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Abstract

We say that a function f defined on R or Qp has a well defined weak Mellin transform
(or weak zeta integral) if there exists some function Mf (s) so that we have Mell(φ ⋆ f, s) =
Mell(φ, s)Mf (s) for all test functions φ in C∞

c (R∗) or C∞

c (Q∗

p). We show that if f is a non
degenerate second degree character on R or Qp, as defined by Weil, then the weak Mellin
transform of f satisfies a functional equation and cancels only for ℜ(s) = 1

2
. We then show

that if f is a non degenerate second degree character defined on the adele ring AQ, the same
statement is equivalent to the Riemann hypothesis. Various generalizations are provided.
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1 Introduction

It has been a standard practice, since Riemann’s 1859 paper [5], when considering the zeta
function

ζ(s) =
∑

n≥1

1

ns
=

∏

p

1

1− 1
ps

to add a “gamma factor” Γ(
s
2
)

π
s
2

in order to build a “completed zeta function”

Ξ(s) =
Γ( s2 )

π
s
2

ζ(s)

which satisfies the functional equation Ξ(s) = Ξ(1 − s)
However the link between this gamma factor associated to the “infinite prime” and the usual

factors 1
1−p−s still remains a mistery.

The “modern” approach to the functional equation of the the zeta function, developped by
John Tate in his thesis [7], is to introduce the ring of adele AQ, consider that the function Ξ(s)
is the zeta integral of the function

φ(x) = e−πx2
∞ ⊗p 1Zp

(xp)

and show that the functional equation of Ξ(s) is a consequence of the equality F(φ) = φ using
Poisson summation formula.

This approach, however, does not manage in the same way the “infinite prime” and the
finite primes : the function e−πx2

seems to have nothing to do with the functions 1Zp
and this

“symmetry breakdown” is not consistent with the modern idea that all the places of a number
field should be put on the same footing.

In this paper, we show that the gamma factor at the infinite prime and the factors 1
1−p−s

at finite primes are very close to be the Mellin transforms of the “same” function , from an
algebraic point of view, on R and Qp. Finding an algebraic equivalent to e−πx2

for the finite
places does not seem to be possible, but we observe that that finding an algebraic equivalent
to e−πix2

is straightforward : this function can be written as ψR(
x2

2 ) where ψR is the standard
additive character e−2πix on R, so that its “algebraic equivalent” on the finite places could be
ψp(

x2

2 ) where ψp is the standard additive character on Qp.
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The Mellin transforms (or zeta integral) of these functions are not well defined in the usual
sense, but it is possible to extend the definition of the Mellin transform using the fact that if
f ⋆ g is the multiplicative convolution product, we have Mell(f ⋆ g) = Mell(f)Mell(g) : We say
that a function f on R or Qp has a well defined “weak Mellin transform” at the character |x|s if
there exists a function Mf (s) so that for any smooth test function φ with compact support in
the multiplicative group R∗ or Q∗

p, we have the equality Mell(φ ⋆ f, s) = Mell(φ, s)Mf (s). Using

this definition, it is possible to prove that the weak Mellin transforms of ψ∞(x
2

2 ) and ψp(
x2

2 ) are
well defined for ℜ(s) > 0 and that we have

• Mell(ψ∞(x
2

2 )) = e−sπi
4

Γ( s
2
)

π
s
2

• For p = 2, Mell(ψ2(
x2

2 ), s) = 1
1−2−s (2

1−s(1− 2s−1) + e
πi
4 2s(1 − 2−s))

• For p 6= 2, Mell(ψp(
x2

2 ), s) = 1
1−p−s

We can in the similar way define on the ring of adeles AQ the weak Mellin transform ( or

weak zeta integral) of the global function f(x) = ψ(x
2

2 ) = ψ∞(
x2
∞
2 ) ⊗ ψ2(

x2
p

2 ).. ⊗ ψp(
x2
p

2 ).., show
that it is well defined for ℜ(s) > 1, and equal to the product of the local Mellin transforms. We
then get the global formula :

Mell(ψ(
x2

2
), s) = e−sπi

4 (21−s(1− 2s−1) + e
πi
4 2s(1 − 2−s))Ξ(s)

If we note Ξf (s) this function, Ξf has an analytic continuation and satisfies a functional
equation

Ξf (s) = Ξf (1− s̄)

It is possible to adapt Tate’s Thesis in order to show that this functional equation is a consequence
of the fact that the Fourier transform of ψ(x

2

2 ) ( considered as a distribution) is equal to its

complex conjugate ψ̄(x
2

2 ).
Ξf appears to be the product of the completed zeta function Ξ and a non trivial entire

function e−sπi
4 (21−s(1 − 2s−1) + e

πi
4 2s(1 − 2−s)). It is natural to investigate the zeroes of this

entire function, and it appears that all these zeroes lie on the line ℜ(s) = 1
2 .

This result can be generalized, and the main objective of this paper is to study how far this
generalization is possible. Let’s first remark that the function ψ(x

2

2 ) belongs to a class of function
called “second degree character” by Weil in his celebrated 1964 “Acta” paper [8]. A continuous
function f defined on a locally compact abelian group G with values in the torus T is called a
second degree character if the function f(x + y)f(x)−1f(y)−1 is a bicharacter, i.e. is a group
character as a function of x and as a function of y. On AQ, the second degree characters are of the
form ψ(a2x

2 + bx), whith a and b in A. Weil showed in [8] that if such a second degree character
f is non degenerate ( on AQ, this is equivalent to a being an idele), its Fourier transform can
be written as γf√

|a|
f̄(xa ) where γf is some scalar ( now called the Weil index) satisfying |γf | = 1.

Combining this result with Tate’s Thesis, we show that if f is a non degenerate second degree
character on AQ, and χ a Hecke character on the idele group A×

Q , the weak Mellin transform of
f at the character |x|sχ(x) is well defined for ℜ(s) > 1 and has an analytic continuation with
possible poles at 0 and 1. If we keep the notation Ξf (s, χ) for the analytic continuation of Ξf ,
we have a functional equation

Ξf (s, χ) = γf |a|
1
2
−sχ̄(a)Ξf (1− s̄, χ)

3



For ℜ(s) > 1, Ξf can be expressed a an Euler product Ξf (s, χ) =
∏

v ζfv (s, χ) where each local
function ζfv = Mell(fv, s, χv) satisfies a functional equation

ζfv (s, χv) = ρ(s, χv)γfv |a|
1
2
−s

v χ̄v(a)ζfv (1 − s̄, χv)

where ρ(s, χv) are the local constants defined by Tate in his Thesis. The functions ζfv can
be explicitly computed. For example, on R, the weak Mellin transform of the second degree
character f∞(x) = e−2πi( a

2
x2+bx) can be described using the confluent hypergeometric function

1F1 for a > 0 as

ζf∞(s) =
e−sπi

4

√
a
s

Γ( s2 )

π
s
2

1F1(
s

2
,
1

2
,
πib2

a
)

and the functional equation of ζf∞ is equivalent to Kummer’s formula

ex1F1(a, b,−x) = 1F1(b− a, b, x)

The set of zeroes of Ξf (s, χ) can be split in two classes : the “local ” zeroes, which are zeroes
of one of the local functions ζfv (s, χv) at some place v, and the “global” zeroes which are the non
trivial zeroes of the Hecke L-function L(s, χ) associated to the Hecke character χ.

We prove that all the “local” zeroes lie on the line ℜ(s) = 1
2 , so that the Riemann hypothesis

for L(s, χ) is equivalent to the fact that all the zeroes of Ξf (s, χ) lie on the axis ℜ(s) = 1
2 . This

result is valid for any number field and any Hecke L-function with the following restrictions on
the choice of the second degree character f :

• If f is a second degree character on AF with F 6= Q, f may not be factorizable ( for
example f(x) = ψ(xσ(x)) where σ is the automorphism of AF associated to an element of
the Galois group of F over Q). We have, however to assume that this is the case, i.e. that
f(α) can be written as

∏

v fv(αv) in order to prove that the weak Mellin transform of f is
well defined.

• If f is factorizable, fv is not necessarily of the form ψv(
a
2x

2 + bx) : It can be written as
ψv(

1
2xα(x) + bx) where α is any continuous additive function on Fv, and we have to put

some conditions on α in order to get a functional equation.

• On C, the zeroes of the Mellin transform of f(z) = ψC(
a
2 z

2 + bz) do not all lie on the axis
ℜ(s) = 1

2 . However, if we take the second degree character f(z) = ψC(
a
2 |z|2+ bz) , then all

the zeroes of ζf lie on the axis ℜ(s) = 1
2 .

The local part of this theory can be generalized to second degree characters defined over finite
dimensional vector spaces. More precisely, if f is any continuous function defined on Ln, where
L is some non discrete locally compact field, and if φ is a function in C∞

c (GLn(L)), we define
the operator f 7→ λ(φ)f by the formula

λ(φ)f(v) =

∫

GLn(L)

φ(g)f(g−1v)d×g

We show that if f is a non degenerate second degree character on Ln and φ ∈ C∞
c (GLn(L)),

then λ(φ)f is a Schwartz function on Ln. We then consider the maximal compact subgroups
K = GLn(OL) if L is a local field and K = O(n) or U(n) if L is R or C, and the invariant norms
on Ln associated to K, i.e. ‖v‖ = max(|vi|) or ‖v‖ =

√
∑

i|vi|2. We then define the Mellin
transform of a function in Ln y the formula

M(f, s) =

∫

Ln

f(v)‖v‖s dv

‖v‖n
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which is well defined for Schwartz functions when ℜ(s) > 0. If φ is invariant for the left and right
action of K, i.e. φ(k1gk2) = φ(g) for all k in K, the function λ(φ)‖v‖s is equal to ‖v‖s up to a
scalar factor, which we note ξs(φ). It is then immediate that if φ is a function in C∞

c (GLn(L))
satisfying the same condition, we have

M(λ(φ)f, s) = ξs−n(φ
∗)M(f, s)

where φ∗(g) = 1
|det g|φ(g

−1). Using this formula, it is possible to give a definition for the weak
Mellin transform of a non degenerate second degree character on Ln similar to the definition
given for n = 1. If we note ζf (s) the weak Mellin transform of a non degenerate second degree
character f defined on Ln and if the endomorphism associated to f is a dilation, then ζf (s) and
ζf (n− s) are related by a functional equation and all the zeroes of ζfv lie on the axis ℜ(s) = n

2
if L is a local field or L = R.

We then show how the concept of weak Mellin transform on a vector space can be generalized,
replacing the function ‖u‖s, which is naturally associated to the trivial representation of K, by
similar functions νπ,s(x) naturally associated with spherical representations (π, Vπ) of K. If we
note ζf (s, π) the weak Mellin transform of a non degenerate second degree character f defined
on Rn in this way and if the endomorphism associated to f is a dilation, then we prove again
that the zeroes of ζfv (s, π) lie on the axis ℜ(s) = n

2 .

Notations

We will usually call L a locally compact field,which we always assume to be non discrete and
have characteristic zero, F a number field and AF the ring of adeles associated to F .

The standard additive character on L will be noted ψL, or ψ if no ambiguity is possible.
Explicitly, we have ψR(x) = e−2πix, ψC(x) = e−2πi(z+z̄), ψQp

(x) = e2πiλ(x) where λ(x) ∈ Q is
any rational number of the form n

pk satisfying λ(x) − x ∈ Zp. If Qp is a local field of residual
characteristic p, we have ψQp

= ψQp
◦ TrQp/Qp

. We note dx the Haar measure of L considered
as an additive group, and d×x the Haar measure of L∗ considered as a multiplicative group.
These Haar measures are normalized following Tate’s Thesis (cf [7]): dx is normalized so that
the Fourier inversion formula is valid. The Fourier transform is defined as

F(f)(y) =

∫

L

f(x)ψ(xy)dx

d×x is normalized in the following way : on R, we write d×x = dx
|x| ; on C, we write d×z = dz

|z|
C

=
dz
|z|2 .

On Qp, we write Zp the ring of integers and Z×
p the group of units. The additive measure of

Zp is equal to 1, and we normalize the multiplicative measure so that the measure of Z×
p is equal

to one. We then have d×x = 1
1− 1

p

dx
|x|

If S is any set, we note 1S the characteristic function of this set. For example, 1Zp
is the

characteristic function of Zp.
If Qp is a general local field of residual characteristic p, with group of units O×

p , we normalize
d×x so that the measure of O×

p is equal to (Nd)−
1
2 ( where d is the different of Qp). The additive

measure of the ring of integers Op is also set to (Nd)−
1
2 and we have

d×x =
1

1− 1
Np

dx

|x| (1.1)
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On a L-vector space Ln, we note K the maximal compact subgroup of GLn(L), i.e. K =
GLn(OL) if L is local, K = O(n) if L is real, K = U(n) if L is complex.

We note A×
F the group of ideles of F . The Mellin transforms of a function φ defined on L×

or A×
F ( called zeta integral in Tate’s Thesis) are defined for s ∈ C and a multiplicative unitary

character χ as

Mell(f, s, χ) =

∫

L×
f(x)|x|sχ(x)d×x

or

Mell(f, s, χ) =

∫

A
×
F

f(x)|x|sχ(x)d×x

Note that on R, the definition we use is different from the usual definition of the Mellin transform,
wich considers an integral from 0 to ∞ only. We say that a Mellin transform is well defined at
(s, χ) if the associated integral converges absolutely. The functional equations proved by Tate in
his thesis can then be written in the following way :

Proposition 1 (Tate local functional equation) If φ is a Schwartz function on a locally compact
field L, we have for 0 < ℜ(s) < 1 the equality

Mell(φ, s, χ) = ρ(s, χ)Mell(F(f), 1− s, χ̄) (1.2)

where ρ(s, χ) is a function of s and χ but does not depend on φ

Proposition 2 (Tate global functional equation) If φ is a Schwartz function on AF and χ a
Hecke character, then Mell(φ, s, χ) is well defined for ℜ(s) > 1, and has an analytic continua-
tion to C with possible poles at 0 and 1. If we keep the notation Mell(φ, s, χ) for the analytic
continuations, we have the equality

Mell(φ, s, χ) = Mell(F(φ), 1 − s, χ̄) (1.3)

These results are proved in [7]
If G is a locally compact abelian group, we note S′(G) the space of tempered distributions

on G, i.e. the space of continuous linear functional on the Schwartz-Bruhat space S(G). If µ is
an element of S′(L), the weak Fourier transform of µ is defined, following Schwartz, by the usual
formula

< F(µ), φ >=< µ,F(φ) > (1.4)

2 A connection between Tate’s Thesis and Weil 1964 ’Acta’

paper

2.1 second degree characters

Let’s now recall Weil’s definition ( cf [8]) of a second degree character : a continuous function
f defined on a locally compact abelian group G with values in the torus T is called a second
degree character if the function f(x+ y)f(x)−1f(y)−1 is a bicharacter, i.e. is a group character
as a function of x and as a function of y. For example, the function e−2πi( a

2
x2+bx) with a and b

in R is a second degree character on R

To any such function, we can associate a continuous morphism ̺ from G to G∗ by the formula

f(x+ y)f(x)−1f(y)−1 =< ̺(y), x > (2.1)

6



and it is clear that this morphism has to be symmetic ( ie < ̺(y), x >=< ̺(x), y > ). A second
degree character is called non degenerate if the associated morphism ̺ is an isomorphism. We
will always assume in this paper that the second degree characters considered are non degenerate
and continuous.

In [8], Weil gave two formulae describing the weak Fourier transform of a non degenerate
second degree character f . Theses formulae will be often used in the following sections. Proofs
of these results are avalaible in [8] or [1]. The alternative presentations and proofs we propose
below are given in order to show the striking connection between these formulae and Tate’s
Thesis. Indeed, both results can be proved using exactly the same methods.

2.2 The local functional equation

Proposition 3 (Weil local functional equation ) Let’s consider a non degenerate second degree
character f on a locally compact abelian group G and note ̺ the morphism associated to f. Then
there exists a complex number γf satisfying |γf | = 1 so that the weak Fourier transform of f is
equal to

γf√
|̺|
f̄(̺−1(x))

Remark : γf is now usually called the Weil index associated to the second degree character
f .

Proof : This proposition can also be written in the following form : for any Schwartz function
φ in S(G), we have the formula

∫

G

f(x)F(φ)(x)dx =
γf

√

|̺|

∫

G∗
f̄(̺−1(x))φ(x)dx (2.2)

Let’s first remind that a proof of the Tate local functional equation has been proposed by
Weil in [9] using the concept of eigendistribution by using the following proposition :

Proposition 4 (Weil) Let’s consider a locally compact field L and a continuous multiplicative
character χ on L×. Then there exists, up to a scalar factor, one and only one distribution ∆χ

satisfying for all Schwartz function φ in S(L) the formula

< ∆χ, φ(ux) >= χ(u) < ∆χ, φ > (2.3)

Using this proposition, the proof the Tate local functional equation is a straightforward conse-
quence of the fact that F(f(ux))(x) = 1

|u| F(f)(
x
u ).

It appears that the local functional equation for second degree characters can be proved in
the same way :

Let’s consider a second degree character f with associated symmetric morphism ̺ so that we
have

f(x+ y)f̄(x)f̄ (y) =< ̺(y), x > (2.4)

We can write this expression as

f(x+ y) < −̺(y), x >= f(x)f(y) (2.5)

Let’s introduce for t in T, u in G and u∗ in G∗ the operator tUu,u∗ acting on functions defined
on G by the formula tUu,u∗(f)(x) = tf(x+ u) < u∗, x >.

we can then write the definition of a second degree character f as

tUu,−̺(u)(f) = tf(u)f (2.6)

7



showing that f is an eigendistribution for the action of the operators tUu,−̺(u) for all u in G and
t ∈ T and that the associated eigenvalue is tf(u).

Let’s recall that the Heisenberg group associated to G can be described as the set T×G×G∗

equipped with the group law (t, u, u∗)(t′, v, v∗) = (tt′ < v∗, u >, u+ v, u∗ + v∗). It is immediate
that the map (t, u, u∗) 7→ tUu,u∗ is a representation of this Heisenberg group, which is usually
called the Schrödinger representation.

We now remark that for ̺ fixed, the set of operators of the form tUu,−̺(u) for t ∈ T and u ∈ G
is a commutative group ( because ̺ is symmetric), and it is not difficult to see that this set is the
image of a maximal commutative subgroup of the Heisenberg group associated to G. The map
which sends the operator tUu,−̺(u) to the scalar tf(u) in T is a character of this commutative
group.

