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Abstract 

After more than 40 years of development, finite element metal forming simulation has reached a high level of 
maturity. After a short mechanical and thermal introduction, the main scientific and technical developments are 
briefly described. We consider numerical issues, such as adaptive remeshing or parallel computing; coupling 
phenomena for a more realistic simulation, such as thermal and metallurgical coupling, with a special emphasis on 
modeling of microstructure evolution; the use of optimization for forming processes or for parameters 
identification. Finally the main potential future research fields for the next 10 years are outlined: process stability 
and stochastic approaches, more effective massively parallel computing and extension of the application to 
generate the whole “virtual factory”. 

Keywords: Plasticity, finite element modeling, metal forming simulation. 

1. Introduction

Finite element simulation of metal forming processes started at the end of the sixties, mainly in academic
laboratories for 2D work-pieces: hydrostatic extrusion by Iwata et al, hot rolling by Cornfield and Johnson, 
analysis of relative slip on the tools by Lee and Kobayashi, and large deformations of viscoplastic materials by 
Zienkiewicz and Godbole. In the 1980’s the use of simulation codes started for industrial forming applications, 
while 3D forging was developed in laboratories by Surdon and Chenot. Since these early developments, 
commercial finite element computer codes are developed and maintained in several software companies 
(Transvalor, SFTC, Simufact Engineering GmbH, Quantorform, etc.) which favor their diffusion in large and 
medium enterprises. Simulation is widely utilized by the engineers as more complex processes can be treated with 
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a realistic approach. As an example, we can list the availability of the main developments in Forge®, a 3-D 
commercial code, as follows: 

- 1995: automatic remeshing, 
- 1996: element quality control, 
- 1997: parallel computing, 
- 2002: heat treatment, quenching, 
- 2003: deformable tools, 
- 2005: coupling with metallurgy, 
- 2007: thermal regime in tools, multi body forming, 
- 2009: “automatic” process optimization, 
- 2014: three-dimensional modeling of induction heating. 

The main purpose of the paper is to review and analyze the present state of the numerical and physical approaches 
for treating a wide range of metal forming problems, and discuss briefly new challenges that are emerging. 

2. Mechanical and thermal formulations 

For a more complete introduction to numerical simulation of metal forming see Wagoner and Chenot. 

 2.1. Updated lagrangian, eulerian or ALE 

The mechanical equations are generally expressed with an integral formulation in term of density 
ρ, acceleration γ, virtual velocity v*, stress tensor σ, strain rate *εɺ  and stress boundary condition τ, on the current 
configuration Ω: 

c

v*dV dV v dS 0ργ σ ε τ
Ω Ω ∂Ω

+ − =∫ ∫ ∫: * *ɺ  (1) 

For almost steady-state processes, such as rolling, extrusion or wire drawing, an Euler description can be 
utilized where the domain Ω is considered as fixed. In this case, the major problem is to determine the free surface 
and to take into account memory effects, e. g. work hardening, for computing the stress tensor field. 

In most non-stationary metal forming applications the inertia contribution can be neglected in equation (1) and an 
updated lagrangian approach is preferred, which corresponds to a first order integration scheme for the domain, the 
stress tensor and memory variables. On the domain tΩ  at time t equation (1) is approximated by: 

t t
c

t t t tdV v dS 0σ ε τ+∆ +∆

Ω ∂Ω

− =∫ ∫: * *ɺ  (2) 

Material points, stress tensor and memory variables (here the equivalent strain ε ) are updated according to: 

t t t t

t t t t

t t t t
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+∆
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+∆

= + ∆

= + ∆

= + ∆

ɺ

ɺ

  (3) 

The ALE (Arbitrary Lagrange Euler) formulation can be utilized when the boundary of the domain varies slowly, 
for example in ring rolling. A numerical velocity field ALEv  is defined in the domain, which is different from the 
material velocity. The material derivative for any variable is replaced by the ALE derivative, for example for ε  we 
have: 

( ) ( )ALE
ALE

d v v grad
dt

ε ε ε= + −ɺ   (4) 
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The conservation of the boundary surface is imposed by following the condition on the normal vector n: 

( ). 0ALEv v n− =   (5) 

2.2. Constitutive modeling  

The first approaches of FE modeling of forming processes were based on a viscoplastic or rigid plastic 
behavior. In order to be able to model also the elastic component of the deformation, and more specifically to 
predict the residual stresses, an elastic viscoplastic or elastoplastic approach is selected where the strain rate is 
decomposed into an elastic part eεɺ  and an irreversible contribution pεɺ : 

e pε ε ε= +ɺ ɺ ɺ   (6) 

The elastic law is written with the Jauman derivative for material objectivity: 

d e eJ tr 2
dt

( )
σ

= λ ε + µεɺ ɺ

 (7) 

Where λ and µ are the usual the Lamé coefficients. The viscoplastic contribution is often expressed by an isotropic 
Norton power law of the form: 

1 1
ε 1 σ σ

p mK R K − ′= −/ ( ) /ɺ  (8) 

We have introduced σ’ the deviatoric stress tensor, σ  the usual equivalent stress, K the material consistency and m 
the strain rate sensitivity. 
More complicated constitutive equations are utilized to take into account anisotropy according to Hill or Barlat 
theories, or porous materials. 
 

