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From Data to Effects Dependence Graphs:
Source-to-Source Transformations for C

Nelson Lossing, Pierre Guillou, Mehdi Amini, and François Irigoin
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MINES ParisTech, PSL Research University, France

Abstract. Program optimizations, transformations and analyses are ap-
plied to intermediate representations, which usually do not include ex-
plicit variable declarations. This description level is fine for middle-ends
and for source-to-source optimizers of simple languages such as For-
tran77. However, the C language, especially its C99 standard, is much
more flexible. Variable and type declarations can appear almost any-
where in source code, and they cannot become implicit in the output
code of a C source-to-source compiler.
We show that declaration statements can be handled like the other state-
ments and with the same algorithms if new effect information is defined
and handled by the compiler, such as writing the environment when a
variable is declared and reading it when it is accessed. Our solution is
useful because no legal transformation is hindered by our new effects
and because existing algorithms are either not modified or only slightly
modified by filtering upon the effect kind. This extension has been used
for several years in our PIPS framework and has remained compatible
with its new developments such as offloading compilers for GPUs and
coprocessors.

Keywords: Source-to-Source Compiler, Data Dependence Graph, C Lan-
guage, Declaration Scheduling

1 Introduction

Program optimizations, transformations and analyses are applied to intermediate
representations, built with basic blocks of three-address code and a control flow
graph. They usually do not include explicit variable declarations, because these
have been processed by a previous pass and have generated constant addresses
in the static area or offsets for stack allocations. This description level is used,
for instance, in the Optimization chapter of the Dragon Book [2]. It is fine for
middle-ends and for source-to-source optimizers of simple languages, such as
Fortran77, that separate declarations from executable statements.

However, the C language, especially its C99 standard [11], is much more flex-
ible. Variable and type declarations, which include expressions to define initial
values and dependent types, can appear almost anywhere in the source code. And
they cannot become implicit in the output code of a C source-to-source compiler
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if the output source code is to be as close as possible to the input code and easy
to read by a programmer. Thus source-to-source compiler passes that schedule
statements must necessarily deal with typedef and variable declarations.

However, these statements have none or little impact in terms of the classical
def-use chains or data dependence graphs [2,13,14], which deal only with mem-
ory accesses. As a consequence, C declarations are usually moved away from the
statements that use the declared variables, with no respect for the scope infor-
mation. Is it possible to fix this problem without modifying classical compilation
algorithms? We did not find any related work as recent research compilers are
dealing either with restricted input, e.g. polyhedral compilers and static control
parts (SCoPs [4]), or are using robust parsers such as Clang [1] that deliver
low-level intermediate representations.

So we explored three main techniques applicable for our source-to-source
framework, PIPS. The first one is to move the declarations at the main scope
level. The second one is to mimic a conventional binary compiler and to transform
typedef and declaration statements into memory operations. The third one is to
extend def-use chains and data dependence graphs to encompass effects on the
environment and on the set of types.

In Section 2, we show with an example how Allen&Kennedy (or loop dis-
tribution) Algorithm misbehaves when classical use-def chains and data depen-
dence graphs are used in presence of declarative statements. We then provide in
Section 3 some background information about the semantics of a programming
language, and about automatic parallelization. We try in Section 4 to use the
standard use-def chains and data dependence graphs and introduce in Section 5
and Section 6 our proposed extension, the Effects Dependence Graph (FXDG),
to be fed to existing compilation passes. We look at its impact on them in Sec-
tion 7 and observe that the new effect arcs are sometimes detrimental and must
be filtered out, or insufficient because the scheduling constraints are not used.
We then conclude and discuss future work.

2 Motivating Example

Consider the C99 for loop example in Code 1. This code contains in its loop body
a type and a variable declaration at Lines 6-7. When loop fission/distribution [2,14]
is applied onto this loop, the typedef statement and the variable declaration
are also distributed, as shown in Code 2.

