) = (g + max(k, 1) — 1)(% + max(k, 1) — 2)---(2

S S S S
+ 1)§F(§) = (§)max(k,l)r(§)
(3.210)
and
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INOIES 5) =(1- 3 1)(1-— 3~ 2)..(1 - 3~ min(k, 1))T(1 — 3~ min(k, 1)) (3.211)
= (—g)(—g - 1)..(—% — min(k, 1) + )01 — ; — min(k, 1)) (3.212)
= (71)““(’“’“(g)min(k,“m - g — min(k, 1)) (3.213)

We also have the identities (5)max(k,1)(5)min(k,) = (5)k(3)1 and (—i) IRt (—1ymintkb) - —
(—i) Bt (—g)kti=lk=ll — (—j)k+! 50 that we get

5= s Y (it CDE OV ) 2 (3214

T(1-3%) 4%, (2k)!1(20)! 2/

This expression can be factored

s —)k (2 /Tib)2k s —i)L(2\/Tib)? s
_ I'(3) )(Z( )" (2y/mib) (_)k)(zw(_)l) (3.215)

P1-35) & 2k 2/ (20)! 2
M) o Wit s | @in?) s
- g G Gy (3216

and we recognize the product of two confluent hypergeometric functions, writing again (2k)! =
4k k! ( 1 ) k-
2

F(%) s 1 . 492 s 1 . 79
) %)1F1(§, §,z7rb )1F1(§, i,mb ) (3.218)

The computations for the second sum Sy are similar [

It should be noted that our proof of proposition 23 is not complete, considering that we have
not proved that (,4(s) is analytic as a function of £(b) and I(b) ( The method used in the real
case or for the case ¥(%|z|* +bz) is not valid here). Let’s sketch how the proof can be completed
in this case : we remark that, as a function of b, (,(s) is defined up to a scalar factor as an
eigendistribution for the action of a commutative subgroup of the metaplectic group ( cf remark
following proposition 14). If we look at infinitesimal generators of this subgroup, we see that
Ca,b(8) can be defined up to a scalar factor as an eigenvector for the action of these infinitesimal
generators, i.e. as a solution of some set of partial differential equations in the variables R(b)
and (b). In order to get a totally complete proof, it is then enough to write explicitly these
generators and check that the function given in proposition 23 is indeed a solution of these partial
differential equations.

4 The weak Mellin transform of second degree characters
defined on adele rings

We consider a number field F and the associated adele ring Ap.
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4.1 Factorizable second degree characters on Ap

We know that the continuous characters of Ap are of the form ¢(bx) with b € Ap, so that we
can write any second degree character on Ay as

flz) = w(%a(x)z + bx) (4.1)

with b € Ar and « is continuous morphism of additive group from Ar to Ar so that a~! is also
continuous.

We say that a second degree character is factorizable if it can be written as a tensor product
( noting Pr the set of places of F)

f(@) = ®uveps fo (4.2)

so that if an element of Ap is written as a = (a,), we have f(a) = [[,¢p, fu(ay). For example,
the second degree character w(%x2 +bz) is factorizable, but if o is a Galois automorphism, and if
we keep the notation o for its natural action on A, the second degree character ¢(§o(x)z + bx)
is not in general factorizable.

If f is factorizable,we then also have o = ®,¢p, v, and the continuity of a and a~! means
that there exists a finite set S of valuations so that if v is not in S, we have «a,(O)) = O, so
that |a,| = 1. It is clear that on Ag, all second degree characters are factorizable ( because there
is no continuous non trivial additive continuous map from Q, to Q, with p # p’).

4.2 The existence of the weak Mellin transform

On an adele ring, the weak Mellin transform is defined as follows :

Definition 2 We say that a function f defined on A* has a well defined Mellin transform at
the character |x|*x(z) if exist a function My(s, x) so that for any test function ¢ € C°(A}), we
have

Mell(¢ * f, s, x) = Mell(e, s, x) My (s, x) (4.3)

Let’s first prove the existence of the weak Mellin transform of a non degenerate second degree
character defined on an adele ring. We consider a second degree character f, a function ¢ in
C(Ay) and the map

MO = | o@)fa y)da (4.4)
A
where y is an element of Ap
We then have the following proposition :

Proposition 24 If fis factorizable and ¢ € C°(A*), then N(¢)f is a Schwartz function on A

Proof : Considering that ¢ is locally constant as a variable of z,, for all the finite places and that
the support of ¢ is compact, we can write ¢ as a finite sum of functions of the form ¢, gnite v Pov-
where ¢os € C5°(Fy, X Fyy X .. X F,, ) (product of all the archimedean places) and ¢, are functions
defined on each local fields F), associated to finite valuations, with nearly all the ¢, equal to 1,x.
Let’s then prove the proposition for such a function. It is immediate that we have

A((b)(f) - )‘(Qsoo)foo Ofinite v A(st)fv (45)

We have already proved that all the function \(¢,) f, are in S(F,) for v finite. The two remaining
points to prove is that A(¢oo ) foo is Schwartz and that nearly all the functions A(¢,) f, are equal
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to 1p,. Let’s first prove that A(¢eo) foo 1s Schwartz. Let’s for example suppose that we have two
real places to consider, so that the seconde degree character f., can be decomposed as f; ® fo
where f; and fy are non degenerate seconde degree characters defined over R We then have to
consider the function

M¢oo) foo (Y1, y2) = /}R*2 Goo (w1, w2) f1 (27 ') fo g M y2)d* w1 d ™ 2y (4.6)

Let’s write ¢ (z1,22) = mqboo( L L) We extend this function to R? by writing ¢%_ (0, z2) =

T ? T2
¢k (21,0) =0, so that ¢, is a Schwartz function an the integral becomes

Moo foo (Y1, y2) = /]R? 5o (21, 22) f1(z101) f2(22y2)dz1d 2o (4.7)

Let’s for example show that this function is fast decreasing as a function of y; : we apply the
local Weil functional equation to the integral on z;

— 5 (65 (21, 22) fr (=) fa(yza) dz1 2o (4.8)
alyi

|y1|\/ |a1 R2

considering that ¢* and all its derivatives cancel at (0, z2) for any value of zo, this is equal, for
any polynomial P, to

— M F (05 (1 2) (fr A

_ ) _PpP
|y1|\/|a1 R2 ai1yi (a1y1

We then choose P to be the Taylor expansion of f;(z), and the proof can be finished as in the
real case. In order to show that all the partial derivatives are fast decreasing, we use again the
fact that the operator 15— satisfy

) f2(y2z2)dz1dzs (4.9)

0 0

1 6—1A(¢)f = Az a—xlfb)f (4.10)

The proof is the same for a function ¢, defined on R™ x C™.