2.3. Contact, friction and wear 

Contact occurs between the work-piece and the tools, between different parts of the tools or in the case of multi 
materials forming. For two bodies with velocities  and a bv v  the non-penetration condition is expressed as: 

( - ). . 0a bv v n v n∆= ≤  (9) 

Relative sliding between the two bodies generates a tangential friction stress fτ  at the interface cΩ∂  , that can be 
given for example by a Coulomb-Norton law: 

1 fp
f f n v vτ µ σ= ∆ ∆ -

- ( ) /  (10) 

Where fµ  is a function of the normal stress component nσ  and
 fp is a friction coefficient. 

Wear is a complicated physical phenomenon, the abrasion contribution depends on the normal stress, the relative 
velocity and the hardness of the tool VH . It is often represented by a generalization of the Archard law: 

W

n
W W m

V

VK dt
H

σδ ⋅ ∆= ⋅ ⋅∫  (11) 

Where Wδ  is the amount of wear, WK  and Wm are physical parameters associated with the material. 

2.4. Damage 
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Fracture prediction during materials forming processes has been of utmost interest in the scientific and engineering 
community in the past century. Indeed, understanding and modeling ductile damage mechanisms remains a major 
issue to get defect-free products. Many phenomenological and micromechanical models were developed during the 
last twenty years to predict ductile fracture. These models are usually validated for given loading path (most of the 
time under monotonic loading) and specific materials, and their ability to be extended to other configurations – in 
terms of loading and materials – is often questionable. Enhancing these models is necessary for their application to 
real industrial processes. This requires accounting for non-proportional loadings (Bouchard et al., Gachet et al.) 
and for low stress triaxiality ratios. Recent studies also showed the influence of the third invariant of the deviatoric 
stress regarding ductile fracture critical strain. The Lode parameter was introduced by many authors in classical 
ductile damage models to get a better prediction of the influence of the stress state on ductile fracture (Nahshon 
and Hutchinson, Cao et al.). New mathematical formulations and numerical solution strategies dedicated to 
efficient modeling of continuum ductile damage and its transition to discontinuous fracture are also important. The 
use of non-local formulation coupled with anisotropic mesh adaptation is an efficient way to predict failure 
accurately and to model the transition between continuous damage approaches to discontinuous fracture (El 
Khaoulani and Bouchard). In the future, modeling of ductile failure at the micro scale appears to be essential to get 
a better understanding of microstructural heterogeneities for complex loading paths. Such microstructural 
simulations require being able to mesh complex microstructures and to model nucleation, growth and coalescence 
mechanisms for large plastic strain and complex loading paths. A new approach based on level set functions and 
anisotropic mesh adaptation is presented in section 7.  
 

2.5. Heat equation      

The classical integral form of the heat equation is written: 

 0
t t t t

V ncTwdV kgrad T grad w dV q wdV wdS
Ω Ω Ω Ω

ρ φ+ − + =∫ ∫ ∫ ∫ɺ ɺ( ) ( )  (12) 

Where w is a scalar test function, k is the thermal conductivity, Vqɺ  is the heat dissipated by plastic or viscoplastic 
deformation, nφ  is the heat flow on the boundary Ω∂ , which comes from conduction, friction or radiation. 

3. Space and time discretization 
 

3.1 Tetrahedral elements 

In metal forming simulation by the Finite Element method (FEM), the mesh is often progressively distorted and 
the resulting accuracy decreased so that the mesh must be regenerated periodically. Therefore the work-piece must 
be discretized by elements which are convenient for initial meshing and automatic remeshing. Tetrahedral 
elements are recognized as the most suitable for meshing and adaptive remeshing but, in order to avoid numerical 
locking, a mixed formulation must be used in term of displacement increment u∆  (or velocity v) and pressure p. 
Neglecting inertia forces for an elastic plastic material, for any virtual displacement *u∆  and pressure p*, we get: 

( ) * ( *) * 0
c

fdV pdiv u dV u dS
Ω Ω ∂Ω

σ ∆σ ∆ε ∆ τ ∆′ ′+ − + =∫ ∫ ∫:  (13) 

3 0T
p( div( u) T ) p* dV

Ω

∆∆ α ∆
κ

− − + =∫  (14) 

Where κ is the compressibility coefficient and Tα   is the linear dilatation coefficient. Pressure and temperature 
fields are discretized using tetrahedral elements with linear shape functions Nn, and a bubble function Nb is added 
to the displacement field (or the velocity field), in order to stabilize the solution for incompressible flow. 
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Introducing the nodal increment of displacement ∆U, the pressure increment ∆P and the temperature increment ∆T, 
we obtain a system of non-linear equations in the form: 

0UR ( U , P, T )∆ ∆ ∆ =   (15) 
0PR ( U , P, T )∆ ∆ ∆ =  (16) 
0TR ( U , P, T )∆ ∆ ∆ =  (17) 

3.2 Time discretization 

The classical formulation is based on a first order time integration scheme with the displacement and pressure 
increment. An implicit two order scheme based on a velocity approach was proposed for a viscoplastic behavior by 
Bohatier and Chenot and extended to elastic plastic materials by Chenot.  
Another approach was developed by Mole et al in which the quasi static integral equation is differentiated with 
respect to time. A linear equation is obtained, which is easily solved in term of the acceleration nodal vector, while 
velocity and displacement fields are obtained by usual time integration method. 
A simpler approach is to introduce an explicit Runge and Kutta integration scheme as it is presented in Traore et al 
for improvement of the accuracy in ring rolling, where the number of time increments must be very large. 
 