The loop distribution algorithm relies on the Data Dependence Graph to
detect cyclic dependencies between the loop body statements. Yet the type and
variable declarations carry no data dependencies towards the following state-
ments or the next iteration, thus causing an incorrect distribution. The Data
Dependence Graph of Code 1 is represented Figure 1. According to this DDG,
there is no dependence between the type declaration statement (typedef int
mytype;), the variable declaration (mytype x;) and the two statements that use
variable x (x = i; b[i] = x;).



1 void example ()
2 {
3 int a[10] , b [10];
4 for(int i=0; i <10; i++) {
5 a[i] = i;
6 typedef int mytype ;
7 mytype x;
8 x = i;
9 b[i] = x;

10 }
11 return ;
12 }

Code 1: C99 for loop with a typedef and
a declaration in the body

1void example ()
2{
3int a[10] , b [10];
4{
5int i;
6for(i = 0; i <= 9; i += 1) {
7a[i] = i;
8}
9for(i = 0; i <= 9; i += 1) {
10typedef int mytype ;
11}
12for(i = 0; i <= 9; i += 1) {
13mytype x;
14}
15for(i = 0; i <= 9; i += 1) {
16x = i;
17b[i] = x;
18}
19}
20return ;
21}

Code 2: After loop distribution of Code 1

This example highlights the inadequacy of the Data Dependence Graph for
some classic transformations when applied on C99 source code. Should we design
a new algorithm or expand the Data Dependence Graph with new precedence
constraints?

3 Background & Notations

We have based this work on the code transformation passes included into the
PIPS compiler and on its high-level intermediate representation.

PIPS is a source-to-source compilation framework [9] developed at MINES
ParisTech. Aiming at automatic code parallelization, it features a wide range
of analyses over Fortran and C code. To carry out these analyses, PIPS relies
on the notion of effects, which reflect how a code statement interacts with the
computer memory. To better understand the benefits of this approach, we have to
introduce several basic concepts about the semantics of procedural programming
languages.

In Fortran and C, variables are linked to three different concepts: an Identi-
fier is the name given to a specific variable; a Memory Location is the underlying
memory address, usually used to evaluate References; and a Value is the piece
of data effectively stored at that memory address. For instance, a C variable
declaration such as int a; maps an identifier to a memory location, represented
by &a, and usually allocated in the stack. To link these concepts, two functions
are usually defined: the Environment function ρ takes an identifier and returns
some corresponding memory locations; and the Memory State or Store function
σ returns the value stored in a memory location. With the above, a statement S
can be seen as transforming a memory state and environment (in case of addi-
tional declarations) into another. We call effects of a statement S the decorated



Fig. 1: Data Dependence Graph of Code 1

set of memory locations whose values have been used or modified during the ex-
ecution of S. Effects E are formally defined as a function taking a statement and
returning a mapping between a pre-existing memory state and a set of memory
locations. Equation 1 to Equation 4 provide the formal representation of the
concepts defined above.

ρ : Identifier −→ Location (1)
σ : Location −→ V alue (2)
S : MemoryState −→MemoryState (3)
E : Statement −→ (MemoryState −→ {Location}) (4)

Effects are divided into two categories: READ effects RS represent a set
of memory locations whose values are accessed, but left unchanged, whereas
WRITE effects WS represent memory locations whose values are written during
the execution of S on a given memory state. A statement’s READ and WRITE
effects, usually over-approximated for safety by static analyses, satisfy specific
properties [10]:



– the values of memory locations not in a statement’s WRITE effects are
certainly left unchanged by this statement;

– given two memory states σ, σ′ and a statement S, if the restrictions σ |RS(σ)
and σ′ |RS(σ) of σ and σ′ to the locations of the READ effect RS(σ) of S on
σ are identical, then
• the READ and the WRITE effects of S on the two memory states are
identical;
• the values of the locations of the WRITE effect of S on the two memory
states are identically modified by the execution of S.

These properties are formalized in Equation 5 and Equation 6.