Lets’ now show that nearly all the functions A(¢,)f are equal to 1p,. We remark that
e nearly all the ¢, are equal to 1, x

e nearly all the «a, satisfy |a,| = 1 ( because « is a continuous and its inverse is also
continuous)

e nearly all the b, satisfy |b], <1 ( bis an adele)
e the local different 9, is equal to O, for nearly all valuations

It is then enough to prove that for the valuations v € Pp satisfying |a,| = 1 ,|b,| < 1, and
0, = Oy, the functions A(1,x)(fy) is equal to 1o,. We will also suppose that |2, = 1, which is
also true for nearly all valuations. The computation is then exactly the same as in proposition
11 for p #£2:

Ao / fo % Lo, x (z)d*x (4.11)
_ / X w(%a(%)% F0D) 10 () (4.12)
Fy
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If y € Oy, and z € OF, then £ € O, so that a(¥£) € O, and the expression ¥(Fa(£)L + b¥) is
equal ro 1 because © is trivial on O,. The integral is then equal to the (multiplicative) measure
of O which is (N Du)*% = 1 Let’s now suppose that the valuation of y is negative strict. We
replace the integral on O,° by an additive integral on O,

[ vGah)Y g, 0

(4.13)
- Np F, ||

Tl

We remark that the term |z| can be removed since the integral is on O;¢ and use the Weil local
functional equation :

Yy ~1,Y
-5 / —52% () T () F(loy (@)de (4.14)

T .
Let’s note @ an element of F, with valuation 1. We can then write that
lox =1lo, = lzo, (4.15)

Using 0, = O,, we see that §(1lp,) = 1o, so that

$(lpx) =1o, — (4.16)

—1

N]J Lo,
The support of 3(105) is then included in %OU so that we can restrict the integral to the
set of elements z having a valuation > —1. We remark, however, that if the valuation of y

is < 0 and the valuation of z is > —1, then the valuation of % is > 0, so that the function
V(—3La"t(¥) - bofl(%)) is equal to 1. The integral is then equal to

2z
/g ! -0 (4.17)
17—\/|a ox (#))de = 1f—,/ Loz '

We have then proved that A(1 or )fu(y) is equal to 1 if the valuation of y is positive or zero, and
zero if the valuation of y is negative strict, so that A\(15x)f, = 1o,
]

Proposition 25 If f is a factorizable non degenerate second degree character defined on Ap,
then the weak Mellin transform of f is well defined for R(s) > 1

Proof : the proof is the same as for the local case ( replace > 0 by > 1).
We will use the notation = (s, x) for the weak Mellin transform of a second degree character
f defined on an adele ring at the character |z|*x(x)

4.3 The functional equation of =;

Proposition 26 for ¢ € S(A*) and f a non degenerate second character deﬁned on A, The
Fourier transform of the Schwartz function X(¢)f(y) is equal to \}‘f—)\(qﬁ )f o a1 (y), where ¢*

is defined by the formula ¢*(x) = ﬁgf)(%)

Proof : the proof is exactly the same as for the local case [
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Proposition 27 Let’s assume that x is a Hecke character on AY.. Then the function Zf(s,x)
considered as a function of s has an analytic continuation to C, with possible poles at 0 and 1
if x is unramified. If we keep the notation Zy(s,x) for the analytic continuation, we have the
equality

Ef(sa X) = W—‘fooﬁl (1 =5, X) (418)

Proof : The proof is the same as for the local case, but we have to replace the Tate local functional
equation by the global functional equation [J

4.4 The connection with Hecke L-functions

We remind that if x = @y, is a Hecke character defined on A}, the Hecke L-function L(s, x) is
defined for R(s) > 1 as

1
M= ol TR )

v finite,x, unramified at v

Theorem 4 Let’s consider a number field F, a unitary Hecke character x and note L(x, s) the
associated Hecke L-function. Let’s consider a factorizable non degenerate second degree character
fand note Z¢ (s, x) the Mellin transform of f at (s,x). Then (s,x) is a zero of =5 if and only if
it is a non trivial zero of L(s,x) or a zero of one of the local functions (s,

Proof :
We have already computed that for nearly all valuations, we have
)\(1(95).]811 =1p, (4.20)
so that
Cr,(s,%) Mell(léu ,8,X) = Mell(1p,, s, X) (4.21)

Nearly all these valuations satisfy the condition that y, is unramified at v.
Let’s then consider the two following finite sets : The set S is the set of all valuations which are
either infinite, or finite with y, ramified, or satisfy /\(loux )fo # 1o, or satisfy 0, # O,. The set
T is the set of all valuations which are eiher infinite or finite with x, ramified. It is clear that
TCS.

Let’s suppose that v is not in S. Since y is unramified and N9, = 1, we have Mell(15, , s, x) =
1 so that we get

G150 = Mell(lo,5.0 = [ To. (@)l d*a (4.22)

v

we split the integral according the the valuation of x and get

14+ x(w)Np~° + .. (4.23)
1
e 4.24
T (@ )N (4.24)
We can then write i
i) =[] ¢nsx) [ ——— (4.25)
ves vg s 1= x(w)Np
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let’s compare this with

1
Lis,x) = 4.26
0= = (4:26)
We can split L(s, x) as
1 1

Lls, 0 = ]-_-[ 1— () Np—* H T vl \No—s (4.27)

veS,vgT 1- X(wv)NP v¢S,vgT 1- X(wv)Np

and =y as

1

Ef(S7X) = H Cfu (S7X’U) H gfv (S,X,U) H —_‘5 (4.28)
vESWET veSWET v@S,0gT 1 — x(@,)Np

which leads to the equality

Ersx) = JI (0= x(@)Np™)(sx) [T ¢rlsixa)) s ) (4.29)

veS,vgT veSWET

Note that both products are finite, because S is finite.

We know that the local functions (y, (s, x») do not have any pole for R(s) > 0 and that
the only pole of L(s,x) is at x(x)|z|® = |z|. It is then immediate, since S and T are finite
sets, that a zero of L(s,x) satisfying R(p) > 0 is also a zero of (s, x) an that any zero of
Co(s, xv) is also a zero of = (we have seen that 1 is never a zero of (y for unramified characters).
Conversely, it is immediate that a zero of =¢ has to be either a zero of some (¢ for v € S or a
zero of the product [],cg ,¢7(1 — X(w@y)Np~%) or a zero of L(s,x). We remark that the zeroes
of HUES,U§ZT(1 — X(ww,)Np~#%) are not zeros of Zy because they are canceled by the same terms
appearing in the definition of L(s, ). The non trivial zeroes of L(s, x) at negative integers are
also not zeroes of Zy(s,x) : if this were the case, we would also find these zeroes at positive
integers thanks to the functional equation, and we know that it is not possible [l

5 Weak Mellin transforms and second degree characters de-
fined on vector spaces

Let’s now come back to Riemann’s proof of the functional equation of {, which is based on the
Poisson summation formula on Z, i.e. to the fact that the distribution ¢z is equal to its Fourier
transform. We know that this Poisson summation formula can be generalized to distributions
of the form dz» defined on R", leading to the functional equation of Epstein Zeta functions
or Eisenstein series. The idea of this section is to perform a similar generalization, replacing a
second degree character defined on a field by a second degree character defined on a vector space.
The main result of this section is that the natural generalization of the local functions (y, to
n

vector spaces have their zeroes on the line R(s) = % under reasonable conditions.