3.3 Space-time finite element 

The space-time finite element method has received a noticeable attention since 1969, in various fields including 
elastodynamics, where the boundary of the domain is subjected to small deformations.  But there are few 
contributions in the field of metal forming which exhibits large or very large deformations. The potential 
advantage of space-time finite elements is the possibility of variable time increments on the space location (Fig. 1). 

 

Fig. 1: Space time discretization for a simple 1-D problem. 

Moreover error estimation can be extended to space-time in order to refine the mesh adaptively, not only in 
locations where elements are distorted with a uniform time increment, but also to generate more elements in the 
time dimension with fast evolution. This approach would involve a number of numerical developments, especially 
for meshing and remeshing 4-dimensional domain in space and time. 

3.4 Remeshing and adaptive remeshing 

For a more reliable control of accuracy, an estimation of the finite element discretization error is performed and the 
elements must be refined locally in the zones where the strain is higher. This is achieved by prescribing a local size 
of the elements and imposing that the mesh is rebuilt accordingly (Fourment and Chenot).  
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3.5 Anisotropic remeshing 

Instead of utilizing regular tetrahedra and generate a very large number of elements we prefer to build anisotropic 
meshes having narrow elements in the direction of high strain gradient and elongated in the orthogonal direction 
(Gruau and Coupez). For that purpose a local metric matrix is defined in the local principal axes according to: 

2
1

2
2

2
3

1/ 0 0

0 1/ 0

0 0 1/

h

M h

h

 
 

=  
 
  

  (18) 

Where 1 2 3, ,h h h  are the thicknesses in the directions of principle axis of the tetrahedra to be generated locally. 
In practice the metric tensor is composed of several contributions.  
First the element should be refined in the direction of maximum gradient of the function, for example according to 
the strains rate tensor, we obtain the first contribution eM  to the metric.  
Second, when thin parts are considered a “skin adaptation” is introduced in order to define the size sh of the mesh 
in the thickness; the corresponding metric is: 

2

1 22

1/ 0 0
1 0 0 0  axis ,  ,

0 0 0

s
s

s

h
M n n n t t

h

 
 

= ⊗ →  
 
 

  (19) 

Where n is the normal to the surface and 1 2,t t  are any orthogonal tangential unit vectors. 
Third to take into account local curvature of the boundary of the part, defined by the radii 1R  and 2R , a new 
contribution to the metric is given by: 

 2
1 1 22

2
2

0 0 0
1 0 1/ 0  axis ,  ,

0 0 1/

cM R n t t

R
α

 
 

=  
 
 

  (20) 

The coefficient α is chosen in order to impose a minimum condition of angle variation on an element. 
Finally the metric tensor is the sum of the three previous contributions: 

e s cM M M M= + +  (21) 

 

 

 

Fig. 2: anisotropic mesh for rolling 
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In order to generate an anisotropic mesh, a similar methods is used as for the isotropic previous isotropic 
remeshing procedure, but the distances are evaluated with the local metric tensor. This procedure can be applied to 
a large variety of processes. In Fig. 2 a simulation of rolling is made with an anisotropic mesh of 8 786 nodes 
which gives the same accuracy as the computation with an isotropic computation involving  61 474 nodes. 
 
4. Resolution procedures 

 
4.1 Linearization of the equations 

The set of non-linear mechanical equations can be linearized using the classical Newton-Raphson method. We put 
z ( u , p )= ∆ ∆ and 0R( z ) =  for the two equations (15) and (16). Starting from a guess solution 0z  an iterative 

scheme is used to find the solution. At step number n, an increment nzδ  to the current solution 1nz −  is soughed so 
that:  1 0n n nR( z ) R( z z )δ−= + = . After differentiation it is rewritten with the approximate form: 

1
1 0

n
n nR( z )R( z ) z

z
δ

−
− ∂+ =

∂
  (22) 

We observe that we have to solve a series of linear systems for each time increment. This process can be shortened 
by optimization in the direction of nzδ , which means that we minimize with respect to β the residual:  

21n nR( z z )βδ− +  (23) 

When complex constitutive laws are involved, a modified Newton-Raphson method can be utilized. In this case the 
evaluation of the derivatives of the residual can be greatly simplified by numerical differentiation, but at the 
expense of extra computations. 

4.2 Localized contact with the tools 

Tools are considered as rigid, and their surfaces are discretized by triangular facets. The signed distance �(�) 
between any point M of the domain and the tool is positive if the point is outside the tool, equal to zero if it is on 
the tool surface and negative if it has penetrated into the tool. A nodal contact approach (node-to-facet) is followed. 
For any node	�, the contact condition is prescribed at the end of the time increment: 

 

( )∆0 δ
t t
nM +≤  (24) 

 
This equation is linearized with the assumption that the tool can locally be approximated by its tangential plane, 
which will be later referred to as an explicit scheme: 

( ) ( ) ( )2( ) ( ) .t t t t t t t t t t
n n n n n tool n n

dM M M t O t v V n t
dt

∆ ∆ δδ δ δ ∆ ∆ δ ∆+ += ≈ + + ≈ + −  (25) 

Where t
toolv  is the tool velocity and t

nn   is the surface normal vector at the point of the tool surface which is the 
closest to node n. Contact equation (25) is enforced by a penalty formulation, which comes down at each time step 
t to minimizing a contact potential: 
 