This character restricts to the identity on the center (T, 0, 0) of the Heisenberg group ( because
f(0) = f(0+0) = f(0)2, so that f(0) = 1). We can then use the following proposition, attributed
to Cartier, which appears in [3], and is a consequence of the Stone-Von Neumann theorem:

Proposition 5 Let’s consider a maximal commutative subgroup A of the Heisenberg group, and
a character χ of A restricting to the identity on its center. Let’s note ρ the Schrödinger repre-
sentation of the Heisenberg group. Then there exists, up to a scalar factor, one and only one
distribution ∆ satisfying the formula

< ∆, ρ(a)(f) >= χ(a) < ∆, f > (2.7)

for all a in A and all f in the Schwartz space

An immediate consequence of this proposition is that any distribution ∆ in S′(G) satisfying for
all u in G the functional equation

Uu,−̺(u)(∆) = f(u)∆ (2.8)

is equal to the second degree character f up to a scalar factor.
The Weil local functional equation for second degree characters is then a straightforward

consequence of the commutation relations between the Fourier transform and the operators
Uu,u∗ :

We know that f is a second degree character so that we have

f(0) = 1 = f(u− u) = f(u)f(−u) < −̺(u), u > (2.9)

and f(u) < −̺(u), u >= f̄(−u)
The commutation relation bewteen the Fourier transform and the operators Uu,u∗ can be

described as :
F ◦Uu,u∗ =< −u∗, u > Uu∗,−u ◦ F (2.10)

If we take the Fourier transform of the formula Uu,−̺(u)(f) = f(u)f , we then get the formula

U−̺(u),−u(F(f)) =< u, ̺(u) >−1 f(u)F(f) = f̄(−u)(F(f)) (2.11)

or, writing −̺(u) = z, which is possible because ̺ is assumed to be an isomorphism,

Uz,̺−1(z)(F(f)) = f̄(̺−1(z))(F(f)) (2.12)

We then remark that the second degree character f̄(̺−1(z)) satisfies the same functional equation,
so that it is equal to F(f) up to a scalar factor using the proposition 5.
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In order to show that this scalar factor has norm 1√
|̺|

, we use the Fourier inversion formula

and the elementary equality F(φ̄)(x) = F(φ)(−x) : Let’s suppose that F(f) = λf̄ ◦ ̺−1 for some
λ ∈ C∗. Then we have

f(−x) = F(F(f))x = λF(f̄ ◦ ̺−1)(x) = λ|̺|F(f)(̺(−x)) = |λ|2|̺|f(−x) (2.13)

so that |λ| = 1√
|̺|

�

It should be noted that the local Weil formula can be generalized, replacing the Fourier
transform F with any operator M which normalizes the Heisenberg group. Indeed, the induced
automorphism of the Heisenberg group U 7→MUM−1 will map maximal commutative subgroups
to maximal commutative subgroups, so that M will map eigendistributions to eigendistributions.

2.3 The global functional equation

If the second degree character is constant on some subgroup ( for example, if a second degree
character defined on an adele ring AF is trivial on F ), Weil also proved the following result :

Proposition 6 ( Weil global functional equation)
Let’s consider a non degenerate second degree character f on G, suppose that f is equal to 1

on a closed subgroup Γ of F , and assume that the symmetric morphism ̺ associated to f is an
isomorphism from (G,Γ) to (G∗,Γ∗). Then γ(f) = 1

Let’s recall that when applied to an adele ring AF , with Γ equal to the field F embedded in
AF , this theorem gives a proof of the quadratic reciprocity law on this field. We can write this
proposition in the following way : for any Schwartz function φ in S(G), we have the formula

∫

G

f(x)F(φ)(x)dx =
1

|̺|

∫

G∗
f̄(̺−1(x))φ(x)dx (2.14)

In order to prove his own global functional equation, Tate in his Thesis considers the integral
∫

A
×
F

φ(x)χ(x)|x|sd×x

He then splits this integral using a fundamental domain for the action of F× on A×
F and applies

the Poisson summation formula to the sum on F×.
It appears that the same method can be used to prove the Weil global formula if G is an

adele ring : Let’s suppose that G is an adele ring AF ,that ̺ is a bijection from F to F , take
Γ = F , and identify G with G∗ and Γ with Γ∗ using the standard additive character ψ on AF .
Considering that |̺| = 1 because A/F is compact, we have to prove that if f is our second degree
character and φ any Schwartz function,we have

∫

AF

f(x)F(φ)(x)dx =

∫

AF

f̄(̺−1(x))φ(x)dx (2.15)

Let’s then split the integral
∫

AF

f(x)φ(x)dx

using a fundamental domain D for the (additive) action of F on AF , and apply the Poisson
summations formula :

∑

x∈F

f(x) =
∑

x∈F

F(f)(x) (2.16)
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Any element of AF can be described in a unique way as r = x + δ with x ∈ F and δ ∈ D
Note that we have, considering that f is trivial on F :

f(x+ δ) = f(x)f(δ)ψ(x̺(δ)) = f(δ)ψ(x̺(δ)) (2.17)

We now decompose the integral
∫

G

f(x)φ(x)dx =

∫

δ∈D

∑

x∈F

f(x+ δ)φ(x + δ)dδ (2.18)

=

∫

D

f(δ){
∑

x∈F

ψ(x̺(δ))φ(x + δ)}dδ (2.19)

We then apply the Poisson summation formula to the inner sum: we consider the Schwartz
function ϕ

ϕ(y) = ψ(y̺(δ))φ(y + δ) (2.20)

and compute its Fourier transform :

F(ϕ)(y) = ψ(−δ(̺(δ) + y))F(φ)(y + ̺(δ)) (2.21)

The integral is then equal to
∫

δ∈D

∑

x∈F

f(δ)ψ(−δ(̺(δ) + x))F(φ)(x + ̺(δ))dδ (2.22)

The definition of the second degree character f allows us to write, considering that −̺−1(x) =
δ + (−δ − ̺−1(x))

ψ(−δ(̺(δ) + x)) = ψ(δ(̺(−δ − ̺−1(x))) = f̄(δ)f̄ (−δ − ̺−1(x))f(−̺−1(x)) (2.23)

Considering that f(−̺−1(x)) = 1 for x ∈ F , the integral becomes
∫

δ∈D

∑

x∈F

f̄(−δ − ̺−1(x))F(φ)(x + ̺(δ))dδ (2.24)

Let’s write ̺(δ) = δ′. It is immediate that ̺ maps a fundamental domain of AF for the action
of F to another fundamental domain D’

∫

δ′∈D′

∑

x∈F

f̄(−̺−1(δ′ + x))F(φ)(x + δ′)dδ′ (2.25)

=

∫

AF

f̄(̺−1(x))F(φ)(−x)dx � (2.26)

3 The weak Mellin transform of second degree characters

defined over locally compact fields

3.1 definition of the weak Mellin transform

The definition of the weak Mellin transform that we will use is different than the one given for
the weak Fourier transform and uses the properties of the convolution product. If L is a non
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discrete locally compact field, we note C∞
c (L×) the space of smooth functions with compact

support on L× considered as a multiplicative group . The expression “smooth” means as usual
C∞ if L is equal to R or C, and locally constant if L is a local field.

It is clear that C∞
c (L×) is a commutative algebras for the convolution product and that if g

and h lies in C∞
c (L×), we have

Mell(g ⋆ h, s, χ) = Mell(g, s, χ)Mell(h, s, χ) (3.1)

This motivates the following definition :

Definition 1 Lets’ consider a function f defined on L× and assume that φ⋆f is well defined for
all φ ∈ C∞

c (L×). We say that the function Mf(s, χ) is a weak Mellin transform of f at (s, χ) if
for any function φ in Cc(L

×) , the Mellin transform of φ⋆f is well defined at (s, χ) and satisfies
the formula

Mell(φ ⋆ f, s, χ) =Mf (s, χ)Mell(φ, s, χ) (3.2)

It is immediate that this definition extends the usual definition of the Mellin transform, so that
we will use the same notation for Mellin transforms and weak Mellin transforms.

3.2 description of second degree characters on a locally compact field

Let’s now describe more explicitly the non degenerate second degree characters when G is a
non discrete locally compact field L in characteristic zero. L is then a finite extension of Qp or
R, which we call the base field L0 of L. The group characters of G are simply the functions
of the form ψ(ax) with a in L. Any function of the form ψ(12α(x)x) where α is a continuous
homomorphism of L considered as an additive group is clearly a second degree character, and
any function of the form < x, ̺(x) > can be written in this form using the isomorphism between
L and L∗ given by a 7→ χa : χa(x) = ψ(ax). All second degree characters f can then be written
in the form

f(x) = ψ(
1

2
α(x)x + bx) (3.3)

where α is any continuous Z−module homomorphism from L to L satisfying ψ(α(x)y) = ψ(xα(y)).
Since we assume f non degenerate, α is then also Q-linear. Using continuity and the fact that
the closure of Q in L is equal to L0, we then see that α has to be L0-linear. For example, if σ
is an element of the Galois group of L, it is immediate that ψ(12aσ(x)x + bx) is a second degree
character, with α(x) = aσ(x) and |α| = |a|.

3.3 The existence of the weak Mellin transform of a seconde degree

character

Let’s now consider a second degree character f defined on L and suppose that α and b are defined
as in equation 3.3. We have a natural left action λ of the multiplicative group L× on f by the
formula

λ(x)f(y) = f(x−1y) (3.4)

The integrated form of this action can be written, for φ ∈ C∞
c (L) as

λ(φ)f(y) =

∫

L×
φ(x)f(x−1y)d×x (3.5)

We do not use the notation φ ⋆ f because the domain of λ(φ)f is L, not L∗

11



Proposition 7 If f is a non degenerate second degree character and φ ∈ C∞
c (L×), then λ(φ)f

is a Schwartz function on L

Proof :
Let’s first suppose that L is a local field, L = Qp. We have to show that λ(φ)f is continuous (

i.e. locally constant) and has compact support. The continuity is immediate since φ has compact
support in L×. Let’s now show that the support of λ(φ)f is compact.

We get, assuming y 6= 0 and using the commutativity of the convolution product

λ(φ)(f)(y) =

∫

Q
×
p

f(x)φ(x−1y)d×x (3.6)

We observe that the integral on Q×
p can be written as an integral on Qp, using the relation

d×x = 1
1− 1

Np

dx
|x| . Let’s note φ∗ the function 1

|x|φ(
1
x ), which is also in C∞

c (Q×
p ), and write

φ∗(0) = 0, so that φ∗ can also be considered as a Schwartz function on Qp. We get

λ(φ)(f)(y) =
1

1− 1
Np

1

|y|

∫

Qp

f(x)φ∗(y−1x)dx (3.7)

We now use the local Weil functional equation ( proposition 3)

=
1

1− 1
Np

γf
√

|α|

∫

Qp

f̄(α−1(z))F(φ∗)(−zy)dz (3.8)

F(φ∗)is Schwartz, so that it has compact support on Qp.We can then suppose that its support
is included in a ball of radius R. We also know that f ◦ α−1 is continuous and equal to 1 near
zero, so that there exists some ǫ so that if |z| < ǫ, then f̄ ◦α−1(z) = 1. It is then immediate that
if |y| > R

ǫ , then the integral becomes

1

1− 1
Np

γf
√

|α|

∫

|yz|<R

f̄(α−1(z))F(φ∗)(−zy)dz (3.9)

=
1

1− 1
Np

γf
√

|α|

∫

|z|< R
|y|

f̄(α−1(z))F(φ∗)(−zy)dz (3.10)

considering that R
|y| < ǫ, we get

=
1

1− 1
Np

γf
√

|α|

∫

Qp

F(φ∗)(−zy)dz (3.11)

=
1

1− 1
Np

γf
√

|α|
1

|y|φ
∗(0) = 0 (3.12)

which shows that λ(φ)f has compact support.
Let’s now consider the case L = R. The proposition can be considered as a simple application

of the method of stationary phase, but can also be proved directly in the following way, which
has the advantage of being fully similar to the local field case :

We consider the integral

λ(φ)(f)(y) =

∫

R∗
φ(x)f(x−1y)d×x (3.13)
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Considering that the support of φ is compact, we can exchange the derivation and integrations
signs and conclude that λ(φ)(f) is C∞. In order to show that λ(φ)(f)(y) is O( 1

yn ) in ∞ for all

n > 0, we write again φ∗(x) = 1
|x|φ(

1
x), φ

∗(0) = 0 so that φ∗ is a Schwartz function and replace

x with 1
x in the integral so that it becomes

∫

R

f(xy)φ∗(x)dx (3.14)

We then use the local Weil formula

=
γf

|y|
√

|α|

∫

R

f̄ ◦ α−1(
x

y
)F(φ∗)(−x)dx (3.15)

We then remark that
∫

R

F(φ∗)(−x)dx = φ∗(0) = 0 (3.16)

and more generally, using F(f ′)(x) = 2πixF(f)(x), that
∫

R

xn F(φ∗)(−x)dx = (
1

2πi
)n

∫

R

F((φ∗)(n))(−x)dx = (
1

2πi
)n(φ∗)(n)(0) = 0 (3.17)

so that if P is any Polynomial, the expression is equal to

γf
√

|a||y|

∫

R

(f̄ ◦ α−1(
x

y
)− P (

x

y
))F(φ∗)(−x)dx (3.18)

Let’s choose P to be the polynomial of order n associated to the Taylor expansion of f̄ ◦α−1

in zero so that f̄ ◦ α−1(x)− P (x) = O(xn) near zero, and write

δ(x) = f̄ ◦ α−1(x)− P (x) (3.19)

The integral becomes
γf

√

|a||y|

∫

R

δ(
x

y
)F(φ∗)(−x)dx (3.20)

Let’s suppose for example y > 1 and write x′ = x√
y , we get

γf
√

|ay|

∫

R

δ(
x′√
y
)F(φ∗)(−x′√y)dx′ (3.21)

and split the integral in according to the condition |x′| < 1 and |x′| > 1 :

=
γf

√

|ay|
{
∫

|x′|<1

δ(
x′√
y
)F(g)(−x′√y)dx′ +

∫

|x′|>1

δ(
x′√
y
)F(g)(−x′√y)dx′} (3.22)

In the first integral, we remark that F(φ∗) is bounded ( it is a Schwartz function) and that
δ( x√

y ) < K( x√
y )

n for y large enough, so that the expression is bounded by K′

y
n
2

for some constant

K ′. In the second integral, we use the fact that δ( x√
y ) is bounded by K(1 + ( x√

y )
n) for some K

( δ(x) is the sum of a polynomial and a function of module 1) that F(g)(−x√y) is bounded by
( 1
x
√
y )

2n for y large enough to get the result
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In order to show that the derivatives of λ(φ)f are also fast decreasing, we remark that for
y 6= 0, we can exchange the integration and the derivation signs in the expression

d

dy
(λ(φ))(f)(y) =

d

dy

∫

R

f(x)φ(
y

x
)
dx

|x| (3.23)

so that we get

=

∫

R

f(x)
1

x
φ′(

y

x
)
dx

|x| =
1

y
λ(

1

x
φ′)(f)(y) (3.24)

since 1
xφ

′(x) is also in C∞
c (R×), we see that the expression is fast decreasing when y → ∞

The proof is the same for the case L = C : We consider C as a R vector space, z = x + iy
and observe that the Fourier transform maps multiplication with x or y to differential operators.
As a consequence, If a Schwartz function φ∗(z) = φ∗(x+ iy) has all its derivatives in zero equal
to zero, then we have

∫

C

xnym F(φ∗)(x + iy)dz = 0 (3.25)

and the proof can be carried in the same way using the real Taylor expansion in zero of f̄ ◦α−1(z)
considered as a function of x and y. �

Remark : this proposition can be extended without difficulty to division rings but not to split
simple algebras (i.e. GLn(D) where D is a division ring and n ≥ 2).

Proposition 8 If f is a non degenerate second degree character defined on a locally compact
field L, then the weak Mellin transform of f is well defined for ℜ(s) > 0.

Proof : In order to prove that the weak Mellin transform of a second degree character f is
well defined, we have to prove that for each pair (χ, s) with ℜ(s) > 0, there exists a constant M
which does not depend of the choice of φ so that Mell(f ⋆ φ, χ, s) =MMell(φ, χ, s)

Using the fact that λ(φ)(f) is a Schwartz function, it is immediate that the Mellin transform
of f ⋆ φ is well defined for ℜ(s) > 0

Let’s now show that if we have two functions φ and µ in C∞
c (L×), we have for ℜ(s) > 0 the

equality
Mell(f ⋆ φ, χ, s)Mell(µ, χ, s) = Mell(φ, χ, s)Mell(f ⋆ µ, χ, s) (3.26)

Since all the Mellin transforms appearing in this equality are well defined for ℜ(s) > 0, it is
enough to prove that we have the equality

(f ⋆ φ) ⋆ µ = φ ⋆ (f ⋆ µ) (3.27)

The associated double integral is absolutely convergent since both φ and µ are in C∞
c (L×) and

f is bounded, so that we can change the order of the integrals and get the result.
Let’s now take any function µ in C∞

c (L×) satisfying Mell(µ, s) 6= 0 and Mell(f ⋆ µ, s) 6= 0. If
no such function exist, then we can say that the weak Mellin transform of f at (χ, s) is equal
to zero and there is nothing else to prove. If we can find such a µ, we then have for any φ in
C∞

c (L×) the equality

Mell(f ⋆ φ, χ, s) =
Mell(f ⋆ µ, χ, s)

Mell(µ, χ, s)
Mell(φ, χ, s) (3.28)

which shows that the weak Mellin transform of f is well defined and equal to Mell(f⋆µ,χ,s)
Mell(µ,χ,s) �

If f is a non degenerate second degree character, we will note ζf (s, χ) the weak Mellin
transform of f at the multiplicative character |x|sχ(x).
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3.4 The functional equation of ζf

Let’s first give an elementary equality for ζf : Using the formula Mell(φ(ax), s) = |a|−sχ̄(a)Mell(φ, s, χ)
which is valid for φ ∈ C∞

c (L×), It is immediate that we have

ζf(ax)(s, χ) = |a|−sχ̄(a)ζf (s) (3.29)

Let’s now show that ζf has an analytic continuation :

Proposition 9 for φ ∈ C∞
c (L×) and f a second character defined on L, The Fourier transform

of the Schwartz function λ(φ)f(y) is equal to the Schwartz function
γf√
|α|
λ(φ∗)(f̄ ◦α−1)(y) where

the function φ∗(x) is defined by the formula φ∗(x) = 1
|x|φ(

1
x)

Proof : Since we know that λ(φ)(f) is Schwartz, It is enough to show that this is true in the
weak sense, i.e. we have to show that for any Schwartz function ϕ, we have the equality

∫

L

λ(φ)(f)(y)F(ϕ)(y)dy =
γf

√

|α|

∫

L

λ(φ∗)(f̄ ◦ α−1)(y)ϕ(y)dy (3.30)

The first integral is equal to
∫

L

∫

L×
φ(x)f(x−1y)d×xF(ϕ)(y)dy (3.31)

The double sum is absolutely convergent since F(ϕ) and φ are summable on L and L× , so
that we can exchange the order of the integrals and use the Weil local functional equation :

∫

L×
{
∫

L

f(x−1y)F(ϕ)(y)dy}φ(x)d×x (3.32)

=
γf

√

|α|

∫

L×
(

∫

L

|x|f̄(α−1(yx))ϕ(y)dy)φ(x)d×x (3.33)

writing t = 1
x

=
γf

√

|α|

∫

L

(

∫

L×

1

|t|φ(
1

t
)f̄(α−1(yt−1))d×t)ϕ(y)dy (3.34)

=
γf

√

|α|

∫

L

λ(φ∗)(f̄ ◦ α−1)(y)ϕ(y)dy � (3.35)

This leads to the following formula :

Proposition 10 If f is a non degenerate second degree character on L, we have for 0 < ℜ(s) < 1
the formula

ζf (s, χ) =
γf

√

|α|
ρ(s, χ)ζf̄◦α−1(1− s, χ̄) (3.36)

Where ρ(s, χ) is the local factor appearing in Tate’s local functional equation.