5.1 A local functional equation on vector spaces

In order to generalize our results to second degree characters defined on vector space, we first
need a generalization of Tate’s local functional equation to Schwartz functions defined on vector
spaces. We define the following maximal compact subgroups Ky, of GL, (L) : for L = R, we write
Kr = SO(n). For L = C, we write K¢ = U(n). If L is a local field, we write K, = GL,(OL)

40



We define the norm of an element of the vector space L™ as follows : if L is a local field,
[|z]| = sup(|z1], |z2|, , |zn]). If L is equal to R, ||z| is the usual norm. If L is equal to C, we have
to take the square of the usual norm, i.e. ||z||c = ||=||?>. Note that ||| is always invariant under
the action of the compact group K,

Let’s consider for any Schwartz function ¢ defined on L™ and $(s) > 0 the integral

dT” (5.1)

Mips) = [ pl@ll
Ln [k
This integral is well defined : The convergence near zero is a consequence of the fact that ¢ is
continuous. The convergence for ||x|| large is a consequence of the fact that ¢ is Schwartz. We
call this integral the Mellin transform of .
If a function ¢ defined on L", is invariant under the action of K, we say that it is a radial
function.

Proposition 28 For any Schwartz function f, and s € C with 0 < R(s) < n, the Mellin
transform of f and F(f) are related by the following formula

for some scalar py,(s) which does not depend on f

Proof : Let’s first suppose that I, = R. Then this proposition simply states that the Fourier
transform of ||z||*~™ considered as a distribution is equal to ||«||~* up to a scalar factor. This is
a well known result in the theory of homogeneous distributions ( cf [2], Th 2.4.6). Considering
that a radial homogeneous distribution on C™ can also be considered as a radial homogeneous
disribution on R?", the result is then also true for L = C.

Let’s now consider the case where L is a local field, L = Q,. Let’s first consider the Schwartz
functions which are radial (i.e. invariant under the action of K). Such a function ¢ can be
written as a finite sum of the form ¢ = >, aplron ( because ¢ has compact support and is
continuous in zero), and its Fourier transform is equal to §(¢) = (Nd)~2 Y, ak#lw—ka—l(gn,

and it is immediate, writing 0 = p? and || = ¢ that we have
n 1— g5 ™
M(¢,s) = q*3 )qu_sM(S(fﬁ)v” - ) (5.3)

Let’s now suppose that ¢ is not radial. We remark that if ¢ is the radial function obtained by
averaging ¢ under the action of K, we have M (¢, s) = M(¢x, s). Considering that this averaging
action commutes with the Fourier transform, we get the result for all ¢ [

5.2 From second degree characters on vector spaces to Schwartz func-
tions

We also need a generalization of proposition 7 for vector spaces. This is given by the following
proposition :

Theorem 5 Let’s consider a non degenerate second degree character f on a L-vector space L™ of
finite dimension n, where L is a locally compact field. Let’s consider a function ¢ in C°(G L, (L))

and define \(¢)(f) as
D)) = /G Rl (5.4)

Then A(@)(f) is a Schwartz function on L™
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Proof : Let’s first prove an elementary proposition

Proposition 29 Any element v € L™ — {0} can be written as kv, where k is in K and the only
non zero coordinate of vy is the first one. (i.e vi = (21,0,0..) for some x1 in L)

Proof : This is clear for R™ and C™. Let’s then suppose that L is local and note w an uniformizer,
with || = %.It is enough to show that any vector z in L™ satisfying ||z|| = ¢~™ is in the orbit
of the vector v; = (@™, 0,0,0..) under the action of K, for any m € Z. After multiplication by
w~"™Id, which commutes with K, we can suppose that m = 0.

Considering that ||z|| = max|z|; = 1, all the coordinates of = are in O, and at least one of
the coordinates of x is a unit. Since the map exchanging the basis vectors e; and e; is in K, for
all i, we can suppose that the first coordinate x; is a unit. We can then write that

T T 0 O.
za | =22 1 0.](1 0 0) (5.5)
T x3 0 1.

and the square matrix is in GL,(Or) O

Let’s now prove the theorem. Suppose that L is local. It is immediate that A(¢)f is locally
constant, so that we have to show that it has a compact support in V. In order to simplify
notations, we suppose that n = 2, but the proof remains the same for all n. We first convert the
integral on GLs(L)

MO = [ so)fa s (5:6)

GLo(L)

into an integral on Ma(L) : If dx is the standard haar measure on Ms(L), Mi—””z‘Q is a haar

measure on GLa(L) so that it is equal to the standard haar measure on GLs(L) up to a constant
scalar factor. A(¢)(v) is then equal, up to a constant scalar factor, to the integral

1 dx
J, S (57)

writing ¢ (z) = qb(x_l)m ( not to be confused with ¢* = qb(x_l)‘de—lml) for x € GLy(L) and
¢*(x) =0 for x ¢ GLa(L), the integral becomes

/N o, & @ (5.8)

where ¢* is a Schwartz function on Ms(L).
Let’s first suppose that the vector v is of the form (y,0) Let’s write the matrix x as @ =

(: g), so that zv = (ay, vy) = y(«, v) and the integral can be described as

[ s (($ ] )adsaas (59)
a7ﬁ1775€QP v

_ « o ﬂ
- /ﬂ ,ae@p{ /a me@pf(aymy)aﬁ ((7 5))dad7}dﬁd5 (5.10)

We have assumed that the function f(a, ), is a non degenerate second degree character on L2. If
we note o the morphism from V' to V* associated to f, and identify V' with V* using the standard
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additive character 1, then the weak fourier transform of f(a,~) is equal to %j_’(g’l(a, ) (cf

Weil [8]). The fourier transform of f(y(«, 3)) is then equal to Wll%f_’(y’lg’l(a, 7)) We then get

the equality, with the notation §, ~(¢*) for the Fourier transform of ¢* («, 3,7, ) considered as
a function of a and ~ only.