( ) ( )
2

1 .
2

c

n pen
contact n tool n n

n

V V v n S
tΩ

δ δ
ϕ ρ

∆

+−

∈∂

  +
= − −      
∑

 (26) 
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where ρ is a penalty coefficient, nS is a surface portion associated to node n and penδ −  is a small numerical 
coefficient. This explicit formulation is accurate enough for many forming processes, but it sometimes results into 
numerical oscillations with important stresses or unjustified loss of contact with coarse meshes and an implicit 
algorithm has then to be preferred (Mahajan et al.) (Fourment et al.). The local plane approximation of the contact 
surface is updated at each new Newton-Raphson iteration, rather than at the end of time increment. It allows us to 
take into account possible evolutions of this surface during the time step ∆t. The contact condition is then written 
as  

∆ ∆
1 1 t t t t t t t t

i i i iv .n tδ δ+ + +∆ +∆
− −≈ − ∆ ∆   (27) 

 

 
Where i is the ith Newton-Raphson iteration, t t

iv +∆∆  is the Newton-Raphson velocity correction at iteration i, 1
t t
in +∆
−  

the normal of the tool surface at the projection of current node 1
t t
ix +∆
− , that is updated as follows: 

1
t t t t t t t t
i i i ix x v t  x  v+∆ +∆ +∆

−= + ∆ = +   (28) 

 
Contact algorithm can be improved by an approach based on higher order quadratic interpolation of the tools 
surface  (Nagata)  combined with a normal voting strategy (Page et al.). The resulting 3D contact algorithm 
provides smoother contact constraints along the discretized obstacle and increases simulation accuracy, especially 
in the case of metal forming processes with reduced contact area. With an explicit contact scheme, the additional 
computational cost is only few percent of the total computational time. With an implicit contact scheme, the 
continuity of the normal vectors also improves the algorithm convergence and consequently decreases its 
computational time.  
 

4.3 Parallel computing 

The power of computing is increasing rapidly, more than doubling every two years. It is anticipated, that in 2020, 
the supercomputers will have a performance of around 1 EFlops while desktop systems will obtain a performance 
of up to 100 TFlops. This context imposes also significant changes on our codes and the development of fully 
parallel platforms to take advantage of such increases in computer processing power (Coupez et al., Mesri et al.). 
We propose in our work a massively parallel methodology combined with mesh adaptation. Although the question 
of mesh adaptation has been addressed in the previous sections 3.4 and 3.5, we intend to retackle it, taking into 
account the current evolution of the parallel architecture, and the increase of computer powers, especially in terms 
of number of cores per processor.  
Large scale parallel simulations involve meshes with millions to billions elements. With the increase of the latter, 
an interesting enhancement would be to deal with the mesh generation and adaptation in parallel. The parallelism 
of the mesh generator is performed here by partitioning/repartitioning the initial mesh into sub-meshes that are 
subsequently refined/unrefined according to the computed metric by using sequential procedure. The interfaces 
between subdomains remain unchanged during the local remeshing step, but are then moved along the domain to 
enable the remeshing in the following phases (Fig. 3). In other words, a repartitioning phase is performed to get 
unmeshed parts, those that were not yet processed, aggregated into the existing sub-domains. This 
partitioning/repartitioning of a mesh is performed in parallel using a generic graph partitioning that has been 
customized for FEM methods. 
The proposed strategy of parallelization leads to several iterations (depending of the space dimension) between the 
mesher and the repartitioner, but the work to be done at each iteration decreases quickly. Indeed, an optimization 
method, based on a permute-copy-past algorithm, reduces the complexity from N (the data size) to m (the moving 
size) with m << N. It simply avoids having heavy copies of the entire data, instead it will apply permutations to the 
areas that need to be updated, perform the needed processing on these areas and then paste the processes area back 
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to where they belong. This optimization was essential to obtain a costless strategy with a high parallel pay-off of 
the mesher. 
 

 
 

Fig. 3: Illustration of the parallelism strategy using a 2d test case on 7 processors (from left to right) 
 
Finally, the parallel efficiency was tested using a soft scalability test from 8 to 8192 cores.  Table 1 shows the 
results for the resolution of the incompressible Stokes equations using a mixed P1+/P1 finite element formulation. 
The loading of each core is around 420000 mesh nodes (representing 1260000 unknowns per core). The results in 
Table 1 show an almost constant time for solving the linear system that confirms the linear complexity of the 
algorithm but also a quasi-optimal use of all the cores as well as the memory. For thousands of cores, we have 
noticed an increase in the resolution time, but this is due to the strict imposed convergence rate on the coarse level 
grid (10-7). The global system, contains more than 10 billion nodes, is solved using 8192 cores with 8 levels 
multigrid in 148 seconds consuming a total of 17,5Po of memory.  
 

 
 

Table 1: Soft scalability test case using 8 to 8192 cores on GENCI (Grand Equipement National de Calcul Intensif) 
 

4.4 Multi mesh 

Incremental forging simulations are still challenging due to the required number of time steps to properly 
describe the process. As the deformation is often confined in a localized area, the temptation is to use specific 
mesh boxes to refine the mesh only in such area and use coarse meshes elsewhere to speed up the simulation. But, 
with such a technique, when the deformation area moves and the mesh is coarsened, most of the benefit of using a 
fine mesh is lost as the stress/strain distribution has to be remapped from a fine grid to a coarse one. Even without 
drastic coarsening it generates unacceptable diffusion due to cumulated remapping errors.  