Proof : We know by Tate’s Thesis that if ϕ is a Schwartz function, then Mell(ϕ, s, χ) =
ρ(s, χ)Mell(F(ϕ), 1 − s, χ̄) for 0 < ℜ(s) < 1 so that we get

Mell(λ(φ)(f), s, χ) = ρ(s, χ)Mell(
γf

√

|α|
λ(φ∗)(f̄ ◦ α−1)(y), 1− s, χ̄) (3.37)
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using the definition of weak Mellin transforms, we get that for any function φ in C×
c (L×), we

have
Mell(φ, s, χ)ζf (s, χ) =

γf
√

|α|
ρ(s, χ)Mell(φ, s, χ)ζf̄◦α−1(1 − s, χ̄) (3.38)

and we get the result by choosing any function φ so that Mell(φ, s, χ) 6= 0 �

It is then immediate that ζf has an analytic continuation for ℜ(s) ≤ 0 with possible poles at
the poles of ρ(s, χ). The previous formula is not really a functional equation since ζf and ζf̄◦α−1

are not the same functions. We can however get true functional equations from this under some
additional hypothesis on f .

Let’s for example suppose that f is of the form

f(x) = ψ(
a

2
x2 + bx) (3.39)

We then have α(x) = ax and

f̄ ◦ α−1(x) = ψ(− 1

2a
x2 − b

a
x) = f̄(

x

a
) (3.40)

so that we have
ζf̄◦α−1(s, χ) = |a|sχ(a)ζ̄f (s̄, χ̄) (3.41)

which leads to the functional equation

ζf (s, χ) = γfρ(s, χ)|a|
1
2
−sχ̄(a)ζ̄f (1− s̄, χ) (3.42)

One can also suppose consider an element σ of the Galois group of L and a function f of the
form

f(x) = ψ(
a

2
σ(x)x + bx) (3.43)

with σ(a) = a and σ(b) = b
We then have α(x) = aσ(x) and using ψ(σ(y)) = ψ(y) ( because the trace of σ(y) is equal to

the trace of y) and α−1(x) = σ−1(xa ) we get

f̄ ◦ α−1(x) = ψ̄(
a

2

x

a
σ−1(

x

a
) + bσ−1(

x

a
))) = ψ̄(

1

2a
σ(x)x + σ(b)

x

a
) (3.44)

= ψ̄(
a

2
σ(
x

a
)
x

a
+ b

x

a
) = f̄(

x

a
) (3.45)

which leads to the same functional equation.

3.5 The weak Mellin transform of ψp(
x2

2
) on Qp

Let’s now prove the results given in the introduction for the Mellin transform of ψp(
x2

2 ) on Qp

for p a rational prime :

Proposition 11 • On Qp with p 6= 2, the weak Mellin transform of ψp(
x2

2 ) at the character
|x|s is equal to 1

1−p−s .

• On Q2, The weak Mellin transform of ψ2(
x2

2 ) at the character |x|s is equal to 1
1−2−s (2

1−s(1−
2s−1) + e

πi
4 2s(1 − 2−s))
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Proof : We take the function 1
Z
×
p

as test function φ, note that the Mellin transform of this
test function at any unramified character is equal to 1 for any value of s, compute explicitly
λ(1

Z
×
p
)(f) and take the Mellin transform of the result:

For p 6= 2, Let’ s consider the integral

λ(1
Z
×
p
)f(y) =

∫

Q
×
p

1
Z
×
p
(x)ψ(

1

2

y2

x2
)d×x =

∫

Q
×
p

1
Z
×
p
(x)ψ(

1

2
y2x2)d×x (3.46)

If the valuation of y is positive or zero, it is immediate that the result is equal to 1 because ψ
is equal to 1 on Zp. If the valuation of y is negative strict, we replace the integral on Q×

p by an
integral on Qp and use the local Weil formula (proposition 3) :

=
1

1− 1
p

∫

Qp

ψ(
1

2
y2x2)(1Zp

(x) − 1pZp
(x)dx (3.47)

=
1

1− 1
p

γf
|y|

∫

Qp

ψ(−1

2

x2

y2
)(1Zp

(x)− 1

p
1 1

p
Zp
(x))dx (3.48)

and we remark that the restriction of the function ψ(− 1
2
x2

y2 ) to Zp and 1
pZp is equal to 1 because

the valuation of y is negative strict. The integral is then equal to zero. We then have

λ(1
Z
×
p
)f = 1Zp

(3.49)

so that, taking Mellin transform, we get

ζf (s) =
1

1− p−s
(3.50)

Lets’ now consider the case p = 2. We have to compute the integral

λ(1
Z
×
2

)f(y) =

∫

Q
×
2

ψ(
1

2
y2x2)1

Z
×
2

(x)d×x (3.51)

If the valuation of y is equal or greater than 1, the result is 1 because the function ψ(12y
2x2)

remains equal to 1. Let’s now suppose that the valuation of y is zero. We can suppose that y is
equal to 1 because λ(1

Z
×
p
)(f) is clearly unramified (i.e. invariant under the action of Z×

p ). We
then have to compute the integral

∫

Z
×
2

ψ(
x2

2
)d×x (3.52)

For x ∈ Z×
2 , we can write x = 1 + 2z with z ∈ Z2 and it is immediate that ψ(x

2

2 ) = ψ(12 ) =
eπi = −1, so that the integral is equal to −1. Let’s now suppose that the valuation of y is equal
to −1, for example y = 1

2 . We then have to compute the integral

∫

Z
×
2

ψ(
x2

8
)d×x (3.53)

any element of Z×
2 can be written as x = k + 4z with z ∈ Z2 and k equal to 1 or 3. We have

ψ(
x2

8
) = ψ(

k2

8
) = ψ(

1

8
) = e

πi
4 (3.54)

17



If the valuation of y is equal to −2 or lower, we use the local Weil formula in the same way as
for the case p 6= 2 and find that the result is zero. We can then write

λ(1
Z
×
2

)f = 12Z2
− 1

Z
×
2

+ e
πi
4 1 1

2
Z
×
2

(3.55)

taking Mellin transform, we get

ζf (s) =
2−s

1− 2−s
− 1 + e

πi
4 2s =

1

1− 2−s
(21−s(1− 2s−1) + e

πi
4 2s(1− 2−s)) � (3.56)

3.6 the value of ζf(1)

Proposition 12 Let’s consider some non degenerate second degree character f defined on a
locally compact field f, and note α the associated endomorphism. We have on Qp the equalities

ζf (1) =
1

1− 1
Np

γf
√

|α|
(3.57)

and on R and C

ζf (1) =
γf

√

|α|
(3.58)

Remark : 1 is then never a zero of ζf (s).
Proof : Let’s consider the case L = Qp, some test function φ and compute

Mell(λ(φ)f, 1) =

∫

Qp

λ(φ)f(x)|x|d×x (3.59)

=
1

1− 1
Np

∫

Qp

λ(φ)f(x)dx =
1

1− 1
Np

F(λ(φ)f)(0) (3.60)

using proposition 9

=
1

1− 1
Np

γf
√

|α|
λ(φ∗)f̄ ◦ α−1(0) (3.61)

we have seen that f̄ ◦ α−1(0) = 1

=
1

1− 1
Np

γf
√

|α|

∫

Q
×
p

1

|x|φ(
1

x
)d×x (3.62)

=
1

1− 1
Np

γf√
α
Mell(φ, 1) (3.63)

The proof is the same for R and C

�

The Weil indices associated to second degree characters of the form ψ(ax2) are explicitly
described in [4] for all locally compact fields. For example, the Weil index of the function
ψR(

x2

2 ) = e−πix2

is equal to e−
πi
4 . Let’s note γa the Weil index of the second degree character

ψ(a2x
2), and consider more general second degree characters :

Proposition 13 The Weil index of the second degree character f(x) = ψ(a2x
2 + bx) is equal to

γf = γaψ(− b2

2a )
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proof : We consider the integral
∫

L

f(x)φ(x)dx =

∫

L

ψ(
a

2
x2 + bx)φ(x)dx (3.64)

Let’s write φb(x) the function φ(x)ψ(bx). This is again a Schwartz function. We use the Weil
local functional equation associated to the second degree character ψ(a2x

2) :

=

∫

L

ψ(
a

2
x2)φb(x)dx (3.65)

=
γa

√

|a|

∫

L

ψ(− 1

2a
x2)F(φb)(x)dx (3.66)

=
γa

√

|a|

∫

L

ψ(− 1

2a
x2)F(φ)(x + b)dx (3.67)

writing y = x+ b

=
γa

√

|a|

∫

L

ψ(− 1

2a
(y − b)2)F(φ)(y)dy (3.68)

=
γa

√

|a|

∫

L

ψ(− 1

2a
(y2 − 2yb+ b2)F(φ)(y)dy (3.69)

=
γa

√

|a|
ψ(− b2

2a
)

∫

L

ψ(−(
a

2
(
y

a
)2 + b

y

a
))F(φ)(y)dy � (3.70)

3.7 The function ζa,b(s) considered as a function of b

Let’s consider a family of second degree character of the form fa,b(x) = ψ(12ax
2 + bx) and note

ζa,b(s) the weak Mellin transform at s of fa,b. We consider in this subsection the function ζa,b(s)
as a function of b. Let’s note Ds the distribution on S(L) defined for ℜ(s) > 0 by the formula

< Ds, φ >=

∫

Q
×
p

φ(x)|x|sd×x (3.71)

We have the following alternative definition of ζa,b(s) :

Proposition 14 The function ζa,b(s) considered as a function of b ( or, more precisely, as a dis-
tribution on the variable b) is equal to the weak Fourier transform of the distribution ψ(a2x

2)Ds.

Remark : The Fourier transform and the map ϕ 7→ ψ(a2x
2)ϕ both belongs to a group of unitary

operators called the metaplectic group (cf [8]). The function ζa,b(s) considered as a function
of b is then the image of Ds under the action of a metaplectic operator. Considering that the
distribution Ds can be defined, up to a scalar factor, by the fact that it is an eigendistribution
for the dilation group ( cf [9]), which is also a subgroup of the metaplectic group, we see that
the function ζa,b(s), considered as a function of b, can also be defined, up to a scalar factor, as
an eigendistribution for a subgroup of the metaplectic group conjugate to the dilation group.

Note also that a consequence of this proposition is that ζa,b(s) considered as a function of b
is never a square integrable function, and is never the zero function.

Proof : we have to prove that if ϕ is a Schwartz function on F, then
∫

b∈F

ζa,b(s)ϕ(b)db =

∫

y∈F×
ψ(
a

2
y2)F(ϕ)(y)|y|sd×y (3.72)
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Considering that F(φ) is a Schwartz function, the right hand side is simply the Mellin transform
of the Schwartz function ψ(a2y

2)F(ϕ)(y) at s.
Let’s choose a function φ ∈ C∞

c (F×) so that Mell(φ, s) 6= 0 and consider the product

(

∫

b∈F

ζa,b(s)ϕ(b)db)Mell(φ, s) =

∫

b∈F

ζa,b(s)Mell(φ, s)ϕ(b)db (3.73)

using the definition of the weak Mellin transform

=

∫

b∈F

Mell(λ(φ)fa,b, s)ϕ(b)db (3.74)

=

∫

b∈F

(

∫

x∈F×
λ(φ)fa,b(x)|x|sd×x)ϕ(b)db (3.75)

We remark that this double integral is absolutely convergent for 0 < ℜ(s) < 1 since we have

|λ(φ)fa,b(y)| ≤ K (3.76)

and, using Weil formula,

|λ(φ)fa,b(y)| ≤
K ′

|y| (3.77)

where K and K ′ do not depend of b . As a consequence, we can exchange the integration signs
and get

∫

x∈F×
(

∫

b∈F

λ(φ)fa,b(x)ϕ(b)db)|x|sd×x (3.78)

We now remark that the inner integral can be described as
∫

b∈F

λ(φ)fa,b(x)ϕ(b)db =

∫

b∈F

∫

y∈F×
φ(y)ψ(

1

2
a(y−1x)2 + by−1x)f(b)d×ydb (3.79)

and that the double integral is again absolutely convergent so that we can again exchange the
summation signs and get

∫

y∈F×
φ(y)ψ(

a

2
(y−1x)2)F(f)(y−1x)d×y (3.80)

let’s reintroduce the operator λ(φ)

= λ(φ)(ψ(
a

2
x2 F(f)(x))(x) (3.81)

If we insert this in the former expression, we get

Mell(λ(φ)ψ(
a

2
x2 F(f)(x), s) (3.82)

= Mell(φ, s)Mell(ψ(
a

2
x2 F(f)(x), s) (3.83)

If ℜ(s) is not in the interval ]0, 1[, we use the unicity of the analytic continuation since both
expressions are analytic in s �
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3.8 The zeroes of ζf(s, χ) on a local field

In this section, we will study the zeroes of ζf (s, χ) on a local field L = Qp We split the study in
two parts : χ = 1 on the unit group ( unramified character) and χ 6= 1 on the unit group.

3.8.1 unramified character

Let’s consider a local field Qp and a unramified character on Qp, i.e. a character of the form |x|s
Let’s note̟ an uniformizer, O the ring of integer, O× the group of units, and q = Np = |̟|−1

We also note d the different ideal and define d by the formula d = pd

Theorem 1 Let’s consider a non degenerate second degree character on Qp of the form f(x) =
ψ(12ax

2 + bx). Then all the zeroes of ζf (s) lie on the line ℜ(s) = 1
2

Proof : We remark that the zeroes of ζf do not change if we replace f(x) with f(cx) with
c 6= 0. We can then suppose that |a| is equal to qd or qd−1.

It is immediate that Mell(1O× , s, χ) is equal to the measure of O×, i.e. (Nd)−
1
2 so that we

have the formula
ζf (s, χ) = (Nd)

1
2 Mell(λ(1O×)f, s) (3.84)

Let’s then compute

λ(1O×)f(y) =

∫

Q
×
p

1O×(x)f(
y

x
)d×x (3.85)

writing z = 1
x

=
1

1− 1
q

∫

Qp

1O×(z)f(yz)dz (3.86)

an element of Qp is in O× if and only if it is in O but not in ̟O

=
1

1− 1
q

∫

Qp

f(yz)(1O(z)− 1O( z
̟
))dz (3.87)

=
1

1− 1
q

∫

Qp

(f(yz)− 1

q
f(̟yz)(1O(z))dz (3.88)

Let’s define the function θf as

θf (y) =

∫

Qp

f(yx)1O(x)dx (3.89)

we then have

λ(1O×)f(y) =
1

1− 1
q

(θf (y)−
1

q
θf (y̟)) (3.90)

so that if the Mellin transform of θ is well defined at some s with ℜ(s) > 0, we have

Mell(λ(1O×)f, s) =
1

1− 1
q

(1− qs−1)Mell(θf , s) (3.91)

Considering that 1 is never a zero of ζf , we then see that the zeroes of ζf are the same as the
zeroes of Mell(θf , s) Let’s now give an explicit description of θf and Mell(θf , s).
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We know by the definition of the local different and our choice of the haar measure that the
Fourier transform of 1O is (Nd)−

1
2 1d−1 so that we get using the local Weil formula ( proposition

3)

θf (y) =
γf

√

|a|
1

|y|

∫

Qp

f̄(
x

ay
))(Nd)−

1
2 1d−1(x))dx (3.92)

write z = x̟d so that dz = (Nd)−1dx

= (Nd)
1
2
γf

√

|a|
1

|y|

∫

Qp

f̄(
z

ya̟d
))1O(z)dz (3.93)

when then have the functional equation

θf (y) = (Nd)
1
2
γf

√

|a|
1

|y| θ̄f (
1

ya̟d
) (3.94)

Let’s now first suppose that the valuation of a is equal to −d. The functional equation
becomes, considering that θf is unramified ( i.e. invariant under the action of O×)

θf (y) = γf
1

|y| θ̄f (
1

y
) (3.95)

In order to compute θf , we can then suppose that the valuation of y is ≥ 0.
The function g(x) = f(yx), if restricted to x ∈ O, it is an additive character : If x and z are

in O, we have
g(x+ z)ḡ(x)ḡ(z) = f(yx+ yz)f̄(yx)f̄(yz) = ψ(ay2xz) = 1 (3.96)

Indeed, we have |ay2xz| ≤ |a| = qd which shows that ay2xz ∈ d−1. Considering the definition of
θf and the fact that O is an additive group, we then have θf (y) = (Nd)−

1
2 if and only if f(xy) = 1

for all x ∈ O, because the integral of an additive character on a compact abelian group is equal
to zero if the character is not trivial on this group, or the measure of this group if the character
is trivial. It is then immediate that if θf (y) = (Nd)−

1
2 , then θf (z) = (Nd)−

1
2 for all z having

a higher valuation than y. We can then write the restriction of θ to O as (Nd)−
1
2 1̟kO(y) for

some k ≥ 0. Using the functional equation, we get that if the valuation of y is ≤ 0, we have

θf (y) = γf
1

|y|(Nd)−
1
2 1̟kO(

1

y
) (3.97)

Let’s first suppose that k = 0. Note that it implies that γf = 1 (using the functional equation
with y = 1) We then have, avoiding double counting for |y| = 1 , the following description of θ :

θf (y) = (Nd)−
1
2 (1O(y) + (1− 1O(y)) 1

|y| ) (3.98)

We then see that the Mellin transform of θf is well defined for 0 < ℜ(s) < 1 and compute that

Mell(θf , s) = (Nd)−1(
1

1− q−s
+

qs−1

1− qs−1
) (3.99)

=
(Nd)−1

(1− q−s)(1− qs−1)
(1− qs−1 + qs−1(1− q−s)) (3.100)

=
(Nd)−1

(1− q−s)(1− qs−1)
(1− 1

q
) (3.101)
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We then have

ζf (s, χ) = (Nd)
1
2 Mell(λ(1O×)f, s) = (Nd)

1
2

1

1− 1
q

(1− qs−1)Mell(θf , s) = (3.102)

= (Nd)−
1
2

1

1− q−s
(3.103)

and there is no zero.
Let’s now suppose that k ≥ 1 We then have

θf (y) = (Nd)−
1
2 (1̟kO(y) + γf

1

|y|1̟kO(
1

y
)) (3.104)

and the Mellin transform is

Mell(θf , s) = (Nd)−1(
q−ks

1− q−s
+ γf

qk(s−1)

1− qs−1
) (3.105)

The roots of ζf (s) are then the roots of the equation

q−ks(1 − qs−1) + γfq
k(s−1)(1− q−s) = 0 (3.106)

Let’s write X = qs−
1
2 so that |X | = 1 if and only if ℜ(s) = 1

2 . The equation becomes

X−k(1− X√
q
) + γfX

k(1 − 1

X

1√
q
) = 0 (3.107)

γfX
2k − γf√

q
X2k−1 − X√

q
+ 1 = 0 (3.108)

The number of solution of this polynomial equation cannot be greater than 2k. Let’s then show
that we have exactly 2k solutions on the unit circle : we write X = eiφ so that if we choose some
square root of γf , the equation becomes, after multiplication with 1√

γf
e−ikφ

√
γfe

ikφ −
√
γ
f√
q
ei(k−1)φ −

√
γf√
q
ei(1−k)φ +

√
γfe

−ikθ = 0 (3.109)

This expression is twice the real part of
√
γ
f
eikφ −

√
γ
f√
q e

i(k−1)φ, and it is clear ( because q>1)
that when φ moves from zero to 2π, this expression has 2k sign changes, so that it has 2k distinct
zeroes.