_ 1 F_o—1(2 0 x §)dadyrdBds 5.11
|y|\/§/[376€Qp{/M€pr( 05 ) B (67) (0087 )dady} 3 (5.11)

We then remark that the function §, (4> )(a, 3,7,6) has compact support ( it is a Schwartz
function on L*).As a consequence we can suppose that its support is included in a ball of radius
R ( using the sup norm ||, 3,7,6| = max(|al, |8, |7],|6]) ) . We also know that f o o~! is
continuous and equal to 1 near zero, so that there exists some € so that if |a| < € and |y| < ¢,
then fo o (a,v) = 1. It is then immediate that if |y| > %, then the integral becomes zero :
The expressions [£| and || are always lower than e if o and v are in the support of §q - (¢*) so

that the integral becomes, considering that the matrix <0 ﬂ) is not in GLy(L) :

0 6

Lo x §)dadyYdBds 5.12

v /ﬂ ol / G AR e (5.12)
1y x(o B)dd(S:O 5.13
ly| /0 ﬂ,aer¢(0 5)6 (513

Let’s now suppose that the vector v is not of the form (y,0). We have seen that it is always
possible to write v as v = kv’ with k € GL2(O) and v’ = (y/,0) for some y’ € L. Note that the
sup norm ||v] is equal to |y’|. Tt is immediate that we have

A(@)(v) = A(@) (kv') = Mo(kx)) (V) (5.14)
If the support of ¢ is included in a ball of radius R, then the support of ¢(kx) is included in the
same ball, since we have the equality of sup norms ||kz| = ||z| for all £ € GLy(O) and all z in
GLy(L). The function is then equal to zero if |y'| = [|lv|| > £, which proves the theorem for L

local.

Let’s now consider the case L =R or C.

Let’s for example take L = R. If ¢ € C2°(GL2(R)), we write again ¢* (z) = gb(x’l)m.
The support of ¢* is also compact in My(R) for the topology of Ma(R)( because the inclusion
map from GLy(R) to M3(R) is continuous) so that if x is any element of M»(R) which is not in
GLy(R), then g is zero in a neighborhood of x so that all its derivatives in z cancel.

It is immediate that ¢* is Schwartz on M3(R) because it is C°° with compact support. We
first consider the case v = (y,0) and the same computation as for the case L ultrametric leads
to the integral

Loy Fo1 (T @ B\
s L L G DS (G § )iz a15)

We then observe, that for n > 0, m > 0, the integral

/ ™y Bay (7 <a §> )dady (5.16)
O‘v'Yver v
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is equal, up to a constant, to

ortm o fa B 7ﬂ « (0 B\ _
/ame(@p&t,w(W(ﬁ )(<7 5>)dad76a"67m¢ (0 6)0 (5.17)

If P(a, B) is the polynomial associated to the Taylor expansion of degree n of f(o™'(a,7), the
integral is then equal to

Lo Fom1(2 Ty @ Y G
GG D) - P D Fe (] ] e (51s)

and the remainder of the proof is similar to the one dimensional case. The proof for L = C is
similar O

This theorem can be extended without difficulty to vector spaces defined over locally compact
division rings D, since the commutativity of the field has not been used in the proofs.

5.3 The weal Mellin transform of a second degree character defined
on a vector space

On a locally compact field, we have defined the weak Mellin transform thanks to the formula
Mell(A(¢) f,s) = Mell(¢, s) Mell(f, s) which is valid for all Schwartz functions with R(s) > 0.
This formula can also be written as A(¢)|z|*~! = Mell(¢, 1 —s)|z|*~! : the function |z|*~! on R*
is stable, up to a scalar factor, for the action of the multiplicative group. In order to generalize
this formula to vector spaces defined on locally compact fields, we consider the function ||z||* on
L™ — {0} and the natural left action A of GL, (L) on this function. If ¢ is a general element of
C*®(GL, (L)), then A(¢)|lx]|® is not equal to ||z||* up to a scalar factor. We however show that
this is the case if the function ¢ is invariant under the action of K, which allows to define the
weak radial Mellin transform.

Proposition 30 Let’s consider a function vs defined on L™ — {0}, invariant under the action
of K and satisfying vs(Ax) = |\*vs(x) for all X € L, then vy is equal to the function ||x||® up to
a scalar factor.

Proof : Let’s note C' the value of v4(x) on e; = (1,0..). We then write, using a decomposition
x = kvy given in proposition 29

vs(x) = vs(k(21,0,0..)) = |21]°vs(1,0,0..) = C|lz||® O (5.19)

Let’s note H(GL,, (L)) the Hecke algebra of GL, (L), i.e. the algebra of functions in C°(G L, (L))
invariant under the left and right action of K.

Proposition 31 Let’s consider a function ¢ € H(GL, (L)) . Then For all s € C, there exists a
scalar &5(¢) so that the equation

A@)z]|* = &s(o)lx]|® (5.20)
is valid for all © € L™ — {0}

Proof : Let’s note f(x) = ||x||® We have

Ok = [ ola)fa ko) (5:21)

GL. (L)
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writing =1k = y~!, so that ky = z, we get

- / o(ky) F(y~ 0)d"y (5.22)
GL.(L)

= Ao)(f)(v) (5.23)

it is then immediate that A(¢)||z||° satisfies the conditions of the previous proposition , so
that it is equal to ||z||® up to a scalar factor on R” — {0} O

Proposition 32 The function & is a character of the Hecke algebra H(GLy, (L)) : If ¢1 and ¢
are in H(GL, (L)), we have

£s(P1 % P2) = Es(h1)Es(92) (5.24)
Proof : immediate consequence of the proposition A(¢1 * ¢2) = A(p1)A(¢2)

Proposition 33 Let’s consider some function ¢ defined on L so that M(yp,s) is well defined.
Then M (@), s) is well defined and we have for ¢ € H(GL, (L)) the equality

M()\(d))(p, 5) = gsfn((b*)M(wv S) (525)
whith *(9) = gz ¢(9~")

Proof : We have

M@ - |

B s dx
/ o(9)p(g™") 2| d* g~ (5.26)
z€L" JgEGL,(L) (B

the double integral is absolutely convergent, so that we can exchange the order of summations,
and write y = g~ 'z, so that dz = |det g|dy

- / / 6(9)¢(v) lgy]l*~"|det gld* gdy (5.27)

geGL, (L) JyeL™

replacing g with ¢g~!

1
= —— (g™ eW)llg™ > "d* gdy 5.28
I B G L (5.25)
:/ sﬁ(y)/ o*(9)llg M yll* " d" gdy (5.29)

QEGLTL(L) yeL"
— [ Ol @iy (5.30)
yeLm™

It is immediate that if ¢ is in H(GL, (L)), then ¢* is also in in H(GL, (L)) so that we can apply
proposition 31

e n(6Y) / o)yl "dy O (5.31)
gEGLn(L)

We are now in a position to extend the definition of the Mellin transform to second degree
characters defined on vector spaces.
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Definition 3 Let’s consider a non degenerate second degree character f defined on L™. Choose
some function ¢ € H(GLy(L)) so that &s_n(¢*) # 0 . We define the weak Mellin transform
M(f,s) of f by the formula

M()‘((b)fa S) = gs—n(qﬁ*)M(fa S) (532)

this quantity does not depend on the choice of ¢ .