The first application of the bi-mesh technique was introduced by Kim et al. for ring rolling, and more recently 
for cogging by Hirt et al., or with a parallel implementation by Ramadan et al. The main idea is to separate the 
mesh devoted to the mechanical computation, called mechanical mesh (MM) in the following, from the mesh 
devoted to the thermal computation and to the storage of the results, called thermal mesh (TM). The user inputs a 
homogeneous fine thermal mesh and the software automatically derives an adapted mechanical mesh by systematic 
coarsening where it is allowed. The mechanical solution is computed on the adapted mesh and extrapolated on the 
fine mesh. As no deformation takes place in the de-refined area, extrapolation of the solution does not create any 
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significant error. From this solution, regular updating marching scheme algorithm may be applied to update mesh 
geometry and associated results (strain, stress, etc.) as well. Since the thermal problem is non-local, thermal 
equations are solved on the fine mesh.  

We summarize in Figure 4 (a), the main steps of the bi-mesh algorithm. As we can see the standard single mesh 
algorithm (marked with white background) has been only slightly enriched by few specific steps (marked with a 
grey background).  
 

 
(a)                                                                                            (b) 

Fig. 4:  (a) General description of the bi-mesh algorithm, only the steps in grey background are specific to the bi-mesh method. (b) Examples of 
derived mechanical meshes from an homogeneous thermal mesh.  

 
 
 

 

        (a)                                                          (b)                                                                      (c) 
Fig. 5: Latham & Cockroft coefficients (up) and thickness (down).  (a) With bi-mesh method (b) Without bi-mesh method. 

(c) CPU time (up) and vertical force on the punch (down) with bi-mesh (red lines) and without bi-mesh (blue lines).  
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4.5 Remapping 

Transferring data between meshes is often a necessity in metal forming applications, as for instance in the multi-
mesh approach and in the ALE (Arbitrary Lagrangian or Eulerian) formulation where this operation is involved at 
each time step, or in the Lagragian formulation where it is appealed to at each remeshing step. The precision of this 
operator is obviously a key issue for the overall accuracy of the finite element method, which so requires a special 
attention. In general, transferred fields can be split into two categories: primary unknowns of the problems such as 
velocity, pressure and temperature, and state variables such as the equivalent strain, strain rate and stresses. Firsts 
are usually continuous while seconds are computed at Gauss integration points and are discontinuous. With a 
P1+P1 velocity / pressure interpolation, they respectively are P1 (linear) and P0 (piecewise per element). 
Transferring data between non matching meshes involves diffusion error; it is all the more important than the field 
is discontinuous. It is so foremost important to develop high order operators for P0 variables but as they can be 
appealed to at each time increment, they should be inexpensive. The key idea of the developed approach is in two 
steps: computing a continuous high order (P1) interpolation of state variables on the original mesh and then 
projecting it on the Gauss point of the new mesh. Inherent diffusion of projection is compensated by higher order 
of the recovered field that is derived from super convergent properties of the finite element method at Gauss 
points. This approach has initially been proposed by Zienkiewicz and Zhu within the frame of error estimation 
(Superconvergent Patch Recovery method - SPR) before been extended to transfer operators by Khoei and 
Gharehbaghi. Considering finite element patches (see Fig. 6) a local higher order continuous solution is built from 
super convergent values. Its value at the patch center is then used to interpolate continuously (P1) the recovered 
field over the original mesh. This approach is shown to be significantly more accurate than simple local averaging 
or than global L2 projection. However, it does not provide the same level of accuracy on the surface of the mesh 
where finite element patches are incomplete, while most important phenomena such as contact, friction and heat 
exchange take place on domain surface in metal forming applications. This would require enlarging the size of 
finite element patch (see Fig. 6), which necessitates a complex data structure that is often difficult to build in a 
parallel environment.  Kumar et al developed an iterative algorithm, where complete volume patches are first 
recovered, and during next iterations, incomplete patches are enriched by new values recently computed at the 
nodes of the patch. Such algorithm converges within 3 to 4 iterations. For transferring complex analytical functions 
between non-matching 3D meshes, this operator has a second order convergence rate while the simple averaging 
technique is only slightly more than first order; the convergence rate of the averaging operator is much lower with 
the surface norm while it is almost the same with the SPR operator (Fig. 7). For several metal forming problems 
involving computation of residual stresses, the enhancements brought by this transfer operator is determinant to 
eliminate numerical oscillations otherwise resulting from the transfer. 
 

 

Fig. 6: Patch centre on a node in 2D 

Node, recovery center 

First order integration point 

Topological patch 

Extended patch 

Second order integration point 
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[a] Volumetric L2 norm.     [b] Surface L2 norm. 

Fig. 7: Comparison between SPR and Average recovery operator for function f ( x, y,z ) z ( y y )sin( x)β α= −  

4.6 Multigrid  

The constant need for more accuracy and reliability of computations results in smarter spatial discretizations and 
use of powerful parallel computers. Reducing the mesh size by a factor of 2 in each space direction results into an 
increase of the number of nodes by 8 (in 3D) and of the number of time increments by a factor 2. Because more 
than 75% of computational time of large implicit resolutions is spent during the resolution of linear systems, which 
computational cost is proportional to N3/2 (N being the number of degrees of freedom), this increase in accuracy 
results into an increase of computational time by about 40. In order to handle larger and finer metal forming 
problems, it is then necessary to reduce the computational cost and more precisely the dependency of iterative 
solvers to the number of degrees of freedom, while keeping their parallel efficiency. According to Brandt, the 
Multigrid method (summarized in Fig. 8), which has originally been developed for fluid problems, has the unique 
potential of providing a linear computational cost with respect to N.  
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Fig. 8: Multigrid V-cycle algorithm 
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For metal forming applications, obtaining such property requires using several special features for the choice of the 
smoothers (the linear solvers that are used at each level of the multi-level algorithm), for the construction of coarse 
levels using a Galerkin / algebraic approach rather than a geometrical approach, and for the automatic building of 
the coarse meshes (from finer unstructured meshes of very complex shapes as encountered in material forming): 
see Rey et al.. An additional issue regards the compatibility with parallel computations, which consequently 
requires carrying out all these operations in parallel, and more particularly the construction of coarse meshes (see 
Fig. 9) and the transfer between the meshes.  
 