∀σ ∈ Σ, ∀l 6∈WS(σ), σ(l) = (S(σ))(l) (5)

∀σ, σ′ ∈ Σ,
∀l ∈ RS(σ), σ(l) = σ′(l)

=⇒


RS(σ) = RS(σ′)
WS(σ) = WS(σ′)
∀l ∈WS(σ), (S(σ))(l) = (S(σ′))(l)

(6)

These properties are used to show that Bernstein’s conditions [5] are sufficient
to exchange two statements without modifying their semantics. This is also the
foundation of automatic loop parallelization.

These READ and WRITE effects can be refined into IN and OUT effects to
specify the values that really have an impact on the semantics of the statement
(IN), or are used by its continuation (OUT). These are also called the live-in
and live-out variables [2].

The data structure used in PIPS for modelling effects is represented in Code 3.
More precisely, PIPS effects associate an action – READ or WRITE – to a so-
called memory cell, which represents a reference and can be a variable memory
address, a combination of an array pointer and an index, or a struct and one of
its fields. The unit keyword means that no additional information is carried by
the corresponding field.

Many analysis and transformation passes in PIPS are based on effects, called
effects for simple scalar variables, or regions for convex arrays. In particular,
effects are used to build use-def chains and the Data Dependence Graph between
statements. More information about effects and regions can be found in [7].

4 Data Dependence Graph

The Data Dependence Graph is used by compilers to reschedule statements and
loops. A standard Data Dependence Graph [2,14] exposes essential constraints
to prevent incorrect reordering of operations, statements, or loop iterations. A
Data Dependence Graph is composed of three different types of constraints:



effects = effects : effect * ;

effect = cell x action x [...] ;

cell = reference + [...] ;

reference = variable : entity x indices : expression * ;

entity = name: string x [...] ;

expression = syntax ;

syntax = reference + [...] ;

action = read:unit + write :unit ;

Code 3: READ/WRITE effects syntax in PIPS

Flow dependence, as a read effect after a write effect on the same location.
If a write is followed by a read on the same reference value, the result of the
read depends of the result of the write. This constraint is also call a true
dependence.

Anti-dependence, as a write effect following a read effect on the same location.
If a read is followed by a write, the result of the read does not depend of the
write, but if the two statements are interchanged, the result is modified.

Output dependence, as a write following another write on the same location.
If two statements corresponding to two write effects are permuted, their
execution changes the value of the variable involved.

Note that the Data Dependence Graph is based on memory read and write
operations, a.k.a. uses and definitions. C declaration statements may perform
reads and writes when variables are initialized by expressions and allocated in the
stack. However initializations of static variables should not generate such effects.
Furthermore, the declaration of dependent types with a typedef statement also
requires memory read effects. Finally, accesses to variables with dependent types
may require implicit read accesses to the definition of their types, either to
check that an array access is within bounds, or to generate the element address
computation.

So, to take into account the implicit mechanisms used by the compiler, im-
plicit memory accesses have to be added to obtain consistent IN and OUT effects.
Let’s consider the code fragment:
int d1= ... , d2 = ...;
double x[d1 ][ d2 ];
...
x[i][j] = 0.;

Variable d1 is certainly live when x[i][j] is written, and Variable d2 is also
live if the validity of the assignment is checked with respect to the declaration by
the compiler as specified by the C standard [11, Annex J-2]. Note that we want
to keep these new accesses implicit to make further analyses and transformations



easier, and to be able to regenerate a source code readable and close to the orig-
inal. Standard high-level use-def chains and DDG are unaware of these implicit
dependencies. However, they are key when generating distributed code [14] or
when isolating statements [8].

4.1 Limitations

The problem with the standard Data Dependence Graph is that the ordering
constraints are only linked to memory accesses. A conventional Data Dependence
Graph does not take into account the address of the variables, and even less the
declaration of new types, even when they are necessary to compute a location.
In fact, when the C language, especially the C99 standard, is considered, many
features imply new scheduling constraints for passes using the Data Dependence
Graph:

Declarations anywhere is a new feature of C99, to mimic the C++ language.
This feature implies for a source-to-source compiler to consider these decla-
rations and to regenerate the source code with the declarations at the right
place within the proper scope.