Proof : We have to prove that the definition does not depend on the choice of ¢. Let’s first
suppose that L is a local field and consider some function ¢ € H(GL,(L)). It is immediate that
¢x 1 = ¢ ( we assume that the haar measure on GL,, (L) is normalized so that the measure of
K is equal to 1), so that we have

M(X(@)f) = M(A¢)A(1k)[) (5.33)
applying proposition 33, we get

=& (0")M(A(1k) [, 5) (5.34)

And we observe that M (A(1x)f,s) does not depend on ¢. Let’s now suppose that L = R ot
C. Let’s choose some function ¢, so that &, (¢7) # 0 and consider the family of functions
fo(z) = f(x)(b.x) and assume that the functions M;(fp, s) are defined for all b in L™ by the
formula

MN(@1) fo,8) = Es—n (D7) M (fo, 5) (5.35)

The computations described in proposition 14 can be generalized to vector spaces, showing that
Cy,(s), considered as a function of b ( or, more precisely, as a distribution on the variable b), is
the weak Fourier transform of the distribution f(z)|x||*~", which shows unicity because (y, (s)
is a continuous function of b. [

Proposition 34 If ¢ is in C°(GL,(L)), and f is a Schwartz function, the Fourier transform
of the function XN(¢)f is equal to \(¢¢) F(f) where ¢¢ is defined by the formula ¢¢(g) = ¢*(g*) =
maﬁ((gt)*l)

Proof : We write that

SO )(y) = / / o(9) F (g™ ) ay)d* gde (5.36)
zeL™ JgeGL, (L)
writing ¢ 'z = 2, we get
/ / ,, AT Cl(g) )t la g (5.37)
ze€L™ J geGL,(
-/ / )1 (2)(z.g')\det gld* gd= (5.38)
eLn JgeGL, (L)
. o(g)|det g| F(f)(g'y)d* g (5.39)
writing h = (g*)~! :
= oy P e SO (5.40)
O (5.41)
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Proposition 35 The proposition is also valid is f is a non degenerate second degree character

Proof : considering that A(¢)f is a Schwartz function, it is enough prove this in the weak sense,
using the same method as in proposition 9. The computation is straightforward [

Proposition 36 The weak Mellin transform of a second degree character satisfies for 0 < R(s) <
n the equation

(5 (5) = pal8)Cs(r) (n — 5) = puls) ](Ecﬂgflz)(n —s) (5.42)

where the scalar factor p,(s) has been defined in proposition 28

Proof : Let’s first consider a Schwartz function ¢ and any function ¢ € H(GL,(L),n) so that
&s(0*) # 0. M)y is again a Schwartz function, so that we have by the local functional equation
(proposition 28) the equality

MA(@)e,5) = pn(s) M (F(M)p),n — s) (5.43)

using the previous proposition,

MA@)p,s) = pu(s)M(A(¢°) F(d)p, 1 — 5) (5.44)
If ¢ € H(GL, (L)), then ¢° is also in H(GL, (L)), so that we can use proposition 33 and we
get, introducing the notation ¢'(g) = (¢°)*(g) = ¢(g?),

Es—n (0" )M (9, 5) = pn(s)é—s(¢") M(p,n — 5) (5.45)

If we compare this with the local functional equation for ¢, we conclude that &_,(¢*) =
&_s(¢") for any function ¢ in H(GL,(L)). Let’s now consider a non degenerate second degree
character f. We know that A(¢)f is a Schwartz function, so that we have

M(M@)f,5) = p(s)M(FA@)f),n — s) (5.46)

Assuming that ¢ is in H(GL, (L)), using the previous propositions and the definition of the weak
Mellin transform, this becomes

Eomn(9")Cr(5) = pu(9)E—s(0")C5(p)(n — 5) (5.47)

and finally
Cr(s) = pn(s)Cs(n(n—s) O (5.48)

This formula shows that (r(s) has an analytic continuation, but is not really a functional
equation. We note again, however, that if o is scalar, i.e. of the form o = ald where « is a scalar
in L, then we get a true functional equation.

5.4  The zeroes of (; for second degree characters defined on Q)

Theorem 6 Let’s consider a non degenerate second degree character f on Q and assume that
the associated map o is a dilation o = ald. Then the zeroes of the weak Mellin transform of f

are on the axis N(s) = &
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Proof : We then suppose that the second degree character can be written as
1 n n
flar,wan) =w(za ) ad+ ) fixs) (5.49)
i=1 i=1

with a # 0 and 3; € Q,
Let’s compute for some vector v the function A(1gz, (z,))f(v)

We write
Mor,@)f@) = [ s (5.50)
GLn(Zyp)
= / flgv)ler,z,)(9)d"g (5.51)
GLn(Qp)
We know, thanks to the unicity of the Haar measure, that d*g is equal to ‘de’i—gg“ up to some

scalar factor. Let’s note p this scalar factor. The integral becomes, noting that the determinant
of any element of GL,,(Z,) has to be a unit :

—u / F(g00) 61z, (9)dg (5.52)
M, (Qp)

Let’s write g; ; the matrix coefficients of the matrix g. We can assume that v = re; =
(r,0,0..0) for some r € Q, because the result is a radial function ( i.e. a function invariant under
the action of GL,,(Z,)). We have gv = ¢(r,0,0..0) = (rg1,1,7¢2,1,..7gn,1) and

Flgvo) = w5 (Y ) + 3 figia) (55)
i=1 i=1

This expression is independent of the g; ; with j # 1, so that the integral can be simplified. We
use the following proposition

Proposition 37 Let’s consider some matriz A in M, (Z,) and assume the matriz elements a; 1
of the first column of A are not all in pZ, and are fized, while the other matriz elements are
considered as variables. Then the additive measure of the set of (a; ;)21 satisfying (a; ;) €
GL,(Z,) is equal to the measure of GL,_1(Z,)

Proof : We can suppose without loss of generality that the valuation of a;; is zero. Let’s
suppose for example that n = 3 and write

a1 a1,1T a1y ain 0 0 1z g
asq1 a21r+z  asy+t | =|ax1 1 0 0 z t (5.54)
a3l az1x+u  azay+v as,1 0 1 0 u v
1,1 0 0
Considering that the matrix [ a1 0] is in GL(Z,), The left matrix is in GL3(Z,) if and
a3.1 0 1

only if z and y are in Z, and if the square matrix (z f}) is in GL9(Z,). Considering that the

additive measure of Z, is equal to 1, the measure of the possible vectors (z,y, z,t, u,v) is then
equal to the additive measure of GL2(Z,). We then observe that the determinant of the map
(SC, Y, =, tv u, ’l)) = (0,1111', a11Y,a21% + 2, a2.1Y + tv as1x +u, as1y =+ ’U) is equal to a’%,l which is a
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unit. The proof for a general n is the same [