 
 

Fig. 9: Parallel partitioning of a square where different colors refer to different processors. Right: fine mesh. Left: coarse mesh built in parallel 
from fine mesh. 

An application of the multigrid method to a representative forging problem is shown in Fig. 10. It is computed on a 
12 processors machine where the multigrid solvers exhibits the same parallel efficiency as original Krylov solver. 
 

 

 
 

Fig. 10:  Finer mesh (87 00 nodes) partitioned onto 12 processors for forging simulation (top left), and the intermediate meshes of 11 900 
nodes, 3 800 nodes and 1 670 nodes for a four levels multigrid method.  
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5 Coupled approaches 

 
5.1 Thermal and mechanical coupling 

At this stage, several methods can be used, depending on the thermal and mechanical coupling. When coupling is 
weak enough, the mechanical and thermal problems are solved separately and the coupling is postponed to the next 
increment. For intermediate coupling a separate resolution is still used, but fixed point iterations are performed. 
For strong coupling and strain rate localization, the global system is solved by a Newton-Raphson method on V, P, 
and T (or ∆U, ∆P and ∆T) as reported in Delalondre. 

 
5.2 Multi material coupling 

Different numerical approaches are presented in paper 274 of the present ICTP conference by Chenot et al. 

5.3 Coupling with micro structure evolution  

Three approaches, working at different length scales, are used to predict the microstructural evolution during 
forming processes.  
The classical semi-empirical JMAK approach is based on the global description of the recrystallized fraction in 
constant conditions of strain rate and temperature. Recrystallization kinetics (implying nucleation of new grains, 
their growth and the impingement of the growing grains) are described by the analytical Johnson-Mehl-Avrami-
Kolmogorov (JMAK) equation.  

( ) nb tX t 1 e .−= −   (29) 

Where X is the recrystallized fraction and b and n the Avrami’s coefficients obtained by fitting the experimental 
curves. Dynamic, post-dynamic and static recrystallization can be considered; the different recrystallized fractions 
and diameters depend on the process parameters (strain, strain rate and temperature) and initial grain size. 
Implemented in the FORGE® software, the model has undergone several modifications in order to be used with 
any thermo-mechanical local loading and to take into account multiple recrystallization steps that can be 
encountered during multi-pass processes (see Teodorescu et al.). 
The mean-field approach was developed in the general context of multi-pass metal processing. It uses equations 
based on the physics of strain-hardening, recovery, grain boundary migration, nucleation and precipitation. Input 
parameters have a physical meaning (e.g. Burgers vector, shear modulus, grain boundary mobility, etc.). The 
microstructure is described by a set of internal variables representative of the material (average dislocation 
densities and grain sizes). According to Mukherjee et al. and Bernard et al., the microstructural evolution is 
directly given by the evolution of these parameters during the forming process. 

 

 
 

Fig. 11: Reducer-rolling simulation coupled with the mean-field model for microstructure evolution 
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Since the metal behavior depends on the dislocation density, such approach allows a direct coupling with the 
rheological behavior of the material. CPU times associated with these methods are generally low, making them 
suitable for coupled calculations and allowing simulations at each integration points of a finite element mesh as it 
is done into FORGE® (Fig. 11). 
 
The full-field method is discussed in §7. 

 
6 Optimization and identification 

 
6.1 Process optimization  

Optimization is often the actual purpose of numerical simulation. In metal forming, it usually involves a small 
number of parameters which can be quite complex as they often regard 3D tool shapes. Consequently, great efforts 
have been dedicated to the coupling of optimization algorithms with CAD tools, as shown in Fig. 12 where the 
parameters of the CAD representation of a preform shape are directly linked to the optimization algorithm.  
 

 
 

Fig. 12: CAD parameterization (left) of the preform shape of a three-stepped forged car component and its 4 optimization parameters. 
 
Other features of metal forming problems regards the computational time of simulations and the complexity of the 
optimization problem, which can either be very small with almost linear problems or very high with many local 
extrema and uncertainties, resulting either from numerical noise (in particular due to remeshing and data transfer) 
or from the process model itself (friction, lubrication, material models …). All these features plead toward using 
robust but expensive algorithms, such as evolutionary algorithms, combined with metamodeling which allows 
reducing computational cost. A key point for the accuracy and efficiency of such metamodel based algorithm 
consists in dynamically improving the metamodel with new computations during the convergence of the 
optimization algorithm (see Bonte et al.). In this context, numerical noise can be handled by filtering the very high 
frequencies of objective functions through the smoothing of the metamodel as presented in Fig. 13. We observe 
that for a wire drawing problem, a straightforward variation of the maximum drawing force with respect to the die 
angle and die length shows an unphysical extremum due to numerical noise due to remeshing (with coarse 
meshes), while smoothing allows removing this biased solution. Metamodel-based evolution algorithms can easily 
be extended to multi-objective optimization problems, in order to handle the full complexity of most engineering 
problems with several objectives and constraints. In this frame, there is not a single optimum but a Pareto surface 
of possible compromises. The computational cost of optimization is consequently increased by the need to enlarge 
the domain of accuracy of the metamodel as shown by Edjay and Fourment. This additional cost is often justified 
by the quality of provided information and new understanding about the forming process. 
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Fig. 13: Left: metamodel of the noisy objective function exhibiting an unphysical extremum. Right: smoothed metamodel with no extremum. 