Dependent types especially variable-length arrays (VLA) are a new way to
declare dynamic variable in C99. It removes the possibility to group all the
declarations at a same place, regardless of precedence constraints.

User-defined types such as struct, union, enum or typedef can also be de-
fined anywhere inside the source code, creating dependence with the follow-
ing uses of this type to declare new variables.

4.2 Workarounds

A possible approach for solving these issues in a source-to-source compiler is to
mimic the behavior of a standard compiler that generates machine code with
no type definitions or memory allocations. In this case, we can distinguish two
solutions.

The first one works only on simple code, without dependent types. It consists
in grouping all the declarations at the beginning of the enclosing function scope.

The second one is more general. It consists in reproducing explicitly the
memory allocation performed by the binary compiler, performing analyses and
code transformations on this low-level IR, and then regenerating the source code
without the low-level information.

Flatten Code Pass Code flattening is designed to move all the declarations at
the beginning of functions in order to remove as many environment extensions
(introduced by braces, in C) as possible and to make basic blocks as large as
possible. So all the variables end up in the function scope, and there is no need to
be concerned by declaration statements when scheduling executable statements.

Some alpha-renaming can also be performed during this scope modification:
if two variables share the same name but have been declared in different scopes,



new names are generated considering the scope to replace the old names while
making sure that two variables never have the same name.

This solution is easy to implement and can suit a simple compiler.
The result of Code 1 after Flatten Code is visible on Code 41. Figure 2

represents the Data Dependence Graph of Code 4, and Code 5 is the result of
a Loop Distribution. Note that the second loop is no longer parallel and that
a privatization pass is necessary to reverse the hoisting of the declaration of x.

1 void example ()
2 {
3 int a[10] , b [10];
4 int i;
5 typedef int mytype ;
6 mytype x;
7 for(i = 0; i <= 9; i += 1) {
8 a[i] = i;
9 x = i;

10 b[i] = x;
11 }
12 return ;
13 }

Code 4: After Flatten Code of Code 1

1void example ()
2{
3int a[10] , b [10];
4int i;
5typedef int mytype ;
6mytype x;
7for(i = 0; i <= 9; i += 1)
8a[i] = i;
9for(i = 0; i <= 9; i += 1) {
10x = i;
11b[i] = x;
12}
13return ;
14}

Code 5: After Loop Distribution
of Code 4

However, this solution only works on simple programs without dependent
types, because dependent types imply a flow dependence between statements
and the declarations. As a consequence, the declarations cannot be moved up
anymore.

Besides, even in simple programs, the semantic of the code can be changed. In
our above example, Flatten Code implies losing the locality of the variable x. As
a consequence, the second loop cannot be parallelized, because of the dependence
to the shared variable x. Without Flatten Code, the variable x is kept in the
second loop, which can be parallelized. Code 6 shows the result of automatic
detection of parallel loops in Code 5.

Furthermore, code flattening can produce an increase in stack usage. For
instance, if a function has s successive scopes that declare and use an array a of
size n, the same memory space can be used by each scope. Instead, with code
flattening, s declarations of different variables a1, a2, a3... are performed, so
s×n memory space is used.

Code flattening also implies some transformation on the code that can be
undesired for a source-to-source compiler, if the final code has to be as close as
possible to the original code.

1 Generated variables are really new variables because they have different scopes.



Fig. 2: Data Dependence Graph of Code 4

Frame Pointer Another solution is to reproduce the assembly code generated
by a standard compiler, e.g. gcc. A hidden variable, called the current frame
pointer (fp), corresponds to the location where the next declared variable is al-
located. At each variable declaration, the value of this hidden variable is updated
according to the size of the variable type. In x86 assembly code, the stack base
pointer ([e|r]bp) with an offset is used. Moreover, for all user-defined types,
hidden variables are also added to hold the sizes of the new types. In this way,
the source-to-source compiler exactly reproduces what a binary compiler does.

However, this method implies to add many hidden variables. All of these
hidden variables must have a special status into the internal representation of
the source-to-source compiler. Besides, this solution adds additional constraints
between declarations that have no reason to exist. Since all declarations depend
on the frame pointer which is modified after each declaration, no reordering
between declarations is legal, for instance. With the special status of these new
variables, the generation of the new source code is also modified and can be
much harder to perform.