Let’s note s the measure of GLn_l(Zp) : the integral becomes

1 n n
/Uf/g 1/1(5047"2(2 gi1) + Zﬂigi,l)dgl,l--dgi,l (5.55)
1,1--gn,1€ED i=1 i=1

where the domain of integration D of the integral is the set of all vectors g; 1..gi» in Zj so that
at least one of the g; ; is a unit. This domain can be expressed as the set of vectors which lie in
Zy but not in (pZ,)", so that the integral can be written as

1 n n
lm/ ¢(§Oﬂ"2(z 921+ Bigin)dgia-dgin
91,1--9n,1 €LY =1

i=1
1 n n
— ,u,li/ B 1/}(5(17“2(2 91271) + Z ﬁigi,l)dgl,l--dgi,l (556)
91,1--9n,1€(PLp) i=1 i=1

It is then natural to introduce the function

Op(r) = /gl,l..gn,,lezg 1/1(%@7’2(; 91'2,1) + é Bigi1)dgr 1 --dgi (5.57)
so that the integral can be written as
pi(0(r) = —0(pr) (5.5%)
We then get the equality
NLara())F(0) = i(0(r) = —0(pr) (5.59)

Considering that 1gr,z,) * lar.(z,) = LaLs(z,) 50 that £(1gr,z,)) = 1 for all values of s, the
weak Mellin transform of f is simply the Mellin transorm of A(1gz,(z,))f :

dv

G = [ M@l S (5.60)
vea ol
this integral is equal, up to a scalar factor, to
s dr
= Mlar, @) f(ren)lr| —— (5.61)
r€Qp |
this is equal, up to a scalar factor, to
1 .
= [ (0500~ 0ol (5:62)
reQy p
1
p

Let’s now compute the Mellin transform of 6(r). We remark that the integral definition of 0
naturally splits as the product of one dimensional integrals 8, which we have already computed
in the proof of theorem 1

In order to complete the proof of the theorem, we then have to prove the following proposition
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Proposition 38 Let’s consider n non degenerate second degree characters fi,.. fn on Qp, and
note 0y, .0y, the associated functions. Assume that the endomorphisms o; associated to f; all have
the same modulus. Then the zeroes of the Mellin transform of the product 0y, (r)0y, (r)..0f, (r)
are on the axis N(s) = 5

Proof : let’s suppose for example that the valuation of g is even. After rescaling of the functions
fi, we can then assume that the valuation of ¢ is zero. Then we have seen in the proof of theorem
1 that all the functions ¢, are of the form

1
1Zp (ac) + (1 — 1zp)m (564)
or for k>1 ) )
Lyrz, () + melpkzp(g) (5.65)

We remark that on each formula, the left term cancels for negative valuations of x and the
right term cancels for positive or zero valuations of x. If all the terms satisfy k& = 0, then the
proof is immediate. Let’s note n; the number of terms 6, associated to some k. The product of
the functions 0y, becomes

{1z, ()™ [ (e, (@)™ } + (1 — 12,3)%)”0 H(ﬁlpkzp@))"f} (5.66)

. : x
i>1 i>1

where v is the product of all the v¢ Let’s note m the maximum of the k’s appearing with non
zero ny. The first term simplifies to 1,mz, and, assuming m > 1 the last term also simplifies as

1 1
ValrotFmm Lpmz, () (5.67)
It is immediate that ng + .. + n,,, = n so that we get
Lz, + 7 Lz, () (5.68)
pm’ZP ’Y |:C|" anZP - .

and it is immediate, using the same method as for the case n = 1, that the zeroes of the Mellin
transform of this function are on the axis R(s) = %. The proof for odd valuations of g is similar

O

5.5 The weak Mellin transform of a second degree character defined
on a real vector vector space

It is possible to give an explicit description of the weak Mellin transform of the function ¢ (%||z||*+
b.x) on R™.

Proposition 39 The weak Mellin transform of f(x) = ¢(%||z||* +b.z) on R™ with a > 0 is

e~ TS g% I'(s) s n milb]]?
a = 5 =1Fi(z, =, 5.69
Ga(s) Ja§ T(Z) x5 ° 1(2 2" a ) (5.69)
Remark : this function cancels only for R(s) = % ( cf proposition 19)

Proof : the method is the same as for the case n =1 : the same argument shows that (4 5(s)
can be considered also with a € C with $(a) < 0 and b € C, and that with this definition (,
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is a continuous in a and analytic in b. Let’s then first compute (,5(s) for b = 0, then write its
Taylor expansion as a function of b. Let’s first suppose b = 0 and a > 0 Let’s write a’ = a — ie
with € > 0 and compute

o d
/ e~ 2mi(F o1 s (5.70)
R'n.

]|

let’s write x = ru where u is on the unit sphere S,,_1.

e ial 2 d
= / / e 2T rsrnfl—:du (5.71)
Sp-1J0 r

Considering that the area of S, is ??—f), we get
2

—= I(5)

1 i
S € B
) Va ™
We then get the result for a real by taking the limit when ¢ — 0.
Let’s now suppose that b # 0, and consider (, 5(s) as a function of b. It is clear that it is even,

and that it is also radial.
It can then we written as a function of ||b|| = r as

Ca(s) = apr® (5.73)

k>0

(5.72)

3| NI
[SEANTIVY

I

Let’s note A the laplacian in R™. The values of a; can be described thanks to the formula
Ar?k = 4k(53 + (k — 1))r2k=2 .

Akp2k — 4kk!(g)k (5.74)
so that . (s)
o AbCa,b S

U = (D) (5.75)

Where the symbol Ay is the laplacian with respect to the variables b1, ..b, In order to compute
i a 2

AF(ap(s), we remark that the seconde degree character f,p(z) = e 2™ (5 1717+0-2) gatisfies the

partial differential equations

0

5 fan = —milll* fas (5.76)
and
Apfap = (=2m0)?||z]|* fae (5.77)
so that o1
A — (—Ami a,b -
bfap = (—4mi) 5 (5.78)

It is not difficult to show, as in proposition 17, (or by taking a € C with $(a) < 0 and taking
the limit when a converges to a real value) that we can exchange the integration and derivation
signs

We then get

aCa,b

ApCap = (—4mi) 9

(5.79)
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We have for b = 0 the identity

*Cas ] s 1 = (%)
T by gy = T (1) ()i F 2 .
dak ( 0 F(%)( )(Q)kai""ke ’ T2 (5.80)
so that _
67%5 ﬂ'g I %) 1 k Nk S 1 ok
" = . 2 —1)%(—4 —Vk— 5.81
Corle) = o gyt 2 ey D A G (5.:81)
We recognize again a confluent hypergeometric function
e~ TS5 1% r'(s) s n wir?
= —F =1 Fi (=, =, O 5.82
ﬁsr(g)-11(22a) (5.82)

5.6 weak Mellin transforms associated to non trivial representations
of K

The Mellin transform can be used to decompose a radial function as an integral of functions of
the form ||x||®. It is clear that if one wants to get a complete decomposition of a function defined
on R™ — {0}, one has also to consider functions which are non constant on the unit sphere, and
the most natural way to do this is to use the theory of spherical harmonics, i.e. to consider scalar
integrals of the form

| @y (el (5.83)

| [

where Y is some spherical harmonics on the sphere. Using these scalar integral does not allow to
define a weak Mellin transform, but we know that spherical harmonics are associated to a special
class of representation of O(n) called the spherical representations, and we now show how these
representations can be used to define the weak Mellin transform as a vector valued integral.