 
6.2 Identification of material parameters 

Identifying correctly material parameters is essential if one wants to get accurate results with any kind of material 
behavior law and damage model. Identification strategies using inverse analysis are now widely used when dealing 
with complex non-linear behaviors. The main idea of inverse approaches is to fit numerical results coming from a 
FE simulation on experimental data. This fitting is done iteratively by tuning the material parameters values in the 
model in order to minimize a cost function. This cost function is based on the gap between numerical and 
experimental observables. The choice of these observables and their number is important if one wants to avoid any 
parameters correlation or non-unique solutions issues (Roux). This is particularly true when dealing with ductile 
damage due to the competition between hardening on the one hand and softening (coming both from necking and 
damage growth) on the other hand. The use of local observables in addition to global observables (such as the 
classical load-displacement curve) is a good way of enriching the cost function. Local observables may be based 
on necking measurements (Roux and Bouchard) or full displacement field measurements (Roux). Enhancing the 
experimental basis to avoid non-unique solutions may also require the use of multiple experimental tests (Cao et al. 
2013). Finally, some micromechanical models may require the use of microstructure observations. Regarding 
ductile damage parameters identification, in-situ X-Ray tomography appears to be a powerful solution. This 
technique enables to count the number of voids and to give their size evolution all along the mechanical test. This 
approach was successfully used in (Cao et al. 2014b) for the identification of a Gurson based damage model. 

 
7 Computation at the micro-scale 

7.1 General approach 

It is well known that the micro (or nano) structure of metals is a key factor for determining the constitutive law 
during forming and for predicting the final properties of the work-piece. The macro approach is quite convenient 
for coupling thermal, mechanical and physical computation, but it suffers severe limitations and needs a large 
amount of experiments to identify the physical laws describing microstructure evolution. On the other hand 
computation at the micro scale is now possible and is developed for a potentially more realistic description of 
materials under the concept of “full field approach”. Micro modeling is potentially much more accurate but, due to 
heavier computer cost at the local micro level, direct coupling with macro thermal and mechanical simulations 
seems limited to 2D problems and simple parts, even with large clusters of computers. If, as already detailed, one 
interest of these developments is to use the micro approach to help identification and improvement of mean field 
models; another way to view the short term applications is to use micro modeling of material in post processing, to 
predict micro structure evolution for a limited number of locations in the work piece, neglecting coupling effects. 
These challenges explain firstly the development, over the last twenty years, of new numerical methods to generate 
digital materials at a microscopic or mesoscopic scale, which would be statistically or exactly equivalent to the 
considered microstructure in terms of topology and attributes and the concept of Representative Element Volume 
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(REV) (Dawson et al., Hitti et al., Saby et al. 2013). The generation of statistical virtual polycrystals in context of 
recrystallization (ReX), or of spheres dense packing applied to powder metallurgy, remain fertile research domains 
(see Fig. 14).  
 

 

Fig. 14: REVs respecting initial statistical data. Left a 304L powder. Right: 304L polycrystal with anisotropic finite element mesh in white. 

Secondly, these challenges explain the development of numerical methods dedicated to the modelling of dynamic 
boundary problems. Probabilistic methods associated to a voxel (or pixel in 2D) can be based on grain structure 
descriptions; for instance, Monte-Carlo (MC)  (Rollett and Raabe) and Cellular Automaton (CA) approaches have 
been successfully applied to ReX, grain growth (GG) and phase transformations (Rollett and Raabe, Kugler and 
Turk).  
Three main methods can be found in the literature for finite element calculations on virtual micro-structures: the 
“vertex” models (VM) also called “front tracking” models (Nagai et al., 1990, the “Phase Field” method (PFM) 
(Chen) and the “Level Set” method (LSM) first developed by Osher and Sethian.  
The LSM was applied to dynamic interface problems at the microstructure scale for 2D or 3D primary ReX and 
includes site saturated or continuous nucleation stage as illustrated in Fig. 15 (Logé et al., Bernacki et al., 2008, 
Bernacki et al., 2009).  

 

 

 
 

Fig. 15: Site-saturated nucleation in 304L stainless steel, from top to bottom and left to right : modeling of primary ReX and subsequent GG.  
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Fig. 16: Influence of loading conditions on nucleation mechanism (particles fracture or debonding). 
 
First applied to simple microstructures, LSM was improved to deal with more realistic 2D and 3D microstructures 
and to make the link with stored energies induced by large plastic deformations (Logé et al., Bernacki et al., 2009). 
Anisotropic meshing and remeshing techniques can be used to accurately describe interfaces, both for modelling 
plastic deformation using crystal plasticity, and for updating the grain boundary network at the RX stage (Logé et 
al., Bernacki et al. 2009). It was also shown that the distribution of stored energy in a polycrystal resulting from 
plastic deformation led to deviations from the classical JMAK theory. Recently, for the modelling of ReX and GG 
phenomena, the LSM has been used in (Elsey et al.) with a regular grid and in (Bernacki et al, 2011) from a finite 
element approach. It is also interesting to underline current development of the LSM in order to model ductile 
damage phenomena at the micro scale as illustrated in Fig. 16 (Roux et al., 2013), (Roux et al., 2014). 
 