Code 8 illustrates the resulting internal representation inside the source-to-
source compiler. Figure 3 represents the corresponding Data Dependence Graph.



1 void example ()
2 {
3 int a[10] , b [10];
4 // PIPS generated variable
5 int i;
6 // PIPS generated variable
7 typedef int mytype ;
8 // PIPS generated variable
9 mytype x;

10 forall (i = 0; i <= 9; i += 1)
11 a[i] = i;
12 for(i = 0; i <= 9; i += 1) {
13 x = i;
14 b[i] = x;
15 }
16 return ;
17 }

Code 6: After detection of parallel loops of Code 5

On this Data Dependence Graph, the declaration of the type mytype, the dec-
laration of Variable x and the initialization of x and b are strongly connected,
and therefore will not be separated when applying Loop Distribution.

1 void example ()
2 {
3
4 int a[10] , b [10];
5
6
7
8 {
9 int i;

10
11 for(i=0;i <=9;i +=1){
12 a[i] = i;
13 typedef int mytype ;
14 mytype x;
15
16 x = i;
17 b[i] = x;
18 }
19 }
20 return ;
21 }

Code 7: Initial code example from Code 1

1void example ()
2{
3int fp =0;
4a = fp;
5fp -= 10* $int;
6b = fp;
7fp -= 10* $int;
8{
9&i = fp;
10fp -= $int;
11for (*(&i )=0;*(& i) <=9;*(&i )+=1) {
12a[*(&i)] = *(&i);
13$mytype = $int;
14&x = fp;
15fp -= $mytype ;
16*(&x) = *(&i);
17b[*(&i)] = *(&x);
18} fp += $mytype ;
19} fp += $int;
20return ;
21}

Code 8: IR with frame pointer of Code 7:
symbols $xxx represent sizeof(xxx)

Nevertheless, the regeneration of a high-level source code with the new in-
ternal representation has to be redesigned completely so as to ignore the hidden
variables while considering the type and program variable declarations. Thus
this solution is not attractive for a source-to-source compiler.



Fig. 3: Data Dependence Graph of for loop of Code 8

5 Effects Dependence Graph

Instead of modifying the source code or adding hidden variables, we propose to
use the code variables, including the type variables, to modelize the transforma-
tions of the environment and type functions, as is done for the store function
defined in Section 3. For this purpose, we extend the memory effects analy-
sis presented in Section 3 by adding an environment function for read/write on
variable memory locations, and a type declaration function for read/write on
user-defined types. By extending the effects analysis with two new kinds of
reads and writes, we define a new dependence graph that extends the standard
Data Dependence Graph. We name it the Effects Dependence Graph (FXDG).

5.1 Environment function

The effects on the environment function, read and write, are strictly equivalent
to the effects on the store function, a.k.a. the memory. A read is an apply and
it returns the location of the identifier. A write updates the function and maps
the identifier to a new location. So when a variable is declared, a new memory



location is allocated, which implies a write effect on the environment function.
Its set of bindings is extended by the new pair (identifier, location). Similarly
when a variable is accessed within a statement or an expression, be it for a read
or a write, the environment function is used to obtain the corresponding location
needed to update the store function.

So effects on the environment function track all accesses and modifications
of the environment function, without ever taking into account the value that the
store function maps to a location.

5.2 Type function

To support memory allocation, the type function maps a type identifier to the
number of bytes required to store its values. It is used for all user-defined types,
be they typedef, struct, union or enum. The effects on the type function, read
and write, correspond to apply and update. When a new user-defined type is
declared, the type function is updated with a new pair (identifier, size). This is
modelized by a write effect on the type function. When a new variable is declared
with a user-defined type, the type function is applied to the type identifier, i.e.
a read effect occurs.