Lets’ now suppose that |a| = qd−1. The functional equation of θ becomes

θ(y) = γf
√
q
1

|y| θ̄(
1

̟y
) (3.110)

the same argument gives that there exists some k ≥ 0 so that for y ∈ O, we have

θ(y) = (Nd)−
1
2 δ̟kO(y) (3.111)

using the functional equation, we then get the following expression for θ, valid for any value of
k ≥ 0 :

θ(y) = (Nd)−
1
2 (1̟kO(y) + γf

√
q
1

|y|1̟k(
1

̟y
)) (3.112)

The Mellin transform of θ is then well defined for 0 < ℜ(s) < 1 and we have

Mell(θ, s) = (Nd)−1(
q−ks

1− q−s
+
γf√
q
qs

qk(1−s)

1− qs−1
) (3.113)

And a similar argument allows to prove that all the roots of this equation satisfy ℜ(s) = 1
2 �
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3.8.2 ramified characters

We consider a ramified character χ on the unit group of Q×
p and extend it to a character of Qp

writing χ(̟) = 1 ( cf Tate’s Thesis).
We then have the following theorem :

Theorem 2 Let’s consider a non degenerate second degree character on Qp of the form ψ(a2x
2+

bx) and let’s assume that ζf (s, χ) is not identically zero as a function of s. Then all the zeroes
of ζf (s, χ) lie on the line ℜ(s) = 1

2

Remark : its is clear that if χ is odd, the weak Mellin transform of ψ(a2x
2) at (s, χ) is always

equal to zero.
Proof : In order to compute ζf (s, χ) we consider the test function φχ̄(x) = χ(x)1O×(x) which

satisfy Mell(φχ̄, s, χ) = (Nd)−
1
2 for all values of s. We note f the conductor of χ and define n so

that f = pn

We recall from Tate’s Thesis ([7], p 322 )that if χ is ramified, the local factor ρ(χ, s) appearing
in Tate’s local functional equation is described by the formulae

ρ(s, χ) = (N (fd))s−
1
2 ρ0(χ) (3.114)

where the term ρ0(χ) satisfies |ρ0(χ)| = 1 and is described by the formula

ρ0(χ) = (N f)−
1
2

∑

ǫ

χ(ǫ)ψ(
ǫ

̟d+n
) (3.115)

where {ǫ} is a set of representatives of the cosets of 1 + f in O×

Proposition 15 The Fourier transform of φχ(x) = χ(x)1O×(x) is equal to χ(−1)ρ0(χ)q
−n+d

2 φχ̄(̟
n+dx)

Proof : Considering that O× is a compact multiplicative group, we remark that the Mellin
transform of φχ at the character χ′ is equal to zero if χ′ 6= χ̄ on O× and (Nd)−

1
2 if χ′ = χ̄ on

O×. Using Tate’s local functional equation, we then see that the Mellin transform of F(φχ)at
χ′(x)|x|s is equal to zero for χ′ 6= χ. For χ′ = χ, we get that

Mell(F(φχ), χ, s) = (Nd)−
1
2χ(−1)ρ(s, χ) = (Nd)−

1
2 (N (fd))s−

1
2χ(−1)ρ0(χ) (3.116)

= q−
d
2 q(s−

1
2
)(n+d)χ(−1)ρ0(χ) = χ(−1)ρ0(χ)q

− d
2
−n+d

2
+s(n+d) (3.117)

.
We then observe that the function χ(−1)ρ0(χ)q

−n+d
2 φχ̄(̟

n+dx) has the same Mellin trans-
form as F(φχ) for all multiplicative characters χ, so that these two functions have to be equal on
Q×

p . The equality for x = 0 is immediate �

Let’s now consider a second degree character of the form

f(x) = ψ(
a

2
x2 + bx) (3.118)

with a 6= 0 We have

λ(φχ̄)f(y) =

∫

Q
×
p

f(
y

x
)φχ̄(x)d

×x (3.119)

=
1

1− 1
q

∫

Qp

f(yz)φχ(z)dz (3.120)
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using the local Weil formula and the proposition 15, we get

=
1

1− 1
q

γf
√

|a|
1

|y|q
−n+d

2 χ(−1)ρ0(χ)

∫

Qp

f̄(
z

ya
)φχ̄(−̟n+dz)dz (3.121)

writing x = ̟n+dz, the expression becomes

=
1

1− 1
q

γf
√

|a|
1

|y|q
n+d
2 ρ0(χ)

∫

Qp

f̄(
x

ya̟n+d
)φχ̄(x)dx (3.122)

so that if we note θf,χ̄(y) = λ(φχ̄)f(y), we have the functional equation

θf,χ̄(y) = γfρ0(χ)
q

n+d
2

√

|a|
1

|y| θ̄f,χ̄(
1

ya̟n+d
) (3.123)

We can again suppose without loss of generality that the valuation of a is equal to −n − d or
−n− d+ 1.

We write a = u̟−n−d+δ with |u| = 1 and δ is equal to 0 or 1, so that the functional equation
becomes

θf,χ̄(y) = γχρ0(χ)
q

δ
2

|y| θ̄f,χ̄(
1

uy̟δ
) (3.124)

In order to compute θf,χ̄(y), we can then suppose that the valuation of y is higher or equal to
zero. Considering the integral

θf,χ̄(y) =
1

1− 1
q

∫

O×
p

f(yz)χ(z)dz (3.125)

We split O×
p in cosets modulo the subgroup 1+ f, so that χ is constant on each coset, and choose

a representative zi of each coset.

=
1

1− 1
q

∑

i

∫

f

f(yzi(1 + x))χ(zi)dx (3.126)

We then remark, considering that f is a second degree character, that we have for x ∈ f

f(yzi + yzix)f̄(yzi)f̄(yzix) = ψ(axy2z2i ) = 1 (3.127)

Indeed, if x is in f, the valuation of x is higher or equal to n, so that the valuation of ax is higher
or equal to −d, and the valuations of y and zi are positive or zero. The integral can then be
written as

1

1− 1
q

∑

i

{f(yzi)χ(zi)
∫

f

f(yzix)dx} (3.128)

The change of variable x′ = zix in the last integral shows that it is a constant as a function of
i, so that we get

=
1

1− 1
q

(
∑

i

χ(zi)f(ziy))(

∫

f

f(yx)dx) (3.129)

We then remark that if x1 and x2 are in f, then the valuations of x1 and x2 are higher than
n, so that the valuation of ax1 is higher or equal to −d and we have again

f(x1 + x2)f̄(x1)f̄(x2) = ψ(ax1x2) = 1 (3.130)
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Considering that the restriction of f(x) to f is then an additive character, the restriction of
f(yx) to f is also an additive character if the valuation of y is positive or zero. As a consequence,
there exists a unique k ∈ Z so that f(yx) is equal to 1 for x ∈ f if the valuation of y is equal
or higher than k, and not constant on f if the valuation of y is lower than k. We then have
θf,χ̄(y) = 0 if the valuation of y is lower (strict) than k. If k < 0, then θf,χ̄(y) = 0 thanks to the
functional equation and there is nothing else to prove.

We then suppose k ≥ 0. We now show that θf,χ̄(y) is also equal to zero if the valuation of y
is equal or higher than k + 1

Let’s consider the sum
∑

i χ(zi)f(ziy). If f(zy) is constant as a function of z for z ∈ O×, it
is immediate that this sum is zero because χ is assumed to be ramified. More generally, we can
compare f(ziy) and f(zjy) using the formula

f(yzj) = f(y(zj − zi))f(yzi)ψ(ay
2zi(zj − zi)) (3.131)

Let’s now suppose that the valuation of y is equal to k + 1 or higher. Then the definition of k
shows that f(y(zi − zj)) is equal to 1 if zi − zj ∈ 1

̟ f. We also have under the same conditions
ψ(ay2zi(zj − zi)) = 1 : the valuation of y2 is at least equal to 2, the valuation of a is at least
equal to −n− d the valuation of zi is 0 and the valuation of zj − zi is assumed to be higher than
n− 1.

We then see that if zi and zj are in the same cosets modulo 1 + 1
̟ f, then f(ziy) = f(zjy).

Let’s then renumber the zi, writing zi = zj,k where j indicates to which coset of 1+ 1
̟ f it belongs.

We then have
∑

i

χ(zi)f(ziy) =
∑

j,k

χ(zj,k)f(zj,ky) =
∑

j

αj

∑

k

χ(zj,k) (3.132)

with αj = f(zj,ky) for any choice of k

However the character χ is constant on the subgroup 1 + f but not on the subgroup 1+ 1
̟ f (

this is the definition of f), and for j fixed, the set of zj,k is a full set of representatives of cosets
modulo 1 + f inside a coset modulo 1 + f

̟ . The sum over k is then equal, up to a scalar, to an
integral of a non constant multiplicative character on a subgroup, so that it is equal to zero.

We then see that if the valuation of y is equal to k + 1 or higher, then θf,χ̄(y) = 0, and that
if it is lower than k and positive, then we also have θf,χ̄(y) = 0.

Considering that the restriction of θf,χ̄ to y ∈ ̟kO× has to be of the form Cχ̄(y) for some
constant C = θf,χ̄(̟

k) ( because it is immediate from the definition of θf,χ̄ that if w is a unit,
we have θf,χ̄(wx) = χ̄(w)θf,χ̄(x)), we can then write that if the valuation of y is positive or zero
we have

θf,χ̄(y) = Cχ̄(y)1̟kO×(y) (3.133)

Using the functional equation 3.124, we can then write that for y ∈ Qp, we have

θ(y) = Cχ̄(y)1̟kO×(y) + γf ρ̄0(χ)
q

δ
2

|y|χ(
1

uy
)C̄1̟kO×(

1

uy̟δ
) (3.134)

If 1
uy̟δ is in ̟kO×, then |y| = qk+δ, so that the expression can also be written as

= χ̄(y)C{1̟kO×(y) + γf ρ̄0(χ)χ̄(u)
C̄

C
q−k− δ

2 1̟−k−δO×(y)} (3.135)

Let’s note ω the espression γf ρ̄0(χ)χ̄(u) C̄C . It is clear that |ω| = 1 We get

Mell(θ, s, χ) = (Nd)−
1
2C(q−ks + ωq−k− δ

2 q(k+δ)s) (3.136)

and it is immediate that the zeroes of this function lie on the axis ℜ(s) = 1
2 �
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3.9 The function ζf(s, χ) on R

If a second degree character f is defined on R, then the automorphism α associated to f has to
be R-linear, so that it can be written as α(x) = ax. Any non degenerate second degree character
f on R is then of the form

f(x) = ψ(
a

2
x2 + bx) = e−2πi( a

2
x2+bx) (3.137)

with a ∈ R× and b ∈ R. and the functional equation

ζf (s, χ) = γfρ(s, χ)|a|
1
2
−sχ̄(a)ζ̄f (1− s̄, χ) (3.138)

is then always valid. With this description of f , we introduce the notation ζf (s, χ) = ζa,b(s, χ).
We have only two unitary characters χ on the unit group : the identity and the sign function
sgn(x), which we note ±(x). Note that since e−2πi( a

2
x2) is even, we have ζa,0(s,±) = 0 for all s.

We have the following description of the weak Mellin transform of a second degree character
:

Proposition 16 The weak Mellin transform of the second degree character ψ(a2x
2 + bx) at the

character |x|s for a > 0 is

ζa,b(s) =
e−sπi

4

√
a
s

Γ( s2 )

π
s
2

1F1(
s

2
,
1

2
,
πib2

a
) (3.139)

Remark : the functional equation of ζa,b is then consistent with Kummer’s formula

ex1F1(a, b,−x) = 1F1(b− a, b, x) (3.140)

Indeed, the functional equation can be written

e−sπi
4

√
a
s 1F1(

s

2
,
1

2
,
πib2

a
) = γf |a|

1
2
−s e

(1−s)πi
4

√
a
1−s 1F1(

1 − s

2
,
1

2
,−πib

2

a
) (3.141)

which simplifies to

1F1(
s

2
,
1

2
,
πib2

a
) = γfe

πi
4 1F1(

1− s

2
,
1

2
,−πib

2

a
) (3.142)

using Kummer formula, we get

e
−πi
4 e

πib2

a = γf (3.143)

and this formula is a consequence of proposition 13.

Proof of proposition 16 : We remark that the formula

F(e−2πi( 1
2
ax2+bx)) =

eπi
b2

a√
ai
e2πi(

1
2
a( x

a
)2+b x

a
) (3.144)

is valid not only for a ∈ R∗
+ and b ∈ R, but also for a ∈ C with ℑ(a) < 0 and ℜ(a) > 0 and

b ∈ C. We can then define ζa,b(s) using the same method for any a ∈ C with ℑ(a) < 0, ℜ(a) > 0
and b ∈ C, and looking at the proof of proposition 7, it is not difficult to see that ζa,b(s) is a
continuous function of a provided a does not cross the lines ℜ(a) = 0 or ℑ(a) = 0. It is however
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not difficult to compute ζa,0(s) when ℑ(a) < 0 and ℜ(a) > 0 : this is a regular Mellin transform,
and we get

ζa,0(s) = (
1√
a
s )e

−sπi
4

Γ( s2 )

π
s
2

(3.145)

Thanks to the continuity of ζa,0(s) as a function of a , this formula is also valid for a ∈ R∗
+

Let’s now suppose that a is fixed in R∗
+ and consider ζa,b as a function of b . We observe that

ζa,b considered as a function of b, is the limit of the functions ζa′,b, which are analytic in b ∈ C,
when a′ ∈ C, ℑ(a′) < 0 converges to a ∈ R∗

+, and that the convergence is uniform if b stays in
some compact set.

As a consequence, ζa,b is an analytic function of the variable b ( as a uniform limit of complex
analytic functions of b), so that we can describe it using its Taylor expansion in zero.

ζa,b(s) =
∑

k≥0

∂k

∂bk
ζa,b(s)(b = 0)

bk

k!
(3.146)

We remark that ζa,b(s) is an even function of b, so that all the odd derivatives in zero are
equal to zero. In order to evaluate the even derivatives, we use the following proposition :

Proposition 17 For s fixed, ζa,b(s) satisfies the equations

∂

∂a
ζf (s) = −πiζf (s+ 2) (3.147)

∂2

∂b2
ζf (s) = (−2πi)2ζf (s+ 2) (3.148)

and
∂

∂a
ζa,b(s) +

1

4πi

∂2

∂b2
ζa,b(s) = 0 (3.149)

Proof : The function e−2πi( a
2
x2+bx) satisfies the equations

∂

∂a
e−2πi( a

2
x2+bx) = (−πi)x2e−2πi( a

2
x2+bx) (3.150)

∂2

∂b2
e−2πi( a

2
x2+bx) = (−2πi)x2e−2πi(a

2
x2+bx) (3.151)

so that we mainly have to prove that we can exchange integration and differentation signs.
Let’s for example consider the first equation. We have to prove that the Mellin transform of
∂
∂aλ(φ)e

−2πi( a
2
x2+bx) converges absolutely and find a uniform bound for the associated absolute

integral. We remark that this expression is equal to

λ(φ){ ∂
∂a
e−2πi( a

2
x2+bx)} (3.152)

The function g(x) = ∂
∂ae

−2πi( a
2
x2+bx) = −πix2e−2πi(a

2
x2+bx)) is C∞ and its Fourier transform is

also C∞ and can be computed explicitly using the commutation relation of the Fourier transform
and differential operators.

We can then use the proof of proposition 7 in the real case, and show that the Mellin transform
of λ(φ)g is well defined for ℜ(s) > 0 with an absolute bound which remains finite if a stays in
some compact in R∗ which does not contain 0. As a consequence, the Mellin transform of the
complete expression is also well defined for ℜ(s) > 0, and we have a uniform bound for the
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integral defining the Mellin transform which allows to exchange the differentiation and Mellin
integration signs.

�

We then have for ℜ(a) > 0

∂2k

∂b2k
ζa,b(s)(b = 0) = (−4πi)k

dk

dak
ζa,b(s)(b = 0) = (−4πi)ke−sπi

4

Γ( s2 )

π
s
2

d

dak
(

1√
a
s ) (3.153)

= (−4πi)ke−sπi
4

Γ( s2 )

π
s
2

(−s
2
)(−s

2
− 1)..(−s

2
− (k − 1))(

1
√
a
s+2k

) (3.154)

= (4πi)ke−sπi
4

Γ( s2 )

π
s
2

(
s

2
)k(

1
√
a
s+2k

) (3.155)

=
e−sπi

4

√
a
s

Γ( s2 )

π
s
2

(4πi)k( s2 )k

ak
(3.156)

The Taylor expansion of ζa,b(s) becomes

ζa,b(s) =
e−sπi

4

√
a
s

Γ( s2 )

π
s
2

∑

k≥0

(
s

2
)k
(4πi)kb2k

ak(2k)!
(3.157)

Writing (2k)! = (2.4.6..2k)(1.3.5..2k−1) = (4k)k!(12 )(
1
2 +1)..(12 +k−1) = 4kk!(12 )k, we recognize

a Kummer confluent hypergeometric function 1F1

=
e−sπi

4

√
a
s

Γ( s2 )

π
s
2

∞
∑

k=0

( s2 )k

(k)!(12 )k
(
πib2

a
)k =

e−sπi
4

√
a
s

Γ( s2 )

π
s
2

1F1(
s

2
,
1

2
,
πib2

a
) � (3.158)

Proposition 18 The weak Mellin transform of ψR(
a
2x

2 + bx) at the character sgn(x)|x|s is

ζa,b(s,±) = −2πib
e−(s+1)πi

4

√
a
s+1

Γ( s+1
2 )

π
s+1

2

1F1(
s+ 1

2
,
3

2
,
πib2

a
) (3.159)

Proof : We start from the equality

∂

∂b
e−2πi( a

2
x2+bx) = −2πixe−2πi(a

2
x2+bx) (3.160)

which leads, after exchanging the integration and derivation signs, to the identity

∂

∂b
ζa,b(s) = −2πiζa,b(s+ 1;±) (3.161)

so that we have

ζa,b(s,±) = − 1

2πi

∂

∂b
ζa,b(s− 1) (3.162)

= − 1

2πi

e−(s−1)πi
4

√
a
s−1

Γ( s−1
2 )

π
s−1

2

∂

∂b
1F1(

s− 1

2
,
1

2
,
πib2

a
) (3.163)

We then use the elementary formula

∂

∂z
1F1(α, β, z) =

∑

k≥0

(α)k+1

(β)k+1

zk

k!
=
α

β
1F1(α+ 1, β + 1, z) (3.164)

to get the result �

Let’s now look at the location of the zeroes of ζa,b.
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Proposition 19 Let’s suppose that 1F1(u, v, z) = 0 with z imaginary and v ∈ R∗
+. Then we

have ℜ(u) = v
2

Proof : It is well known that the function 1F1(u, v, z) considered as a function of z is a solution
of the Kummer differential equation

zf ′′(z) + (v − z)f ′(z)− uf = 0 (3.165)

We can suppose without loss of generality that the zero of 1F1(u, v, z) has a positive imaginary
part, so that we can write it as z = it20 with t0 ∈ R.