7.2 Identification using finite element micro modeling 

Such micro-modeling approaches are very promising regarding the understanding of plastic and damage 
mechanisms for complex thermo mechanical loadings as well as the calibration of mean field models.  

 

Fig. 17: Multiscale methodology to identify mean-field models parameters thanks to microscale FE simulations 
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Figure 17 shows the strategy that can be applied to identify mean-field models parameters based on 
micromechanical modeling. Numerical sensors are placed on finite element simulations of the process at the macro 
scale in order to extract loading paths. This loading path can be used as boundary conditions for FE simulations at 
the micro-scale on representative volume elements (RVE). These RVE are built either from experimental 
observations or from statistical reconstruction. FE simulations on these RVE with the appropriate boundary 
conditions are performed in order to extract microscopic evolution laws. In Fig. 17, void volume fraction as a 
function of plastic strain is plotted. These evolution laws are then used to identify mean-field damage models 
parameters which in the end will be used in macroscopic scale FE simulations. The same methodology is applied 
in (Saby et al. 2013, Saby et al. 2014a, Saby et al. 2014b) to define a suitable void closure criterion and identify its 
parameters. 

8  Future challenges: 
 

8.1 Process stability and introduction of stochastic phenomena 

Provided that the problem is well modeled, numerical simulation is predictive and describes accurately all 
phenomena of interest. It means that the finite element discretization error is low and often much lower than errors 
resulting from the modeling of the problem. Taking into account the main sources of these uncertainties is a major 
challenge of computations. Uncertainties have many origins: changes of material origin, lubrication conditions or 
process parameters but also approximate modeling of interface and material behavior, or else geometry description, 
boundary conditions, etc. The challenge consists in first identifying, modeling and quantifying these uncertainties 
and then in taking them into account during process simulation and optimization (Strano). Monte-Carlo approaches 
are obviously too expensive while stochastic formulations show quite difficult to implement into existing software. 
Most promising approaches rely on advanced metamodels that can be either used for a Monte-Carlo type approach 
(Fourment) or extended to model the stochastic nature of the results (Zabaras et al., Lebon et al.) and can be both 
used to render process variability and allow robust optimization (Wienbenga et al). 

 
8.2 Model reduction 

Reducing computational time remains a major challenge. New emerging techniques show quite efficient and 
effective: the Proper Orthogonal Decomposition (PGD) method is one of them. It allows carrying out real time 
simulations, provided that pre-computations have been carried out in advance in a proper way (Chinesta and 
Cueto). In the frame of highly non-linear metal forming problems, a first step would be to extend Model Reduction 
Techniques resulting from Proper Orthogonal Decomposition (Ryckelynck). In some other fields such as fluid 
mechanics or structural mechanics, they allow reducing the computational time by several order of magnitude 
through a dramatic reduction of the number of unknowns, down to ten or at least less than one hundred. They are 
based on projections onto main problem modes, which are computed in advance from previous simulation results. 
It sounds reasonable to try to extend them first to simple metal forming problems. 
 

8.3 Toward simulation of the whole processes chain 

Forming process simulation started in the 70th with, as a main objective, to predict forming forces, forming defects 
such as under filling, folding and possible cracks. When this has been achieved, focus has started to move to the 
dies with the goal to predict and improve die life and reduce production costs. If there are still some progress to be 
done, stress distribution and die wear are now available in simulation packages. This second point being achieved, 
focus is back on the component with a specific attention to “in use properties”. These properties are the results of 
the whole manufacturing chain: starting with the initial forming process (rolling, cogging or wire drawing), going 
through the whole chain to ends with the final heat treatments (carburizing, quenching, nitriding, tempering). 
Depending on the situation, some of the “in use properties‟ are already available by simulation while others are 
still ahead. Significant progresses have been made in recent years and it is now possible to simulate and to 
optimize complete chains of simulations (Ducloux, Ducloux et al). The contributions of upstream stages such as 
ingot casting or continuous casting can also be taken into account and then allow to monitor the complete process 
chain with the prediction of porosities, segregations, concentrations of chemical elements during solidification to 
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their evolution during the phases of forging. It gives a better understanding of the internal structure of the forged 
part (Jaouen et al. 2014a) and for example can be an aid in the design of shells produced from hollow ring (Jaouen 
et al. 2014b).  
For a better understanding of the “in use properties” a finer description of the micro structure is needed. It requires 
predicting and following the micro structure evolution through the whole process chain which is still a topic in 
progress and existing models stills need to be developed and improved in order to optimize computation time. 
 
9 Conclusions 

After many years of continuous development, simulation of metal forming processes by the finite element method 
has reached an undisputable level of reliability and is currently utilized in many industrial companies for predicting 
important technical parameters. Most of mechanical issues are treated satisfactorily, even if computational 
developments are still necessary to optimize numerical treatments and take into account new problems. Now 
within the next 10 or 20 years a lot of effort is necessary to model accurately the physical evolution of metallic 
materials during forming and heat treatments and to predict the final properties of work-pieces and assemblies. 
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