Let’s consider the vector space L™, where L is any locally compact field, note e; the vector
(1,0,0..) and K., the stabilizer of e; in K, i.e. the subgroup of elements k of K so that ke; = e;.
We say that an irreductible representation (m, V;;) of K is spherical if it has, up to a scalar factor,
a unique vector fixed under the action of K., .

The following proposition can be considered as a generalization of proposition 30 :

Proposition 40 Let’s consider a spherical representation (7,Vy) of K and some s € C. Then
there exists, up to a scalar factor one and only one function v, . defined on L™ — {0} with values
in Vi and satisfying the two following condistions :

o vy o(ux) = |u|*ver(x) for all p € RY if L=R or L =C and p = @ if L is local,
o vy (kx) =75 n(k)vs () for all k in K

Proof : Let’s first prove unicity. Note vy a vector of V invariant under the action of K., by
the representation w. Considering that the action of K on the unit sphere x| =1 is transitive,
it is immediate that the restriction of the function v, s on the sphere ||z|| = 1 is uniquely defined
by f(w) where w is any vector in the sphere, for example w = e; = (1,0,0..), by the formula

fker) = m(k)f(e1) (5.84)

e1 is invariant under the action of K.,. As a consequence, f(ej) should then be a vector
in V invariant under the action of K., by the representation 7. We have supposed, however,
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that there exists, up to a scalar factor, exactly one vector satisfying this property. We then have
vy s(€1) = pg for some scalar p and the restriction of v, 4 to the sphere can be described by the
formula

vr s(ker) = m(k)vg (5.85)

inversely, this equation gives a well defined function v, s on the sphere which satisfies the
conditions of the proposition. The extension of v, s to L™ — 0 using dilations is immediate [
If ¢ is any smooth function with compact support from GL,,(L) to Endc(V;) and f any function
defined on L™ with values in V; or C we can again define the function \(¢)f by the formula

N = [ slfe )y (5.56)
GL(R™)
If f has values in C, A(¢) f has values in Endc (V). If f has values in Vi, A(¢)f has values in V.

For example, if f is a non degenerate second degree character defined on L" with values in
C, then the function A(¢)f has values in Endc (V) and is a Schwartz function ( because each of
the matrix coefficient is a Schwartz function).

We also have to replace the Hecke algebra H(GL,,) by the m-spherical Hecke algebra H(GL,,, 7)
associated to the representation 7 , i.e. the set of smooth functions from GL, (L) to End(V;)
having compact support and satisfying the relation ¢(k1gke) = m(k1)d(g)m(ke) . Using these
definitions, the generalization of proposition 31 is immediate :

Proposition 41 Let’s consider a function ¢ € H(GL,,n). Then For all s € C, there exists a
scalar &5 - (@) so that we have

A(¢)Vs,w = gs,fr((b)ys,fr (587)
Proof : it is immediate that A(¢)vs » satisfies the conditions of the previous proposition :
N@)r,s (uka) = / G(9)vm,s (9™ " pka)dg (5.88)
GL(R")
Wl [ dlgmaly ey (5.89)
GL(R™)
writing g1k = ¢/~ !

= |ul® O(kg )m,s((9') " 2)dg (5.90)

GL(R™)
—lul*n(®) [ ol wnall) )y (5:91)

GL(R")

this function is then equal to v; s on L™ — {0} up to a scalar factor [

Using this proposition, the method used in the previous sections to define the weak Mellin
transform can be easily extended, replacing the function ||z||® with the functions v, ; : We simply
write

M(fosm) = [ faneo) i € Ve (592)

Note that the formula defining M (f, s, 7) stil makes sense ( the integral is absolutely conver-
gent for R(s) > 0) if f has values in GL(V'), considering that this linear map acts on the vector
vr () so that if f second degree character and ¢ any smooth function with compact support in
GL, (L) with values in GL(V), M(\(¢)f,m, s) is a well defined vector in V;
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Using this definition of M(f,s, ), the definition of the weak Mellin transform of a second
degree character as an element of V. can be done using exactly the same method as for the case
n = 1.

Proposition 42 We have for all Schwartz functions defined on R™ with values in C the formula
M (@) fm,8) =E&s—nx(d")M(f,m,5) (5.93)

Remark : note that f has values in C, but A\(¢)f has values in GL(V).
Proof : We have

MO = [ (@)D )T (5:94)
[ [ s s @agds (5.95)
zeR” JgeGL, (R)
writing y = ¢~ 'a
=/ / D(9)f(Y)Vs—n,x(gy)|det g|d™ gdy (5.96)
yeR JgeGL, (R)
replacing g with g~!
1
= ! Vs—n,m -t x .
_/yE]Rn /QEGLn’(R)f(y)aﬁ(g Wonal9™ ) Gor g1 @ 9% (5.97)
— [ NG s )y (5.98)
yERn
= gsfn,w(d)*)/ f(y)ysfn,w(y)dy (5'99)
y€eR™

using this formula, we can define in a reasonable way the weak Mellin transform of a second
degree character.

Definition 4 Let’s consider a non degenerate second degree character f defined on L™. Choose
some function ¢ € H(GLy, ) so that Es_p - (¢*) # 0 . We define the weak Mellin transform
M(f,s,m) of f by the formula

MN@)f,5,7) = Es—n,x (") M(f, 5, 7) (5.100)
this quantity does not depend on the choice of ¢ .