We consider the function for t ≥ 0

Φ(t) = tαe−
it2

2 1F1(u, v, it
2) (3.166)

with α = v − 1
2 .

Elementary calculations show that the Kummer differential equation becomes

Φ′′(t) = Φ(t)(−α
2

t
+
α2

t2
− t2 + 2i(2u− v)) (3.167)

consider for t > 0 the function

W (t) = Φ(t)Φ̄′(t)− Φ̄(t)Φ′(t) ∈ iR (3.168)

The derivative of W (t) can be computed as

W ′(t) = Φ(t)Φ̄′′(t)− Φ̄(t)Φ′′(t) (3.169)

using equation 3.167
= |Φ(t)2|(−2i(2ū− v)− 2i(2u− v)) (3.170)

= −4i|Φ(t)2|(2ℜ(u)− v) (3.171)

We then have

W (t2)−W (t1) =

∫ t2

t1

W ′(t)dt = −4i(2ℜ(u)− v)

∫ t2

t1

|Φ(t)2|dt (3.172)

Considering that Φ(t) is square integrable on the interval [0, t0] ( because v > 0), it is immediate
that W (t) converges to some value when t converges to zero, and it is not difficult to check that
this value is zero. Considering that we also have W (t0) = 0, we get

0 =W (t0)−W (0) = −4i(2ℜ(u)− v)

∫ t0

0

|Φ(t)2|dt (3.173)

which shows that 2ℜ(u)− v = 0 �

Theorem 3 Let’s consider a non degenerate second degree characters f defined on R, a unitary
character χ on {−1, 1} and assume that ζf (s, χ) is not the zero function as a function of s. Then
all the zeroes of ζf (s, χ) lie on the line ℜ(s) = 1

2

Proof : this is an immediate consequence of the previous propositions.
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3.10 The function ζf(s, χ) on C

On C we will study the second degree characters of the form ψC(
a
2 z

2 + bz) and ψC(
a
2 |z|2 + bz).

The characters on the unit group of C∗ are of the form cn(z) = ( z
|z|)

n with n ∈ Z If f
is a second degree character, we will then note ζf (s, n) the weak Mellin transform of f at the
character (s, cn)

3.10.1 second degree characters of the form ψC(
a
2 |z|2 + bz)

We consider second degree characters which can be written as f(z) = ψ(a2 |z|2 + bz) with a ∈ R∗
+

and b ∈ C.
We note Za,b(s, n) the weak Mellin transform of ψ(a2 |z|2 + bz) at the character |z|sCcn(z)

Proposition 20 The weak Mellin transform of ψC(
a
2 |z|2 + bz) at the character |z|sCcn(z) is for

n = 0

Za,b(s, 0) =
e−

πi
2
s

as
Γ(s)

(2π)s−1 1F1(s, 1,
2πi|b|2
a

) (3.174)

and for n > 0

Za,b(s, n) = (−1)n
e−

πi
2
(s− n

2
)

as
Γ(s+ n

2 )

(2π)s−1

1

n!
(

√
2π√
a
b̄)n1F1(s+

n

2
, 1 + n,

2πi|b|2
a

) (3.175)

Remark : As a consequence of proposition 19, the zeroes of Za,b(s, n) lie on the axis ℜ(s) = 1
2

Proof : We have, writing z = x+ iy

ψ(
a

2
|z|2 + bz) = e−2πi(a|z|2+bz+b̄z̄) = e−2πi(a|z|2+2ℜ(b)x−2ℑ(b)y) (3.176)

We make the same observation as in the real case : We consider the right expression and remark
that if we take a ∈ C, ℑ(a) < 0, and replace ℜ(b) and ℑ(b) with complex values, then we can still
define using the same method its weak Mellin transform, which is continuous as a function of a,
ℜ(b) and ℑ(b). However, If we suppose that ℑ(a) < 0, then it has a well defined regular Mellin
transform, which is analytic in ℜ(b) and ℑ(b). We can then use the same method as before :
first compute Za,b(s, n) for b = 0 and then use the Taylor expansion of Za,b at b = 0.

Let’s first remark that for n 6= 0, we have Za,0(s, n) = 0 : the function ψ(a2 |z|2) is invariant
if we replace z with uz with |u| = 1. For n = 0, the computation of Za,0(s, 0) is straightforward
and gives

Za,0(s, 0) = Mell(e−2πia|z|2 , |z|2s, c0) =
e−sπi

2

as
Γ(s)

(2π)s−1
(3.177)

Let’s now suppose that b 6= 0 and n = 0 We consider the equation ( using the Wirtinger
operator ∂

∂b )

∂

∂b
e−2πi( 1

2
a|z|2+bz+ 1

2
ā|z|2+b̄z̄) = −2πize−2πi(1

2
a|z|2+bz+ 1

2
ā|z|2+b̄z̄) (3.178)

Which leads, using the same kind of argument as in the real case , to

∂

∂b
Za,b(s, n) = −2πiZa,b(s+

1

2
, n+ 1) (3.179)

we also have
∂

∂b̄
Za,b(s, n) = −2πiZa,b(s+

1

2
, n− 1) (3.180)
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Let’s now write the Wirtinger Taylor expansion of Za,b(s) near zero :

Za,b(s) =
∑

n≥0,p≥0

∂p+n

∂pb∂nb̄
Za,b(s)(b = 0)

bpb̄n

p!n!
(3.181)

The Wirtinger derivatives with p 6= n cancel so that we get

=
∑

n≥0

∂2n

∂nb∂nb̄
Za,b(s)(b = 0)

|b|2n
(n!)2

(3.182)

=
∑

n≥0

(−2πi)2nZa,b(s+ n)
|b|2n
(n!)2

(3.183)

=
e−

πi
2
s

as
Γ(s)

(2π)s−1
(
∑

n≥0

(−2πi)2n
1

(2π)n
(−i)n (s)n

an
|b|2n
(n!)2

(3.184)

=
e−

πi
2
s

as
Γ(s)

(2π)s−1
(
∑

n≥0

(
2πi

a
)n(s)n

|b|2n
(n!)2

(3.185)

We recognize again a confluent hypergeometric function

=
e−

πi
2
s

as
Γ(s)

(2π)s−1 1F1(s, 1,
2πi|b|2
a

) (3.186)

In order to compute Za,b(s, n) for n > 0, we use the formula

Za,b(s, n) =
1

(−2πi)n
∂n

∂bn
Za,b(s−

n

2
, 0) � (3.187)

3.10.2 second degree characters of the form ψ(a2 z
2 + bz)

We note ζa,b(s, n) the weak Mellin transform of the second degree character fa,b(z) = ψC(
a
2z

2 +
bz). In order to compute ζa,b(s, n), we use the same method as for the real case or for Za,b(s) :
Compute ζa,b(s) for b = 0, then use a Taylor expansion to compute ζa,b(s) for all b.

Let’s first compute ζa,b(s, n) for b = 0 :

Proposition 21 If n is odd, then
ζa,0(s, n) = 0 (3.188)

If n is even, then

ζa,0(s, n) = |a|−sc−n
2
(a)(−i)|n2 |π1−s Γ( s2 + |n|

4 )

Γ((1 − s
2 ) +

|n|
4 )

(3.189)

Remark : we then see that for n = 0, ζa,0(s, 0) cancels for even positive integer values of s, so
that the zeroes of ζa,0 are not all on the line ℜ(s) = 1

2 .
Proof : The function ψ(z2) is even, and the function cn is odd if n is odd, which proves the

first formula, because the multiplicative convolution of any function with an even function gives
an even function. If n is even, we use the fact that C is quadratically closed, i.e. that the map
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z 7→ z2 is onto. A consequence of this property is that for any Schwartz function φ on C and n
even, we have

Mell(φ(x2), s, n) =

∫

C∗
φ(x2)|x|s( x|x| )

nd×x = 2

∫

C∗
φ(y)|y| s2 ( y|y| )

n
2
d×y
4

=
1

2
Mell(φ,

s

2
,
n

2
)

(3.190)
and this equality can easily be generalized to weak Mellin transforms. We observe, however, that
for n even and 0 < ℜ(s) < 1, the weak Mellin transform of the function ψC(z) is well defined and
equal to the the function ρ(cn||s) appearing in Tate’s local functional equation ( cf [7], p 319) :

Mell(ψC(z), s, n) = ρ(cn||s) = (−i)|n| (2π)1−sΓ(s+ |n|
2 )

(2π)sΓ((1 − s) + |n|
2 )

(3.191)

Indeed, Let’s consider a function φ in C∞
c (C∗). We want to compute the Mellin transform of

λ(φ)ψC(z) =

∫

C∗
φ(x)ψC(x

−1z)d×x (3.192)

We can, however describe this integral as

=

∫

C

1

|y|C
φ(

1

y
)ψ(yz)dy = F(φ∗)(z) (3.193)

where the function φ∗ is defined to be 1
|y|Cφ(

1
y ) and is a Schwartz function on C. However we

know by Tate’s thesis that

Mell(φ∗, s, n) = ρ(cn||s)Mell(F(φ∗), 1− s,−n) (3.194)

= ρ(cn||s)Mell(λ(φ)ψ, 1 − s, 1− n) (3.195)

We then see that the weak Mellin transform of ψ is well defined and that we have

Mell(ψ, 1− s,−n) = 1

ρ(cn||s)
= ρ(c−n||1−s) (3.196)

which shows that ρ(cn||s) is indeed the weak Mellin transform of ψ(z). It is then immediate
that the weak Mellin transform of ψ(az) is equal for n even to

Mell(ψ(az), s, n) = |a|−s
C c−n(a)ρ(cn||s) (3.197)

so that we get

Mell(ψ(
a

2
z2), s, n) =

1

2
Mell(ψ(

a

2
z),

s

2
,
n

2
) =

1

2
|a
2
|−

s
2

C c−n
2
(a)ρ(cn

2
|| s2 ) (3.198)

which proves the formula for n even �

Let’s now consider the case b 6= 0.

Proposition 22 The function ζa,b(s, n) satisfy the equations

∂ζa,b(s, n)

∂b
= −2πiζa,b(s+

1

2
, n+ 1) (3.199)

∂ζa,b(s, n)

∂b̄
= −2πiζa,b(s+

1

2
, n− 1) (3.200)
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Proof : these formula can be considered to be the Mellin transform of the formulae

∂

∂b
ψ(
a

2
z2 + bz) = −2πizψ(

a

2
z2 + bz) (3.201)

and
∂

∂b̄
ψ(
a

2
z2 + bz) = −2πiz̄ψ(

a

2
z2 + bz) (3.202)

the justification of the exchange of derivation and integration signs is done as in proposition 17
�

Let’s now give an explicit description of the weak Mellin transform of ψC(
a
2 z

2 + bz). Consid-
ering that we have ζa,b(s) = |a|−sc−n

2
(a)ζ1, b√

a
(s), we can suppose that a = 1

Proposition 23 The weak Mellin transform of ψC(
1
2z

2 + bz) at the character |z|sC is equal to

ζ1,b(s) = π1−s{ Γ( s2 )

Γ(1− s
2 )

1F1(
s

2
,
1

2
, iπb2)1F1(

s

2
,
1

2
, iπb̄2)

− 4π|b|2 Γ( s+1
2 )

Γ(1− s+1
2 )

1F1(
s+ 1

2
,
3

2
, πib2)1F1(

s+ 1

2
,
3

2
, πib̄2)} (3.203)

Proof :
We use the Wirtinger Taylor expansion

ζ1,b(s) =
∑

n≥0,p≥0

∂p+n

∂pb∂nb̄
ζ1,b(s)(0)

bpb̄n

p!n!
(3.204)

=
∑

n≥0,p≥0

(−2πib)p(−2πib̄)n

p!n!
ζ1,0(s+

p+ n

2
, p− n) (3.205)

= π1−s
∑

n≥0,p≥0,p+n even

(2πib)p(2πib̄)n

p!n!

(−i) |p−n|
2

π
p+n
2

Γ( s2 + p+n
4 + |p−n|

4 )

Γ(1− s
2 − p+n

4 + |p−n|
4 )

(3.206)

= π1−s
∑

n≥0,p≥0,p+n even

(−i) |p−n|
2

(2
√
πib)p(2

√
πib̄)n

p!n!

Γ( s2 + max(p,n)
2 )

Γ(1− s
2 − min(p,n)

2 )
(3.207)

We can split the sum in two : the first sum S1 is for n and p even, the second sum S2 for n and
p odd.

= π1−s(S1 + S2) (3.208)

The first sum S1 becomes, writing p = 2k and n = 2l

S1 =
∑

k,l≥0

(−i)|k−l| (2
√
πib)2k(2

√
πib̄)2l

(2k)!(2l)!

Γ( s2 +max(k, l))

Γ(1− s
2 −min(k, l))

(3.209)

We now use the elementary formulas involving the pochhammer symbol :

Γ(
s

2
+ max(k, l)) = (

s

2
+ max(k, l)− 1)(

s

2
+ max(k, l)− 2)...(

s

2
+ 1)

s

2
Γ(
s

2
) = (

s

2
)max(k,l)Γ(

s

2
)

(3.210)
and
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Γ(1− s

2
) = (1− s

2
− 1)(1− s

2
− 2)..(1− s

2
−min(k, l))Γ(1 − s

2
−min(k, l)) (3.211)

= (−s
2
)(−s

2
− 1)..(−s

2
−min(k, l) + 1)Γ(1− s

2
−min(k, l)) (3.212)

= (−1)min(k,l)(
s

2
)min(k,l)Γ(1−

s

2
−min(k, l)) (3.213)

We also have the identities ( s2 )max(k,l)(
s
2 )min(k,l) = ( s2 )k(

s
2 )l and (−i)|k−l|(−1)min(k,l) =

(−i)|k−l|(−i)k+l−|k−l| = (−i)k+l so that we get

S1 =
Γ( s2 )

Γ(1− s
2 )

∑

k,l≥0

(−i)k+l (2
√
πib)2k(2

√
πib̄)2l

(2k)!(2l)!
(
s

2
)k(

s

2
)l (3.214)

This expression can be factored

=
Γ( s2 )

Γ(1− s
2 )

(
∑

k≥0

(−i)k(2√πib)2k
(2k)!

(
s

2
)k)(

∑

l≥0

(−i)l(2√πib̄)2l
(2l)!

(
s

2
)l) (3.215)

=
Γ( s2 )

Γ(1− s
2 )

(
∑

k≥0

(
(4iπb2)k

(2k)!
(
s

2
)k)(

∑

l≥0

(
(4iπb̄2)l

(2l)!
(
s

2
)l) (3.216)

and we recognize the product of two confluent hypergeometric functions, writing again (2k)! =
4kk!(12 )k :

=
Γ( s2 )

Γ(1− s
2 )

(
∑

k≥0

((iπb2)k
1

(k)!

1

(12 )k
(
s

2
)k)(

∑

l≥0

((iπb̄2)l
1

(l)!

1

(12 )l
(
s

2
)l) (3.217)

=
Γ( s2 )

Γ(1− s
2 )

1F1(
s

2
,
1

2
, iπb2)1F1(

s

2
,
1

2
, iπb̄2) (3.218)

The computations for the second sum S2 are similar �

It should be noted that our proof of proposition 23 is not complete, considering that we have
not proved that ζa,b(s) is analytic as a function of ℜ(b) and ℑ(b) ( The method used in the real
case or for the case ψ(a2 |z|2+ bz) is not valid here). Let’s sketch how the proof can be completed
in this case : we remark that, as a function of b, ζa,b(s) is defined up to a scalar factor as an
eigendistribution for the action of a commutative subgroup of the metaplectic group ( cf remark
following proposition 14). If we look at infinitesimal generators of this subgroup, we see that
ζa,b(s) can be defined up to a scalar factor as an eigenvector for the action of these infinitesimal
generators, i.e. as a solution of some set of partial differential equations in the variables ℜ(b)
and ℑ(b). In order to get a totally complete proof, it is then enough to write explicitly these
generators and check that the function given in proposition 23 is indeed a solution of these partial
differential equations.

4 The weak Mellin transform of second degree characters

defined on adele rings

We consider a number field F and the associated adele ring AF .
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4.1 Factorizable second degree characters on AF

We know that the continuous characters of AF are of the form ψ(bx) with b ∈ AF , so that we
can write any second degree character on AF as

f(x) = ψ(
1

2
α(x)x + bx) (4.1)

with b ∈ AF and α is continuous morphism of additive group from AF to AF so that α−1 is also
continuous.

We say that a second degree character is factorizable if it can be written as a tensor product
( noting PF the set of places of F)

f(x) = ⊗v∈PF
fv (4.2)

so that if an element of AF is written as a = (av), we have f(a) =
∏

v∈PF
fv(av). For example,

the second degree character ψ(a2x
2+bx) is factorizable, but if σ is a Galois automorphism, and if

we keep the notation σ for its natural action on AF , the second degree character ψ(a2σ(x)x+ bx)
is not in general factorizable.

If f is factorizable,we then also have α = ⊗v∈PF
αv, and the continuity of α and α−1 means

that there exists a finite set S of valuations so that if v is not in S, we have αv(O×
v ) = O×

v , so
that |αv| = 1. It is clear that on AQ, all second degree characters are factorizable ( because there
is no continuous non trivial additive continuous map from Qp to Qp′ with p 6= p′).

4.2 The existence of the weak Mellin transform

On an adele ring, the weak Mellin transform is defined as follows :

Definition 2 We say that a function f defined on A× has a well defined Mellin transform at
the character |x|sχ(x) if exist a function Mf (s, χ) so that for any test function φ ∈ C∞

c (A×
F ), we

have
Mell(φ ⋆ f, s, χ) = Mell(φ, s, χ)Mf (s, χ) (4.3)

Let’s first prove the existence of the weak Mellin transform of a non degenerate second degree
character defined on an adele ring. We consider a second degree character f , a function φ in
C∞

c (A×
F ) and the map

λ(φ)f(y) =

∫

A
×
F

φ(x)f(x−1y)d×x (4.4)

where y is an element of AF

We then have the following proposition :

Proposition 24 If f is factorizable and φ ∈ C∞
c (A×), then λ(φ)f is a Schwartz function on A

Proof : Considering that φ is locally constant as a variable of xv for all the finite places and that
the support of φ is compact, we can write φ as a finite sum of functions of the form φ∞⊗finite vφv.
where φ∞ ∈ C∞

0 (Fv1×Fv2×..×Fvn) (product of all the archimedean places) and φv are functions
defined on each local fields Fv associated to finite valuations, with nearly all the φv equal to 1O×

v
.