5.3 Discussion

The traditional read and write effects on the store function, a.k.a. memory, are
thus extended in a natural way to two other semantic functions, the environment
and the type functions. The common domain of these two new functions is the
identifier set, for variables and user-defined types. In practice, the parser uses
scope information to alpha-rename all identifiers. The traditional use-def effects,
i.e. the store or memory effects, are more difficult to implement because they
map locations and not identifiers to values. Static analyses should be based on
an abstract location domain. However, a subset of this domain is mapped one-
to-one to alpha-renamed identifiers. Thus, the three different kind of effects can
be considered as related to maps from locations to some ranges, which unify
their implementation.

6 Implementation of the Effects Dependence Graph

There are two main ways to implement the new effects, with different impacts
on the classical transformations that pre-exist.

The first possibility, described in Subsection 6.1, is to consider separately
the effects on stores, environments and types, and to generate use-def chains
and dependence graphs for each of them, and possibly fusing them when it is
necessary.

The second possibility, described in Subsection 6.2, is to colorize the effects
and then use a unique Effects Dependence Graph to represent the arcs due to
each kind of functions. Passes based purely on the Data Dependence Graph have
to filter out arcs not related to the store function.



6.1 Three different dependence graphs

This first implementation consists in creating a specific dependence graph for
each kind of effects, a Data Dependence Graph, an Environment Dependence
Graph and a Type Dependence Graph. To obtain the global Effects Dependence
Graph required as input by passes such as loop distribution, these three graphs
would be fused first by a new pass to avoid modifying the old pass signatures.

As an example, PIPS manages resources for effects on variable values and
could manage two new resources for effects on environment, and for effects on
types. With three effect resources, it is now possible to generate three different
dependence graphs, one for each of our effect resources: a Data Dependence
Graph, an Environment Dependence Graph and a Type Declaration Dependence
Graph. The three different dependence graphs of example Code 1 and their union,
the complete Effects Dependence Graph, are presented in Figure 4.

With these news dependence graphs, the loop distribution algorithm pro-
duces the expected Code 9.

The advantage of this solution is the preservation of the original source code,
unlike the above Flatten Code solution. Also, no new variable is introduced to
transform effects on the environment and types into effects on store, as is shown
by the generated assembly code. Moreover, no modification is required for the
source code prettyprinter. Since we have a dependence graph for each kind of
effects, we can independently select which dependence graph we need to compute
or use. Furthermore, the two loops are still parallel, as shown in Code 10.

Still, these independent dependence graphs also imply to launch three dif-
ferent analyses and to fuse their result with a fourth pass to obtain the Effects
Dependence Graph for loop distribution.

6.2 A unique dependence graph with three colors

This second implementation consists in extending the current use-def chains
and data dependence graph with the different kinds of effects. This new depen-
dence graph is called the Effects Dependence Graph. On this Effects Dependence
Graph, some colorization appears to distinguish between the different kind of ef-
fects: effects on data values, effects on memory locations and effects on types.

With this approach, the data structure for effects in PIPS is refined with
information about the action kind as represented in Code 11. Since the change
is applied at the lowest level of the data structure definition, the existing passes
dealing with reads and writes are left totally unchanged.

The Effects Dependence Graph for Code 1 is presented Figure 5. The full arcs
correspond to the data value dependence; the dashed arcs correspond to the en-
vironment dependence; and the dotted arcs to the type declaration dependence.

We obtain the same result with this implementation as with the previous one
for the loop distribution (see Code 9).

This method has the same advantages as the previous implementation: no
user code modification and no hidden variables. Besides, only one dependence



(a) Data DG (b) Environment DG

(c) Type Declaration DG (d) Effects DG

Fig. 4: Dependence Graphs for Code 1



1 void example ()
2 {
3 int a[10] , b [10];
4 {
5 int i;
6 for(i = 0; i <= 9; i += 1) {
7 a[i] = i;
8 }
9 for(i = 0; i <= 9; i += 1) {

10 typedef int mytype ;
11 mytype x;
12 x = i;
13 b[i] = x;
14 }
15 }
16 return ;
17 }