Proof : the proof is the same as the unramified case ( replace 1x by 1k (k)w(k) for the local
case)

This weak Mellin transform satisfies the same kind of scaling properties as the usual Mellin
transform :

Proposition 43 Let’s suppose that the weak Mellin transform M(f,s,7) of a function f on L™
with values in C is well defined for some s and 7, and consider some k € K and p € R if L is
R or C (or = for some k in Z if L is local) Then we have the formula

M(f (k) 7, 8) = ||~ (k) " M(f,m,5) (5.101)
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Proof :
The definition of the weak Mellin transform of f is that for all ¢ in H(GL,,, ), we have

MN@)f,5,7) = Es—n,x (") M(f, 5,7) (5.102)

Let’s note f,, the function f(uz) and fi the function f(kz). It is then enough to prove that
M) fuss,m) = *M(N@)f, s, ) (5.103)

M) frss,m) = w(k) " M(M9) f, 5,7) (5.104)

The first identity is immediate. The second is the consequence of the following computation :

d
M@ = [ ([ s s (5.105)
writing h=! = kg™!, we get
_ -1 X dx
= [ ([ o021 g ) o (5.106)
using the right equivariance of ¢
/ /qﬁ F(h~a)d*g)r (k)us,,r(x)H;% (5.107)
using the functional property of v, .
dx
= R)f(htx)d* g)vs x(kx)—— .
L[ st g (5.108)
= /nk(qﬁ)f(w)vs,w(kw)H;% (5.109)
iti =k
. = [ @I s ) (5.110)
R Tyl
1, dy
= R)F(h 'k y)d* h)vg x (y) — 5.111
R RO O O (5.111)
writing h=1k=1 = g1
_ —1 —1 X ﬂ
—/Rn(/cqﬁ(k 9)f(g~ y)d g)vs,w(y)”y”n (5.112)
using the left equivariance of ¢
— () MA@, 5,m) O (5.113)

O
We now specialize to the case L =R

Proposition 44 Let’s assume that L = R and that (w, V) is a spherical representation of Ki,.
Then the weak Fourier transform of vr s is equal to vy _s_,, up to a scalar factor
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Proof : We know ( Cf [2], p130) that if v is a C'* function on R™ — {0}, that is homogeneous,
then its Fourier transform §(v) is also a C*° function on R — {0}. It is immediate, using the
commutation relation of the Fourier transform, that this fourier transform satisfies §(v)(ux) =
p" 0 §(v) and §(v)(kg) = m((k~1)")v(g) = m(k)v(9)

Using this proposition, it is not difficult to see that the weak Mellin transform of a second
degree character of the form +(§x.z 4 b.x) satisfies a functional equation. Let’s now consider
the location of the zeroes of this function. We first remark that on R™ the function (f(s,n)
considered as a function of s, is vector valued, but behaves like a scalar. Let’s for example

consider the second degree chatacter fq., = ¢¥(52.¢ + ei.x). We have

Proposition 45 For any value of s, (g, .. (s) is equal, up to a scalar factor, to the unique vector
vg in Vi fized under the action of K.,

Proof : the function f, ., (z) remains unchanged if we replace x with kz with k£ € K.,. As
a consequence of proposition 43, the function (g, . (s,m) is a vector of V; invariant under the
action of K.,. It is then equal to vy up to a scalar factor [J

It is also possible to prove that the zeroes of (y lie on the axis R(s) = % if the morphism
associated to f is a scalar :

Theorem 7 Let’s consider on R™ a second degree character of the form fqp(x) = w(%ax.x—i—b.x)
with a € R* and b € R™, (7, V) an irreductible spherical representation of K = O(n), and note
Cab(8,m) the weak Mellin transform of fup. Then

o ifb=0 and 7 is not trivial, then (4 (s, ) =0 for all values of s.

o ifb#0, all the zeroes of (up lie on the avis R(s) = §

Proof : The case b = 0 is clear : the function w(%ax.x) is invariant under the action of
K = O(n). As a consequence of proposition 43, (,(s) is a vector in V. invariant under the
action of 7(k) for all k in K. Considering that the representation 7 is assumed to be irreductible,
the only possible value of (, 5 (s) is zero.

Let’s now suppose that b # 0. We remark that if (,,(s) = 0 for some by, we have also
Ca,kbo (s) = 0 for k € O(n) as a consequence of proposition 43, so that the function cancels on the
whole sphere ||b]] = ||bg||. The idea is then to use Sturm Liouville theory in R™ with boundary
conditions on the sphere ||b]| = ||bo||. Let’s first find the partial differential equation satisfied by
Ca,b(s) considered as a function of b.

We observe that the function f,;, = 1(1az.z 4 b.x) satisfies the formula

L0
Apfap = (*4ﬁl)%fa,b (5.114)

where the symbol A, refers to the laplacian of f, ; considered as a function of the vector variable
b.
As a consequence, the function (g, (s, 7) satisfies the following differential equations :

0Ca (8,
ApCap(s,m) = (—4m')M (5.115)
da
We also have using the proposition 43 for any A > 0
C)\Qu,/\v(sa 7T) = )\_SCu,'u(Sa 7T) (5116)
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which we can also write as 9
X Oz n(s)) =0 (5.117)

Let’s develop this equation, using the notations % for the derivation of (, (s) with respect to
a, and V, for the gradient of ¢, (s) with respect to the vector variable b :

0
SN T zuw(8) + )\S(QAU)%C,\%,AU(S) + A Vzua(s)v =0 (5.118)
writing A2u = a, Av = b,
X 0 X
SN Cap(8) + /\‘5_1(211)%@17;,(5) + X TIVCan(s).b =0 (5.119)

using the partial differential equation 5.115, and removing the term \*~!, we get

a

$Ca,b(8) = 5—=8bCa,b(8) + ViCap(s).b =0 (5.120)

21

In order to apply Sturm Liouville theory, we have to cancel the first order term. We then
introduce the vector valued function ¢, (s) defined by the formula

wib.b

Cab(8) = dap(s)e 2 (5.121)
Elementary calculations show that the equation 5.120 becomes
i 20T \2
Av@ap(s) + (—(n—2s) + [b]*((~)")dap(s) = 0 (5.122)

Let’s multiply this equation with the vector ¢, ;(s) ( the vector whose coordinates are the
complex conjugates of the coordinates of ¢, 5(s)) and integrate on the ball B defined by ||b]| <
[1boll- _

i 9, T o -
0= [ (Apdap(s) + (—(n—=25) +[[b]*((=)7)Pa,b(5))-Pap(s)db (5.123)
beB a a
using the boundary conditions, we get

= [ IVtws@Ra [ o204 Do) G124

so that we have the equality

™ (n —2s) / _ u(s)de = / Vi) / IR ows s (5.125)

and this last expression is real. The function ¢ ;(s)) cannot cancel on the whole ball B :
Considering that it is a real analytic function as a function of the coordinates of b, it would
imply that ¢q (s, m) = 0 for all b. We can, however, again consider the function (, ;(s, ) as the
fourier transform of the distribution (§x.2)Dx s, where the distribution D, , is defined by the
formula

dx
)™

< Dy ryp >= /n o(x)Vs () (5.126)

( the proof is similar to the one given in proposition 14 ) which shows that it cannot be zero.

n — 2s has then to be imaginary, i.e. we have R(s) =5 0O
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