Let’s then prove the proposition for such a function. It is immediate that we have

λ(φ)(f) = λ(φ∞)f∞ ⊗finite v λ(φv)fv (4.5)

We have already proved that all the function λ(φv)fv are in S(Fv) for v finite. The two remaining
points to prove is that λ(φ∞)f∞ is Schwartz and that nearly all the functions λ(φv)fv are equal
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to 1Ov
. Let’s first prove that λ(φ∞)f∞ is Schwartz. Let’s for example suppose that we have two

real places to consider, so that the seconde degree character f∞ can be decomposed as f1 ⊗ f2
where f1 and f2 are non degenerate seconde degree characters defined over R We then have to
consider the function

λ(φ∞)f∞(y1, y2) =

∫

R∗2
φ∞(x1, x2)f1(x

−1
1 y1)f2(x

−1
2 y2)d

×x1d
×x2 (4.6)

Let’s write φ∗∞(x1, x2) =
1

|x1x2|φ∞( 1
x1
, 1
x2
). We extend this function to R2 by writing φ∗∞(0, x2) =

φ∗∞(x1, 0) = 0, so that φ∗∞ is a Schwartz function an the integral becomes

λ(φ∞)f∞(y1, y2) =

∫

R2

φ∗∞(z1, z2)f1(z1y1)f2(z2y2)dz1dz2 (4.7)

Let’s for example show that this function is fast decreasing as a function of y1 : we apply the
local Weil functional equation to the integral on z1

=
γf1

|y1|
√

|a1|

∫

R2

Fz1(φ
∗
∞)(z1, z2)f1(

z1
a1y1

)f2(y2z2)dz1dz2 (4.8)

considering that φ∗ and all its derivatives cancel at (0, z2) for any value of z2, this is equal, for
any polynomial P, to

=
γf1

|y1|
√

|a1|

∫

R2

Fz1(φ
∗
∞)(z1, z2)(f1(

z1
a1y1

)− P (
z1
a1y1

))f2(y2z2)dz1dz2 (4.9)

We then choose P to be the Taylor expansion of f1(x), and the proof can be finished as in the
real case. In order to show that all the partial derivatives are fast decreasing, we use again the
fact that the operator x1 ∂

∂x1
satisfy

x1
∂

∂x1
λ(φ)f = λ(x1

∂

∂x1
φ)f (4.10)

The proof is the same for a function φ∞ defined on Rn × Cm.

Lets’ now show that nearly all the functions λ(φv)f are equal to 1Ov
. We remark that

• nearly all the φv are equal to 1O×
v

• nearly all the αv satisfy |αv| = 1 ( because α is a continuous and its inverse is also
continuous)

• nearly all the bv satisfy |b|v ≤ 1 ( b is an adele)

• the local different dv is equal to Ov for nearly all valuations

It is then enough to prove that for the valuations v ∈ PF satisfying |αv| = 1 ,|bv| ≤ 1, and
dv = Ov, the functions λ(1O×

v
)(fv) is equal to 1Ov

. We will also suppose that |2|v = 1, which is
also true for nearly all valuations. The computation is then exactly the same as in proposition
11 for p 6= 2 :

λ(1O×
v
)fv(x) =

∫

F×
v

fv(
y

x
)1Ov×(x)d

×x (4.11)

=

∫

F×
v

ψ(
1

2
α(
y

x
)
y

x
+ b

y

x
)1O×

v
(x)d×x (4.12)
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If y ∈ Ov, and x ∈ O×
v , then y

x ∈ Ov so that α( yx ) ∈ Ov and the expression ψ(12α(
y
x )

y
x + b yx) is

equal ro 1 because ψ is trivial on Ov. The integral is then equal to the (multiplicative) measure
of O×

v which is (Ndv)
− 1

2 = 1 Let’s now suppose that the valuation of y is negative strict. We
replace the integral on O×

v by an additive integral on Ov

=
1

1− 1
Np

∫

Fv

ψ(
1

2
α(
y

x
)
y

x
+ b

y

x
)1O×

v
(x)

dx

|x| (4.13)

We remark that the term |x| can be removed since the integral is on O×
v and use the Weil local

functional equation :

1

1− 1
Np

γf
√

|α|

∫

Fv

ψ(−1

2

y

x
α−1(

y

x
)− bα−1(

y

x
))F(1O×

v
(x))dx (4.14)

Let’s note ̟ an element of Fv with valuation 1. We can then write that1O×
v
= 1Ov

− 1̟Ov
(4.15)

Using dv = Ov, we see that F(1Ov
) = 1Ov

so that

F(1O×
v
) = 1Ov

− 1

Np
1 1

̟
Ov

(4.16)

The support of F(1O×
v
) is then included in 1

̟Ov so that we can restrict the integral to the
set of elements x having a valuation ≥ −1. We remark, however, that if the valuation of y
is < 0 and the valuation of x is ≥ −1, then the valuation of y

x is ≥ 0, so that the function
ψ(− 1

2
y
xα

−1( yx )− bα−1( yx )) is equal to 1. The integral is then equal to

1

1− 1
Np

γf
√

|α|

∫

Fv

F(1O×
v
(x))dx =

1

1− 1
Np

γf
√

|α|
1O×

v
(0) = 0 (4.17)

We have then proved that λ(1O×
v
)fv(y) is equal to 1 if the valuation of y is positive or zero, and

zero if the valuation of y is negative strict, so that λ(1O×
v
)fv = 1Ov

�

Proposition 25 If f is a factorizable non degenerate second degree character defined on AF ,
then the weak Mellin transform of f is well defined for ℜ(s) > 1.

Proof : the proof is the same as for the local case ( replace > 0 by > 1).
We will use the notation Ξf (s, χ) for the weak Mellin transform of a second degree character

f defined on an adele ring at the character |x|sχ(x)

4.3 The functional equation of Ξf

Proposition 26 for φ ∈ S(A×) and f a non degenerate second character defined on A, The
Fourier transform of the Schwartz function λ(φ)f(y) is equal to

γf√
|α|
λ(φ∗)f̄ ◦ α−1(y), where φ∗

is defined by the formula φ∗(x) = 1
|x|φ(

1
x )

Proof : the proof is exactly the same as for the local case �

38



Proposition 27 Let’s assume that χ is a Hecke character on A×
F . Then the function Ξf (s, χ)

considered as a function of s has an analytic continuation to C, with possible poles at 0 and 1
if χ is unramified. If we keep the notation Ξf (s, χ) for the analytic continuation, we have the
equality

Ξf (s, χ) =
γf

√

|α|
Ξf̄◦α−1(1− s, χ) (4.18)

Proof : The proof is the same as for the local case, but we have to replace the Tate local functional
equation by the global functional equation �

4.4 The connection with Hecke L-functions

We remind that if χ = ⊗χv is a Hecke character defined on A×
F , the Hecke L-function L(s, χ) is

defined for ℜ(s) > 1 as

L(s, χ) =
∏

v finite,χvunramified at v

1

1− χv(̟v)(Npv)−s
(4.19)

Theorem 4 Let’s consider a number field F, a unitary Hecke character χ and note L(χ, s) the
associated Hecke L-function. Let’s consider a factorizable non degenerate second degree character
fand note Ξf (s, χ) the Mellin transform of f at (s, χ). Then (s, χ) is a zero of Ξf if and only if
it is a non trivial zero of L(s, χ) or a zero of one of the local functions ζfv

Proof :
We have already computed that for nearly all valuations, we have

λ(1O×
v
)fv = 1Ov

(4.20)

so that
ζfv (s, χ)Mell(1×Ov

, s, χ) = Mell(1Ov
, s, χ) (4.21)

Nearly all these valuations satisfy the condition that χv is unramified at v.
Let’s then consider the two following finite sets : The set S is the set of all valuations which are
either infinite, or finite with χv ramified, or satisfy λ(1O×

v
)fv 6= 1Ov

or satisfy dv 6= Ov. The set
T is the set of all valuations which are eiher infinite or finite with χv ramified. It is clear that
T ⊂ S.

Let’s suppose that v is not in S. Since χ is unramified and Ndv = 1, we have Mell(1×Ov
, s, χ) =

1 so that we get

ζfv (s, χ) = Mell(1Ov
, s, χ) =

∫

F×
v

1Ov
(x)χ(x)|x|sd×x (4.22)

we split the integral according the the valuation of x and get

1 + χ(̟v)Np−s + .. (4.23)

=
1

1− χ(̟v)Np−s
(4.24)

We can then write

Ξf (s, χ) =
∏

v∈S

ζfv (s, χv)
∏

v/∈S

1

1− χ(̟v)Np−s
(4.25)
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let’s compare this with

L(s, χ) =
∏

v/∈T

1

1− χ(̟v)(Npv)−s
(4.26)

We can split L(s, χ) as

L(s, χ) =
∏

v∈S,v/∈T

1

1− χ(̟v)Np−s

∏

v/∈S,v/∈T

1

1− χ(̟v)Np−s
(4.27)

and Ξf as

Ξf (s, χ) =
∏

v∈S,v/∈T

ζfv (s, χv)
∏

v∈S,v∈T

ζfv (s, χv)
∏

v/∈S,v/∈T

1

1− χ(̟v)Np−s
(4.28)

which leads to the equality

Ξf (s, χ) =
∏

v∈S,v/∈T

(1 − χ(̟v)Np−s)ζfv (s, χv)(
∏

v∈S,v∈T

ζfv (s, χv))L(s, χ) (4.29)

Note that both products are finite, because S is finite.
We know that the local functions ζfv (s, χv) do not have any pole for ℜ(s) > 0 and that

the only pole of L(s, χ) is at χ(x)|x|s = |x|. It is then immediate, since S and T are finite
sets, that a zero of L(s, χ) satisfying ℜ(ρ) > 0 is also a zero of Ξf (s, χ) an that any zero of
ζv(s, χv) is also a zero of Ξf (we have seen that 1 is never a zero of ζf for unramified characters).
Conversely, it is immediate that a zero of Ξf has to be either a zero of some ζfv for v ∈ S or a
zero of the product

∏

v∈S,v/∈T (1 − χ(̟v)Np−s) or a zero of L(s, χ). We remark that the zeroes
of

∏

v∈S,v/∈T (1 − χ(̟v)Np−s) are not zeros of Ξf because they are canceled by the same terms
appearing in the definition of L(s, χ). The non trivial zeroes of L(s, χ) at negative integers are
also not zeroes of Ξf (s, χ) : if this were the case, we would also find these zeroes at positive
integers thanks to the functional equation, and we know that it is not possible �.

5 Weak Mellin transforms and second degree characters de-

fined on vector spaces

Let’s now come back to Riemann’s proof of the functional equation of ζ, which is based on the
Poisson summation formula on Z, i.e. to the fact that the distribution δZ is equal to its Fourier
transform. We know that this Poisson summation formula can be generalized to distributions
of the form δZn defined on Rn, leading to the functional equation of Epstein Zeta functions
or Eisenstein series. The idea of this section is to perform a similar generalization, replacing a
second degree character defined on a field by a second degree character defined on a vector space.
The main result of this section is that the natural generalization of the local functions ζfv to
vector spaces have their zeroes on the line ℜ(s) = n

2 under reasonable conditions.

5.1 A local functional equation on vector spaces

In order to generalize our results to second degree characters defined on vector space, we first
need a generalization of Tate’s local functional equation to Schwartz functions defined on vector
spaces. We define the following maximal compact subgroups KL of GLn(L) : for L = R, we write
KR = SO(n). For L = C, we write KC = U(n). If L is a local field, we write KL = GLn(OL)
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We define the norm of an element of the vector space Ln as follows : if L is a local field,
‖x‖ = sup(|x1|, |x2|, , |xn|). If L is equal to R, ‖x‖ is the usual norm. If L is equal to C, we have
to take the square of the usual norm, i.e. ‖x‖C = ‖x‖2. Note that ‖x‖ is always invariant under
the action of the compact group KL

Let’s consider for any Schwartz function ϕ defined on Ln and ℜ(s) > 0 the integral

M(ϕ, s) =

∫

Ln

ϕ(x)‖x‖s dx

‖x‖n (5.1)

This integral is well defined : The convergence near zero is a consequence of the fact that ϕ is
continuous. The convergence for ‖x‖ large is a consequence of the fact that ϕ is Schwartz. We
call this integral the Mellin transform of ϕ.

If a function ϕ defined on Ln, is invariant under the action of K, we say that it is a radial
function.

Proposition 28 For any Schwartz function f , and s ∈ C with 0 < ℜ(s) < n, the Mellin
transform of f and F(f) are related by the following formula

M(f, s) = ρn(s)M(F(f), n− s) (5.2)

for some scalar ρn(s) which does not depend on f

Proof : Let’s first suppose that L = R. Then this proposition simply states that the Fourier
transform of ‖x‖s−n considered as a distribution is equal to ‖x‖−s up to a scalar factor. This is
a well known result in the theory of homogeneous distributions ( cf [2], Th 2.4.6). Considering
that a radial homogeneous distribution on Cn can also be considered as a radial homogeneous
disribution on R2n, the result is then also true for L = C.

Let’s now consider the case where L is a local field, L = Qp. Let’s first consider the Schwartz
functions which are radial (i.e. invariant under the action of K). Such a function φ can be
written as a finite sum of the form φ =

∑

k ak1̟kOn ( because φ has compact support and is
continuous in zero), and its Fourier transform is equal to F(φ) = (Nd)−

n
2

∑

k ak
1

qnk 1̟−kd−1On ,

and it is immediate, writing d = pd and |̟| = q that we have

M(φ, s) = qd(
n
2
−s) 1− qs−n

1− q−s
M(F(φ), n− s) (5.3)

Let’s now suppose that φ is not radial. We remark that if φK is the radial function obtained by
averaging φ under the action of K, we have M(φ, s) =M(φK , s). Considering that this averaging
action commutes with the Fourier transform, we get the result for all φ �

5.2 From second degree characters on vector spaces to Schwartz func-

tions

We also need a generalization of proposition 7 for vector spaces. This is given by the following
proposition :

Theorem 5 Let’s consider a non degenerate second degree character f on a L-vector space Ln of
finite dimension n, where L is a locally compact field. Let’s consider a function φ in C∞

c (GLn(L))
and define λ(φ)(f) as

λ(φ)(f)(v) =

∫

GLn(L)

φ(x)f(x−1v)d×x (5.4)

Then λ(φ)(f) is a Schwartz function on Ln
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Proof : Let’s first prove an elementary proposition

Proposition 29 Any element v ∈ Ln − {0} can be written as kv1 where k is in K and the only
non zero coordinate of v1 is the first one. (i.e v1 = (x1, 0, 0..) for some x1 in L)

Proof : This is clear for Rn and Cn. Let’s then suppose that L is local and note ̟ an uniformizer,
with |̟| = 1

q .It is enough to show that any vector x in Ln satisfying ‖x‖ = q−m is in the orbit
of the vector v1 = (̟m, 0, 0, 0..) under the action of KL for any m ∈ Z. After multiplication by
̟−mId, which commutes with K, we can suppose that m = 0.

Considering that ‖x‖ = max |x|i = 1, all the coordinates of x are in OL and at least one of
the coordinates of x is a unit. Since the map exchanging the basis vectors e1 and ei is in K, for
all i, we can suppose that the first coordinate x1 is a unit. We can then write that





x1
x2
xn



 =





x1 0 0..
x2 1 0..
x3 0 1..





(

1 0 0
)

(5.5)

and the square matrix is in GLn(OL) �

Let’s now prove the theorem. Suppose that L is local. It is immediate that λ(φ)f is locally
constant, so that we have to show that it has a compact support in V. In order to simplify
notations, we suppose that n = 2, but the proof remains the same for all n. We first convert the
integral on GL2(L)

λ(φ)(f)(v) =

∫

GL2(L)

φ(x)f(x−1v)d×x (5.6)

into an integral on M2(L) : If dx is the standard haar measure on M2(L), dx
|detx|2 is a haar

measure on GL2(L) so that it is equal to the standard haar measure on GL2(L) up to a constant
scalar factor. λ(φ)(v) is then equal, up to a constant scalar factor, to the integral

∫

M2(L)

φ(x)f(x−1v)
dx

|det x|2 (5.7)

writing φ×(x) = φ(x−1) 1
|detx|2 ( not to be confused with φ∗ = φ(x−1) 1

|detx|) for x ∈ GL2(L) and

φ×(x) = 0 for x /∈ GL2(L), the integral becomes
∫

M2(L)

φ×(x)f(xv)dx (5.8)

where φ× is a Schwartz function on M2(L).
Let’s first suppose that the vector v is of the form (y, 0) Let’s write the matrix x as x =

(

α β
γ δ

)

, so that xv = (αy, γy) = y(α, γ) and the integral can be described as

∫

α,β,γ,δ∈Qp

f(αy, γy)φ×(

(

α β
γ δ

)

)dαdβdγdδ (5.9)

=

∫

β,δ∈Qp

{
∫

α,γ,∈Qp

f(αy, γy)φ×(

(

α β
γ δ

)

)dαdγ}dβdδ (5.10)

We have assumed that the function f(α, γ), is a non degenerate second degree character on L2. If
we note ̺ the morphism from V to V ∗ associated to f , and identify V with V ∗ using the standard
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additive character ψ, then the weak fourier transform of f(α, γ) is equal to γf√
̺ f̄(̺

−1(α, γ)) ( cf

Weil [8]). The fourier transform of f(y(α, β)) is then equal to 1
|y|

γf√
̺ f̄(y

−1̺−1(α, γ)) We then get

the equality, with the notation Fα,γ(φ
×) for the Fourier transform of φ×(α, β, γ, δ) considered as

a function of α and γ only.

=
1

|y|
γf√
̺

∫

β,δ∈Qp

{
∫

α,γ,∈Qp

f̄(−̺−1(
α

y
,
γ

y
)Fα,γ(φ

×)(α, β, γ, δ)dαdγ}dβdδ (5.11)

We then remark that the function Fα,γ(φ
×)(α, β, γ, δ) has compact support ( it is a Schwartz

function on L4).As a consequence we can suppose that its support is included in a ball of radius
R ( using the sup norm ‖α, β, γ, δ‖ = max(|α|, |β|, |γ|, |δ|) ) . We also know that f ◦ ̺−1 is
continuous and equal to 1 near zero, so that there exists some ǫ so that if |α| < ǫ and |γ| < ǫ,
then f̄ ◦ ̺−1(α, γ) = 1. It is then immediate that if |y| > R

ǫ , then the integral becomes zero :
The expressions |αy | and |γy | are always lower than ǫ if α and γ are in the support of Fα,γ(φ

×) so

that the integral becomes, considering that the matrix

(

0 β
0 δ

)

is not in GL2(L) :

1

|y|
γf√
̺

∫

β,δ∈Qp

{
∫

α,γ,∈Qp

Fα,γ(φ
×)(α, β, γ, δ)dαdγ}dβdδ (5.12)

1

|y|
γf√
̺

∫

β,δ∈Qp

φ×(

(

0 β
0 δ

)

)dβdδ = 0 (5.13)

Let’s now suppose that the vector v is not of the form (y, 0). We have seen that it is always
possible to write v as v = kv′ with k ∈ GL2(O) and v′ = (y′, 0) for some y′ ∈ L. Note that the
sup norm ‖v‖ is equal to |y′|. It is immediate that we have

λ(φ)(v) = λ(φ)(kv′) = λ(φ(kx))(v′) (5.14)

If the support of φ is included in a ball of radius R, then the support of φ(kx) is included in the
same ball, since we have the equality of sup norms ‖kx‖ = ‖x‖ for all k ∈ GL2(O) and all x in
GL2(L). The function is then equal to zero if |y′| = ‖v‖ > R

ǫ , which proves the theorem for L
local.

Let’s now consider the case L = R or C.
Let’s for example take L = R. If φ ∈ C∞

c (GL2(R)), we write again φ×(x) = φ(x−1) 1
|det(x)|2 .

The support of φ× is also compact in M2(R) for the topology of M2(R)( because the inclusion
map from GL2(R) to M2(R) is continuous) so that if x is any element of M2(R) which is not in
GL2(R), then g is zero in a neighborhood of x so that all its derivatives in x cancel.

It is immediate that φ× is Schwartz on M2(R) because it is C∞ with compact support. We
first consider the case v = (y, 0) and the same computation as for the case L ultrametric leads
to the integral

1

|y|
γf√
̺

∫

β,δ∈Qp

{
∫

α,γ,∈Qp

f̄(̺−1(
α

y
,
γ

y
)Fα,γ(φ

×)(

(

α β
γ δ

)

)dαdγ}dβdδ (5.15)

We then observe, that for n ≥ 0,m ≥ 0, the integral
∫

α,γ,∈Qp

αnγm Fα,γ(φ
×)(

(

α β
γ δ

)

)dαdγ (5.16)
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is equal, up to a constant, to

∫

α,γ,∈Qp

Fα,γ(
∂n+m

∂αn∂γm
φ×)(

(

α β
γ δ

)

)dαdγ =
∂n+m

∂αn∂γm
φ×

(

0 β
0 δ

)

= 0 (5.17)

If P (α, β) is the polynomial associated to the Taylor expansion of degree n of f̄(̺−1(α, γ), the
integral is then equal to

1

|y|
γf√
̺

∫

β,δ∈Qp

{
∫

α,γ,∈Qp

(f̄(̺−1(
α

y
,
γ

y
))− P (

α

y
,
γ

y
))Fα,γ(φ

×)(

(

α β
γ δ

)

)dαdγ}dβdδ (5.18)

and the remainder of the proof is similar to the one dimensional case. The proof for L = C is
similar �

This theorem can be extended without difficulty to vector spaces defined over locally compact
division rings D, since the commutativity of the field has not been used in the proofs.

5.3 The weal Mellin transform of a second degree character defined

on a vector space

On a locally compact field, we have defined the weak Mellin transform thanks to the formula
Mell(λ(φ)f, s) = Mell(φ, s)Mell(f, s) which is valid for all Schwartz functions with ℜ(s) > 0.
This formula can also be written as λ(φ)|x|s−1 = Mell(φ, 1− s)|x|s−1 : the function |x|s−1 on R∗

is stable, up to a scalar factor, for the action of the multiplicative group. In order to generalize
this formula to vector spaces defined on locally compact fields, we consider the function ‖x‖s on
Ln − {0} and the natural left action λ of GLn(L) on this function. If φ is a general element of
C∞

c (GLn(L)), then λ(φ)‖x‖s is not equal to ‖x‖s up to a scalar factor. We however show that
this is the case if the function φ is invariant under the action of K, which allows to define the
weak radial Mellin transform.

Proposition 30 Let’s consider a function νs defined on Ln − {0}, invariant under the action
of K and satisfying νs(λx) = |λ|sνs(x) for all λ ∈ L, then νs is equal to the function ‖x‖s up to
a scalar factor.

Proof : Let’s note C the value of νs(x) on e1 = (1, 0..). We then write, using a decomposition
x = kv1 given in proposition 29

νs(x) = νs(k(x1, 0, 0..)) = |x1|sνs(1, 0, 0..) = C‖x‖s � (5.19)

Let’s note H(GLn(L)) the Hecke algebra ofGLn(L), i.e. the algebra of functions in C∞
c (GLn(L))

invariant under the left and right action of K.

Proposition 31 Let’s consider a function φ ∈ H(GLn(L)) . Then For all s ∈ C, there exists a
scalar ξs(φ) so that the equation

λ(φ)‖x‖s = ξs(φ)‖x‖s (5.20)

is valid for all x ∈ Ln − {0}

Proof : Let’s note f(x) = ‖x‖s We have

λ(φ)(f)(kv) =

∫

GLn(L)

φ(x)f(x−1kv)d×x (5.21)
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writing x−1k = y−1, so that ky = x, we get

=

∫

GLn(L)

φ(ky)f(y−1v)d×y (5.22)

= λ(φ)(f)(v) (5.23)

it is then immediate that λ(φ)‖x‖s satisfies the conditions of the previous proposition , so
that it is equal to ‖x‖s up to a scalar factor on Rn − {0} �

Proposition 32 The function ξs is a character of the Hecke algebra H(GLn(L)) : If φ1 and φ2
are in H(GLn(L)), we have

ξs(φ1 ⋆ φ2) = ξs(φ1)ξs(φ2) (5.24)

Proof : immediate consequence of the proposition λ(φ1 ⋆ φ2) = λ(φ1)λ(φ2)

Proposition 33 Let’s consider some function ϕ defined on L so that M(ϕ, s) is well defined.
Then M(λ(φ)ϕ, s) is well defined and we have for φ ∈ H(GLn(L)) the equality

M(λ(φ)ϕ, s) = ξs−n(φ
∗)M(ϕ, s) (5.25)

whith φ∗(g) = 1
|det g|φ(g

−1)

Proof : We have

M(λ(φ)ϕ, s) =

∫

x∈Ln

∫

g∈GLn(L)

φ(g)ϕ(g−1x)‖x‖sd×g dx

‖x‖n (5.26)

the double integral is absolutely convergent, so that we can exchange the order of summations,
and write y = g−1x, so that dx = |det g|dy

=

∫

g∈GLn(L)

∫

y∈Ln

φ(g)ϕ(y)‖gy‖s−n|det g|d×gdy (5.27)

replacing g with g−1

=

∫

g∈GLn(L)

∫

y∈Q2
v

1

|det g|φ(g
−1)ϕ(y)‖g−1y‖s−nd×gdy (5.28)

=

∫

g∈GLn(L)

ϕ(y)

∫

y∈Ln

φ∗(g)‖g−1y‖s−nd×gdy (5.29)

=

∫

y∈Ln

ϕ(y)(λ(φ∗)‖x‖s−n)(y)dy (5.30)

It is immediate that if φ is in H(GLn(L)), then φ∗ is also in in H(GLn(L)) so that we can apply
proposition 31

= ξs−n(φ
∗)

∫

g∈GLn(L)

ϕ(y)‖y‖s−ndy � (5.31)

We are now in a position to extend the definition of the Mellin transform to second degree
characters defined on vector spaces.
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Definition 3 Let’s consider a non degenerate second degree character f defined on Ln. Choose
some function φ ∈ H(GLn(L)) so that ξs−n(φ

∗) 6= 0 . We define the weak Mellin transform
M(f, s) of f by the formula

M(λ(φ)f, s) = ξs−n(φ
∗)M(f, s) (5.32)

this quantity does not depend on the choice of φ .

Proof : We have to prove that the definition does not depend on the choice of φ. Let’s first
suppose that L is a local field and consider some function φ ∈ H(GLn(L)). It is immediate that
φ ⋆ 1K = φ ( we assume that the haar measure on GLn(L) is normalized so that the measure of
K is equal to 1), so that we have

M(λ(φ)f) =M(λ(φ)λ(1K )f) (5.33)

applying proposition 33, we get

= ξs−n(φ
∗)M(λ(1K)f, s) (5.34)

And we observe that M(λ(1K)f, s) does not depend on φ. Let’s now suppose that L = R ot
C. Let’s choose some function φ1 so that ξs−n(φ

∗
1) 6= 0 and consider the family of functions

fb(x) = f(x)ψ(b.x) and assume that the functions M1(fb, s) are defined for all b in Ln by the
formula

M(λ(φ1)fb, s) = ξs−n(φ
∗
1)M(fb, s) (5.35)

The computations described in proposition 14 can be generalized to vector spaces, showing that
ζfb(s), considered as a function of b ( or, more precisely, as a distribution on the variable b), is
the weak Fourier transform of the distribution f(x)‖x‖s−n, which shows unicity because ζfb(s)
is a continuous function of b. �

Proposition 34 If φ is in C∞
c (GLn(L)), and f is a Schwartz function, the Fourier transform

of the function λ(φ)f is equal to λ(φc)F(f) where φc is defined by the formula φc(g) = φ∗(gt) =
1

|det g|φ((g
t)−1)

Proof : We write that

F(λ(φ)f)(y) =

∫

x∈Ln

∫

g∈GLn(L)

φ(g)f(g−1x)ψ(x.y)d×gdx (5.36)

writing g−1x = z, we get

=

∫

z∈Ln

∫

g∈GLn(L)

φ(g)f(z)ψ((gz).y)|det g|d×gdz (5.37)

=

∫

z∈Ln

∫

g∈GLn(L)

φ(g)f(z)ψ(z.gty)|det g|d×gdz (5.38)

=

∫

g∈GLn(L)

φ(g)|det g|F(f)(gty)d×g (5.39)

writing h = (gt)−1

=

∫

h∈GLn(L)

φ((ht)−1)
1

|deth| F(f)(h
−1y)d×h (5.40)

� (5.41)
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Proposition 35 The proposition is also valid is f is a non degenerate second degree character

Proof : considering that λ(φ)f is a Schwartz function, it is enough prove this in the weak sense,
using the same method as in proposition 9. The computation is straightforward �

Proposition 36 The weak Mellin transform of a second degree character satisfies for 0 < ℜ(s) <
n the equation

ζf (s) = ρn(s)ζF(f)(n− s) = ρn(s)
γf

√

|̺|
ζf̄(̺−1x)(n− s) (5.42)

where the scalar factor ρn(s) has been defined in proposition 28

Proof : Let’s first consider a Schwartz function ϕ and any function φ ∈ H(GLn(L), π) so that
ξs(φ

∗) 6= 0. λ(φ)ϕ is again a Schwartz function, so that we have by the local functional equation
(proposition 28) the equality

M(λ(φ)ϕ, s) = ρn(s)M(F(λ(φ)ϕ), n − s) (5.43)

using the previous proposition,

M(λ(φ)ϕ, s) = ρn(s)M(λ(φc)F(φ)ϕ, n − s) (5.44)

If φ ∈ H(GLn(L)), then φc is also in H(GLn(L)), so that we can use proposition 33 and we
get, introducing the notation φt(g) = (φc)∗(g) = φ(gt),

ξs−n(φ
∗)M(ϕ, s) = ρn(s)ξ−s(φ

t)M(ϕ, n− s) (5.45)

If we compare this with the local functional equation for ϕ, we conclude that ξs−n(φ
∗) =

ξ−s(φ
t) for any function φ in H(GLn(L)). Let’s now consider a non degenerate second degree

character f . We know that λ(φ)f is a Schwartz function, so that we have

M(λ(φ)f, s) = ρn(s)M(F(λ(φ)f), n − s) (5.46)

Assuming that φ is in H(GLn(L)), using the previous propositions and the definition of the weak
Mellin transform, this becomes

ξs−n(φ
∗)ζf (s) = ρn(s)ξ−s(φ

t)ζF(f)(n− s) (5.47)

and finally
ζf (s) = ρn(s)ζF(f)(n− s) � (5.48)

This formula shows that ζf (s) has an analytic continuation, but is not really a functional
equation. We note again, however, that if ̺ is scalar, i.e. of the form ̺ = αId where α is a scalar
in L, then we get a true functional equation.

5.4 The zeroes of ζf for second degree characters defined on Qn
p

Theorem 6 Let’s consider a non degenerate second degree character f on Qn
p and assume that

the associated map ̺ is a dilation ̺ = αId. Then the zeroes of the weak Mellin transform of f
are on the axis ℜ(s) = n

2
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Proof : We then suppose that the second degree character can be written as

f(x1, ..xn) = ψ(
1

2
α

n
∑

i=1

x21 +

n
∑

i=1

βixi) (5.49)

with α 6= 0 and βi ∈ Qp

Let’s compute for some vector v the function λ(1GLn(Zp))f(v)
We write

λ(1GLn(Zp))f(v) =

∫

GLn(Zp)

f(kv)d×k (5.50)

=

∫

GLn(Qp)

f(gv)1GLn(Zp)(g)d
×g (5.51)

We know, thanks to the unicity of the Haar measure, that d×g is equal to dg
|det g|n up to some

scalar factor. Let’s note µ this scalar factor. The integral becomes, noting that the determinant
of any element of GLn(Zp) has to be a unit :

= µ

∫

Mn(Qp)

f(gv0)1GLn(Zp)(g)dg (5.52)

Let’s write gi,j the matrix coefficients of the matrix g. We can assume that v = re1 =
(r, 0, 0..0) for some r ∈ Qp because the result is a radial function ( i.e. a function invariant under
the action of GLn(Zp)). We have gv = g(r, 0, 0..0) = (rg1,1, rg2,1, ..rgn,1) and

f(gv0) = ψ(
1

2
αr2(

n
∑

i=1

g2i,1) +

n
∑

i=1

βigi,1) (5.53)

This expression is independent of the gi,j with j 6= 1, so that the integral can be simplified. We
use the following proposition

Proposition 37 Let’s consider some matrix A in Mn(Zp) and assume the matrix elements ai,1
of the first column of A are not all in pZp and are fixed, while the other matrix elements are
considered as variables. Then the additive measure of the set of (ai,j)j 6=1 satisfying (ai,j) ∈
GLn(Zp) is equal to the measure of GLn−1(Zp)

Proof : We can suppose without loss of generality that the valuation of a1,1 is zero. Let’s
suppose for example that n = 3 and write





a1,1 a1,1x a1,1y
a2,1 a2,1x+ z a2y + t
a3,1 a3,1x+ u a3,1y + v



 =





a1,1 0 0
a2,1 1 0
a3,1 0 1









1 x y
0 z t
0 u v



 (5.54)

Considering that the matrix





a1,1 0 0
a2,1 1 0
a3,1 0 1



 is in GL(Zp), The left matrix is in GL3(Zp) if and

only if x and y are in Zp and if the square matrix

(

z t
u v

)

is in GL2(Zp). Considering that the

additive measure of Zp is equal to 1, the measure of the possible vectors (x, y, z, t, u, v) is then
equal to the additive measure of GL2(Zp). We then observe that the determinant of the map
(x, y, z, t, u, v) 7→ (a1,1x, a1,1y, a2,1x+ z, a2,1y + t, a3,1x+ u, a3,1y + v) is equal to a21,1 which is a
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unit. The proof for a general n is the same �

Let’s note κ the measure of GLn−1(Zp) : the integral becomes

µκ

∫

g1,1..gn,1∈D

ψ(
1

2
αr2(

n
∑

i=1

g2i,1) +

n
∑

i=1

βigi,1)dg1,1..dgi,1 (5.55)

where the domain of integration D of the integral is the set of all vectors gi,1..gi,n in Zn
p so that

at least one of the gi,1 is a unit. This domain can be expressed as the set of vectors which lie in
Zn
p but not in (pZp)

n, so that the integral can be written as

µκ

∫

g1,1..gn,1∈Zn
p

ψ(
1

2
αr2(

n
∑

i=1

g2i,1) +

n
∑

i=1

βigi,1)dg1,1..dgi,1

− µκ

∫

g1,1..gn,1∈(pZp)n
ψ(

1

2
αr2(

n
∑

i=1

g2i,1) +

n
∑

i=1

βigi,1)dg1,1..dgi,1 (5.56)

It is then natural to introduce the function

θf (r) =

∫

g1,1..gn,1∈Zn
p

ψ(
1

2
αr2(

n
∑

i=1

g2i,1) +

n
∑

i=1

βigi,1)dg1,1..dgi,1 (5.57)

so that the integral can be written as

µκ(θ(r) − 1

pn
θ(pr)) (5.58)

We then get the equality

λ(1GL2(Zp))f(v) = µκ(θ(r) − 1

pn
θ(pr)) (5.59)

Considering that 1GL2(Zp) ⋆ 1GL2(Zp) = 1GL2(Zp) so that ξs(1GL2(Zp)) = 1 for all values of s, the
weak Mellin transform of f is simply the Mellin transorm of λ(1GL2(Zp))f :

ζf (s) =

∫

v∈Qn
p

λ(1GL2(Zp))f(v)‖v‖s
dv

‖v‖n (5.60)

this integral is equal, up to a scalar factor, to

=

∫

r∈Qp

λ(1GLn(Zp))f(re1)|r|s
dr

|r|n (5.61)

this is equal, up to a scalar factor, to

=

∫

r∈Q∗
p

(θf (r) −
1

pn
θf (pr))|r|sd×r (5.62)

= (1− 1

pn−s
)Mell(θf , s) (5.63)

Let’s now compute the Mellin transform of θf (r). We remark that the integral definition of θf
naturally splits as the product of one dimensional integrals θfi which we have already computed
in the proof of theorem 1

In order to complete the proof of the theorem, we then have to prove the following proposition
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Proposition 38 Let’s consider n non degenerate second degree characters f1,.. fn on Qp and
note θf1 ..θfn the associated functions. Assume that the endomorphisms ̺i associated to fi all have
the same modulus. Then the zeroes of the Mellin transform of the product θf1(r)θf2 (r)..θfn(r)
are on the axis ℜ(s) = n

2

Proof : let’s suppose for example that the valuation of ̺ is even. After rescaling of the functions
fi, we can then assume that the valuation of ̺ is zero. Then we have seen in the proof of theorem
1 that all the functions θfi are of the form1Zp

(x) + (1− 1Zp
)
1

|x| (5.64)

or for k ≥ 1 1pkZp
(x) + γf

1

|x|1pkZp
(
1

x
) (5.65)

We remark that on each formula, the left term cancels for negative valuations of x and the
right term cancels for positive or zero valuations of x. If all the terms satisfy k = 0, then the
proof is immediate. Let’s note nk the number of terms θfi associated to some k. The product of
the functions θfi becomes

{(1Zp
(x))n0

∏

i≥1

(1pkZp
(x))ni}+ γ{((1− 1Zp

)
1

|x| )
n0

∏

i≥1

(
1

|x|1pkZp
(
1

x
))ni} (5.66)

where γ is the product of all the γf Let’s note m the maximum of the k′s appearing with non
zero nk. The first term simplifies to 1pmZp

and, assuming m ≥ 1 the last term also simplifies as

γ
1

|x|n0+..+nm
1pmZp

(
1

x
) (5.67)

It is immediate that n0 + ..+ nm = n so that we get1pmZp
+ γ

1

|x|n 1pmZp
(
1

x
) (5.68)

and it is immediate, using the same method as for the case n = 1, that the zeroes of the Mellin
transform of this function are on the axis ℜ(s) = n

2 . The proof for odd valuations of ̺ is similar
�

5.5 The weak Mellin transform of a second degree character defined

on a real vector vector space

It is possible to give an explicit description of the weak Mellin transform of the function ψ(a2‖x‖2+
b.x) on Rn.

Proposition 39 The weak Mellin transform of f(x) = ψ(a2‖x‖2 + b.x) on Rn with a > 0 is

ζa,b(s) =
e−

πi
4
s

√
a
s

π
n
2

Γ(n2 )

Γ( s2 )

π
s
2

1F1(
s

2
,
n

2
,
πi‖b‖2
a

) (5.69)

Remark : this function cancels only for ℜ(s) = n
2 ( cf proposition 19)

Proof : the method is the same as for the case n = 1 : the same argument shows that ζa,b(s)
can be considered also with a ∈ C with ℑ(a) < 0 and b ∈ C, and that with this definition ζa,b
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is a continuous in a and analytic in b. Let’s then first compute ζa,b(s) for b = 0, then write its
Taylor expansion as a function of b. Let’s first suppose b = 0 and a > 0 Let’s write a′ = a− iǫ
with ǫ > 0 and compute

∫

Rn

e−2πi( a′
2
‖x‖2)‖x‖s dx

‖x‖n (5.70)

let’s write x = ru where u is on the unit sphere Sn−1.

=

∫

Sn−1

∫ ∞

0

e−2πia
′
2
r2rsrn−1 dr

rn
du (5.71)

Considering that the area of Sn−1 is 2π
n
2

Γ(n
2
) , we get

π
n
2

Γ(n2 )

1√
a′

s e
−πi

4
sΓ(

s
2 )

π
s
2

(5.72)

We then get the result for a real by taking the limit when ǫ→ 0.
Let’s now suppose that b 6= 0, and consider ζa,b(s) as a function of b. It is clear that it is even,
and that it is also radial.

It can then we written as a function of ‖b‖ = r as

ζa,b(s) =
∑

k≥0

akr
2k (5.73)

Let’s note ∆ the laplacian in Rn. The values of ak can be described thanks to the formula
∆r2k = 4k(n2 + (k − 1))r2k−2 :

∆kr2k = 4kk!(
n

2
)k (5.74)

so that

ak =
∆k

b ζa,b(s)

4kk!(n2 )k
(5.75)

Where the symbol ∆b is the laplacian with respect to the variables b1, ..bn In order to compute
∆k

b ζa,b(s), we remark that the seconde degree character fa,b(x) = e−2πi( a
2
‖x‖2+b.x) satisfies the

partial differential equations
∂

∂a
fa,b = −πi‖x‖2fa,b (5.76)

and
∆bfa,b = (−2πi)2‖x‖2fa,b (5.77)

so that

∆bfa,b = (−4πi)
∂fa,b
∂a

(5.78)

It is not difficult to show, as in proposition 17, (or by taking a ∈ C with ℑ(a) < 0 and taking
the limit when a converges to a real value) that we can exchange the integration and derivation
signs

We then get

∆bζa,b = (−4πi)
∂ζa,b
∂a

(5.79)
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We have for b = 0 the identity

∂kζa,b
∂ak

(b = 0) =
π

n
2

Γ(n2 )
(−1)k(

s

2
)k

1

a
s
2
+k
e−

πi
4
sΓ(

s
2 )

π
s
2

(5.80)

so that

ζa,b(s) =
e−

πi
4
s

√
a
s

π
n
2

Γ(n2 )

Γ( s2 )

π
s
2

∑

k≥0

1

4kk!(n2 )k
(−1)k(−4πi)k(

s

2
)k

1

ak
r2k (5.81)

We recognize again a confluent hypergeometric function

=
e−

πi
4
s

√
a
s

π
n
2

Γ(n2 )

Γ( s2 )

π
s
2

1F1(
s

2
,
n

2
,
πir2

a
) � (5.82)

5.6 weak Mellin transforms associated to non trivial representations

of K

The Mellin transform can be used to decompose a radial function as an integral of functions of
the form ‖x‖s. It is clear that if one wants to get a complete decomposition of a function defined
on Rn − {0}, one has also to consider functions which are non constant on the unit sphere, and
the most natural way to do this is to use the theory of spherical harmonics, i.e. to consider scalar
integrals of the form

∫

Ln

ϕ(x)Y (
x

‖x‖)‖x‖
s dx

‖x‖n (5.83)

where Y is some spherical harmonics on the sphere. Using these scalar integral does not allow to
define a weak Mellin transform, but we know that spherical harmonics are associated to a special
class of representation of O(n) called the spherical representations, and we now show how these
representations can be used to define the weak Mellin transform as a vector valued integral.

Let’s consider the vector space Ln, where L is any locally compact field, note e1 the vector
(1, 0, 0..) and Ke1 the stabilizer of e1 in K, i.e. the subgroup of elements k of K so that ke1 = e1.
We say that an irreductible representation (π, Vπ) of K is spherical if it has, up to a scalar factor,
a unique vector fixed under the action of Ke1 .

The following proposition can be considered as a generalization of proposition 30 :

Proposition 40 Let’s consider a spherical representation (π, Vπ) of K and some s ∈ C. Then
there exists, up to a scalar factor one and only one function νs,π defined on Ln−{0} with values
in Vπ and satisfying the two following condistions :

• νs,π(µx) = |µ|sνs,π(x) for all µ ∈ R∗
+ if L = R or L = C and µ = ̟ if L is local,

• νs,π(kx) = πs,π(k)νs,π(x) for all k in K

Proof : Let’s first prove unicity. Note v0 a vector of V invariant under the action of Ke1 by
the representation π. Considering that the action of K on the unit sphere ‖x‖ = 1 is transitive,
it is immediate that the restriction of the function νπ,s on the sphere ‖x‖ = 1 is uniquely defined
by f(w) where w is any vector in the sphere, for example w = e1 = (1, 0, 0..), by the formula

f(ke1) = π(k)f(e1) (5.84)

e1 is invariant under the action of Ke1 . As a consequence, f(e1) should then be a vector
in Vπ invariant under the action of Ke1 by the representation π. We have supposed, however,
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that there exists, up to a scalar factor, exactly one vector satisfying this property. We then have
νπ,s(e1) = µv0 for some scalar µ and the restriction of νπ,s to the sphere can be described by the
formula

νπ,s(ke1) = π(k)v0 (5.85)

inversely, this equation gives a well defined function νπ,s on the sphere which satisfies the
conditions of the proposition. The extension of νπ,s to Ln − 0 using dilations is immediate �

If φ is any smooth function with compact support from GLn(L) to EndC(Vπ) and f any function
defined on Ln with values in Vπ or C we can again define the function λ(φ)f by the formula

λ(φ)f(x) =

∫

GL(Rn)

φ(g)f(g−1x)dg (5.86)

If f has values in C, λ(φ)f has values in EndC(V ). If f has values in Vπ, λ(φ)f has values in Vπ.
For example, if f is a non degenerate second degree character defined on Ln with values in

C, then the function λ(φ)f has values in EndC(V ) and is a Schwartz function ( because each of
the matrix coefficient is a Schwartz function).

We also have to replace the Hecke algebraH(GLn) by the π-spherical Hecke algebraH(GLn, π)
associated to the representation π , i.e. the set of smooth functions from GLn(L) to End(Vπ)
having compact support and satisfying the relation φ(k1gk2) = π(k1)φ(g)π(k2) . Using these
definitions, the generalization of proposition 31 is immediate :

Proposition 41 Let’s consider a function φ ∈ H(GLn, π). Then For all s ∈ C, there exists a
scalar ξs,π(φ) so that we have

λ(φ)νs,π = ξs,π(φ)νs,π (5.87)

Proof : it is immediate that λ(φ)νs,π satisfies the conditions of the previous proposition :

λ(φ)νπ,s(µkx) =

∫

GL(Rn)

φ(g)νπ,s(g
−1µkx)dg (5.88)

= |µ|s
∫

GL(Rn)

φ(g)νπ,s(g
−1kx)dg (5.89)

writing g−1k = g′−1

= |µ|s
∫

GL(Rn)

φ(kg′)νπ,s((g
′)−1x)dg (5.90)

= |µ|sπ(k)
∫

GL(Rn)

φ(g′)νπ,s((g
′)−1x)dg (5.91)

this function is then equal to νπ,s on Ln − {0} up to a scalar factor �

Using this proposition, the method used in the previous sections to define the weak Mellin
transform can be easily extended, replacing the function ‖x‖s with the functions νπ,s : We simply
write

M(f, s, π) =

∫

Rn

f(x)νs,π(x)
dx

‖x‖n ∈ Vπ (5.92)

Note that the formula defining M(f, s, π) stil makes sense ( the integral is absolutely conver-
gent for ℜ(s) > 0) if f has values in GL(V ), considering that this linear map acts on the vector
νπ,s(x) so that if f second degree character and φ any smooth function with compact support in
GLn(L) with values in GL(V ), M(λ(φ)f, π, s) is a well defined vector in Vπ
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Using this definition of M(f, s, π), the definition of the weak Mellin transform of a second
degree character as an element of Vπ can be done using exactly the same method as for the case
n = 1.

Proposition 42 We have for all Schwartz functions defined on Rn with values in C the formula

M(λ(φ)f, π, s) = ξs−n,π(φ
∗)M(f, π, s) (5.93)

Remark : note that f has values in C, but λ(φ)f has values in GL(V ).
Proof : We have

M(λ(φ)f, π, s) =

∫

Rn

(λ(φ)f)(x)νs,π(x)
dx

‖x‖n (5.94)

=

∫

x∈Rn

∫

g∈GLn(R)

φ(g)f(g−1x)νs−n,π(x)d
×gdx (5.95)

writing y = g−1x

=

∫

y∈Rn

∫

g∈GLn(R)

φ(g)f(y)νs−n,π(gy)|det g|d×gdy (5.96)

replacing g with g−1

=

∫

y∈Rn

∫

g∈GLn(R)

f(y)φ(g−1)νs−n,π(g
−1y)

1

|det g|d
×gdy (5.97)

=

∫

y∈Rn

f(y)λ(φ∗)νs−n,π(y)dy (5.98)

= ξs−n,π(φ
∗)

∫

y∈Rn

f(y)νs−n,π(y)dy (5.99)

using this formula, we can define in a reasonable way the weak Mellin transform of a second
degree character.

Definition 4 Let’s consider a non degenerate second degree character f defined on Ln. Choose
some function φ ∈ H(GLn, π) so that ξs−n,π(φ

∗) 6= 0 . We define the weak Mellin transform
M(f, s, π) of f by the formula

M(λ(φ)f, s, π) = ξs−n,π(φ
∗)M(f, s, π) (5.100)

this quantity does not depend on the choice of φ .

Proof : the proof is the same as the unramified case ( replace 1K by 1K(k)π(k) for the local
case)

This weak Mellin transform satisfies the same kind of scaling properties as the usual Mellin
transform :

Proposition 43 Let’s suppose that the weak Mellin transform M(f, s, π) of a function f on Ln

with values in C is well defined for some s and π, and consider some k ∈ K and µ ∈ R∗
+ if L is

R or C ( or µ = ̟k for some k in Z if L is local) Then we have the formula

M(f(kµx), π, s) = |µ|−sπ(k)−1M(f, π, s) (5.101)
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Proof :
The definition of the weak Mellin transform of f is that for all φ in H(GLn, π), we have

M(λ(φ)f, s, π) = ξs−n,π(φ
∗)M(f, s, π) (5.102)

Let’s note fµ the function f(µx) and fk the function f(kx). It is then enough to prove that

M(λ(φ)fµ, s, π) = µ−sM(λ(φ)f, s, π) (5.103)

M(λ(φ)fk, s, π) = π(k)−1M(λ(φ)f, s, π) (5.104)

The first identity is immediate. The second is the consequence of the following computation :

M(λ(φ)fk, s, π) =

∫

Rn

(

∫

G

φ(g)f(kg−1x)d×g)νs,π(x)
dx

‖x‖n (5.105)

writing h−1 = kg−1, we get

=

∫

Rn

(

∫

G

φ(hk)f(h−1x)d×g)νs,π(x)
dx

‖x‖n (5.106)

using the right equivariance of φ

=

∫

Rn

(

∫

G

φ(h)f(h−1x)d×g)π(k)νs,π(x)
dx

‖x‖n (5.107)

using the functional property of νs,π

=

∫

Rn

(

∫

G

φ(h)f(h−1x)d×g)νs,π(kx)
dx

‖x‖n (5.108)

=

∫

Rn

λ(φ)f(x)νs,π(kx)
dx

‖x‖n (5.109)

writing y = kx

=

∫

Rn

λ(φ)f(k−1y)νs,π(y)
dy

‖y‖n (5.110)

=

∫

Rn

(

∫

G

φ(h)f(h−1k−1y)d×h)νs,π(y)
dy

‖y‖n (5.111)

writing h−1k−1 = g−1

=

∫

Rn

(

∫

G

φ(k−1g)f(g−1y)d×g)νs,π(y)
dy

‖y‖n (5.112)

using the left equivariance of φ

= π(k)−1M(λ(φ)f, s, π) � (5.113)

�

We now specialize to the case L = R

Proposition 44 Let’s assume that L = R and that (π, Vπ) is a spherical representation of KL.
Then the weak Fourier transform of νπ,s is equal to νπ,−s−n up to a scalar factor
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Proof : We know ( Cf [2], p130) that if ν is a C∞ function on Rn − {0}, that is homogeneous,
then its Fourier transform F(ν) is also a C∞ function on R∞ − {0}. It is immediate, using the
commutation relation of the Fourier transform, that this fourier transform satisfies F(ν)(µx) =
µ−n−s F(ν) and F(ν)(kg) = π((k−1)t)ν(g) = π(k)ν(g)

Using this proposition, it is not difficult to see that the weak Mellin transform of a second
degree character of the form ψ(a2x.x + b.x) satisfies a functional equation. Let’s now consider
the location of the zeroes of this function. We first remark that on Rn the function ζf (s, π)
considered as a function of s, is vector valued, but behaves like a scalar. Let’s for example
consider the second degree chatacter fa,e1 = ψ(a2x.x+ e1.x). We have

Proposition 45 For any value of s, ζfa,e1
(s) is equal, up to a scalar factor, to the unique vector

v0 in Vπ fixed under the action of Ke1

Proof : the function fa,e1(x) remains unchanged if we replace x with kx with k ∈ Ke1 . As
a consequence of proposition 43, the function ζfa,e1

(s, π) is a vector of Vπ invariant under the
action of Ke1 . It is then equal to v0 up to a scalar factor �

It is also possible to prove that the zeroes of ζf lie on the axis ℜ(s) = n
2 if the morphism

associated to f is a scalar :

Theorem 7 Let’s consider on Rn a second degree character of the form fa,b(x) = ψ(12ax.x+b.x)
with a ∈ R∗ and b ∈ Rn, (π, Vπ) an irreductible spherical representation of K = O(n), and note
ζa,b(s, π) the weak Mellin transform of fa,b. Then

• if b = 0 and π is not trivial, then ζa,b(s, π) = 0 for all values of s.

• if b 6= 0, all the zeroes of ζa,b lie on the axis ℜ(s) = n
2

Proof : The case b = 0 is clear : the function ψ(12ax.x) is invariant under the action of
K = O(n). As a consequence of proposition 43, ζa,b(s) is a vector in Vπ invariant under the
action of π(k) for all k in K. Considering that the representation π is assumed to be irreductible,
the only possible value of ζa,b(s) is zero.

Let’s now suppose that b 6= 0. We remark that if ζa,b0(s) = 0 for some b0, we have also
ζa,kb0 (s) = 0 for k ∈ O(n) as a consequence of proposition 43, so that the function cancels on the
whole sphere ‖b‖ = ‖b0‖. The idea is then to use Sturm Liouville theory in Rn with boundary
conditions on the sphere ‖b‖ = ‖b0‖. Let’s first find the partial differential equation satisfied by
ζa,b(s) considered as a function of b.

We observe that the function fa,b = ψ(12ax.x+ b.x) satisfies the formula

∆bfa,b = (−4πi)
∂

∂a
fa,b (5.114)

where the symbol ∆b refers to the laplacian of fa,b considered as a function of the vector variable
b.

As a consequence, the function ζa,b(s, π) satisfies the following differential equations :

∆bζa,b(s, π) = (−4πi)
∂ζa,b(s, π)

∂a
(5.115)

We also have using the proposition 43 for any λ > 0

ζλ2u,λv(s, π) = λ−sζu,v(s, π) (5.116)

56



which we can also write as
∂

∂λ
(λsζλ2u,λv(s)) = 0 (5.117)

Let’s develop this equation, using the notations ∂
∂a for the derivation of ζa,b(s) with respect to

a, and ∇b for the gradient of ζa,b(s) with respect to the vector variable b :

sλs−1ζλ2u,λv(s) + λs(2λu)
∂

∂a
ζλ2u,λv(s) + λs∇bζλ2u,λv(s).v = 0 (5.118)

writing λ2u = a, λv = b,

sλs−1ζa,b(s) + λs−1(2a)
∂

∂a
ζa,b(s) + λs−1∇bζa,b(s).b = 0 (5.119)

using the partial differential equation 5.115, and removing the term λs−1, we get

sζa,b(s)−
a

2πi
∆bζa,b(s) +∇bζa,b(s).b = 0 (5.120)

In order to apply Sturm Liouville theory, we have to cancel the first order term. We then
introduce the vector valued function φa,b(s) defined by the formula

ζa,b(s) = φa,b(s)e
πib.b
2a (5.121)

Elementary calculations show that the equation 5.120 becomes

∆bφa,b(s) + (
πi

a
(n− 2s) + ‖b‖2((π

a
)2)φa,b(s) = 0 (5.122)

Let’s multiply this equation with the vector φ̄a,b(s) ( the vector whose coordinates are the
complex conjugates of the coordinates of φa,b(s)) and integrate on the ball B defined by ‖b‖ ≤
‖b0‖.

0 =

∫

b∈B

(∆bφa,b(s) + (
πi

a
(n− 2s) + ‖b‖2((π

a
)2)φa,b(s)).φ̄a,b(s)db (5.123)

using the boundary conditions, we get

= −
∫

b∈B

‖∇bφa,b(s)‖2db +
∫

b∈B

(
πi

a
(n− 2s) + ‖b‖2((π

a
)2))‖φa,b(s))‖2db (5.124)

so that we have the equality

πi

a
(n− 2s)

∫

b∈B

‖φa,b(s))‖2db =
∫

b∈B

‖∇bφa,b(s)‖2db−
∫

b∈B

‖b‖2((π
a
)2))‖φa,b(s))‖2db (5.125)

and this last expression is real. The function φa,b(s)) cannot cancel on the whole ball B :
Considering that it is a real analytic function as a function of the coordinates of b, it would
imply that φa,b(s, π) = 0 for all b. We can, however, again consider the function ζa,b(s, π) as the
fourier transform of the distribution ψ(a2x.x)Dπ,s, where the distribution Ds,π is defined by the
formula

< Ds,π, ϕ >=

∫

Ln

ϕ(x)νs,π(x)
dx

‖x‖n (5.126)

( the proof is similar to the one given in proposition 14 ) which shows that it cannot be zero.
n− 2s has then to be imaginary, i.e. we have ℜ(s) = n

2 �
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