Code 9: After loop distribution of Code 1
using its Effects Dependence Graph

1void example ()
2{
3int a[10] , b [10];
4{
5int i;
6forall (i = 0; i <= 9; i += 1) {
7a[i] = i;
8}
9forall (i = 0; i <= 9; i += 1) {
10typedef int mytype ;
11mytype x;
12x = i;
13b[i] = x;
14}
15}
16return ;
17}

Code 10: After detection of parallel loop
of Code 9

1 effects = effects : effect * ;
2
3 effect = cell x action x [...] ;
4
5 cell = reference + [...] ;
6
7 reference = variable : entity x indices : expression * ;
8
9 entity = name: string x [...] ;

10
11 expression = syntax ;
12
13 syntax = reference + [...] ;
14
15 action = read:action_kind + write :action_kind ;
16
17 action_kind = store:unit + environment:unit + type_declaration:unit ;

Code 11: PIPS syntax with the new action kind information

graph is generated; so we do not need to manage three different ones, plus their
union.

However, since we only have one global dependence graph2, all the transfor-
mations that use the data dependence graph have access to all the dependence
constraints on all kinds of effects. Sometimes, these new constraints are too
strong, which is always safe, but might prevent some optimizations that are
correct, which is not desirable. These issues are presented in the next section.

2 We can also use a PIPS property to compute and use either the Data Dependence
Graph or the Effects Dependence Graph, but it is hard to maintain consistency when
properties are changed.



Fig. 5: Effects Dependence Graph for Code 1

7 Impact on Transformations and Analyses

The introduction of the Effects Dependence Graph allows source-to-source com-
pilers to better support the C99 specification. However, not all classical code
transformations and analyses benefit from this new data structure. In this sec-
tion, we discuss the impact of replacing the Data Dependence Graph by the
Effects Dependence Graph in source-to-source compilers.

7.1 Transformations Using the Effects Dependence Graph

Some transformations require the new environment effects and the corresponding
dependencies. In fact, in some passes, we cannot move or remove the declaration
statements.

The first examples are the Allen & Kennedy [3] algorithms for loop par-
allelization and distribution that we used in Section 2. These algorithms were
designed for the Fortran language at first. When proposing solutions to extend
them for C language, Allen & Kennedy [13] only focus on pointer issues and not
on declarations ones.

Another typical algorithm that requires our Effects Dependence Graph is
Dead Code Elimination [2]. Without our Effects Dependence Graph, the tradi-
tional dead code elimination pass either does not take declarations into count,
i.e. never eliminates a type or variable declaration statement, or always elimi-
nates them since no dependence arcs link them to useful statements. So, either



the dead code elimination pass performs half of its job, or it generates illegal code
when the classical use-def chains is the underlying graph, when applied to the
internal representation of a source-to-source compiler instead of to three-address
code.

7.2 Transformations That Should Filter the FXDG

When the legality of a pass is linked to the values reaching a statement, the new
arcs, which embody address or type information, are not relevant. For instance, a
forward substitution pass uses the use-def chains, also known as reaching defini-
tions, to determine if a variable value is computed at one place or not. Additional
arcs due to the environment are not relevant and should not be taken into ac-
count.

See for instance Figure 6. When applying Forward Substitution to the loop
body of Code 9, the new arc representing the Read after Write Environment de-
pendency between the statements mytype x; and b[i] = x; prevents the com-
piler to substitute x by i. Filtering out the Environment and Type Declaration
effects is in this case necessary to retrieve the expected behavior.

Fig. 6: Forward Substitution and Effects

Unlike [6], the scalarization algorithm used in PIPS uses convex array regions
to determine if a set of references to some array X corresponds to only one
array element and hence if the transformation is legal. It also uses IN and OUT



regions to generate copy-in and/or copy-out code. Finally, it uses the number
of references to the array X to decide if the scalarization is profitable. So, for
instance, a declaration arc may generate an IN effect that is going to lead to a
useless copy-in, since copy-in is only linked to store effects.

The Isolate Statement pass [8] is used to generate code for accelerators with
private memories such as most GPUs and FPGA-based ones. The purpose is to
transform one initial statement S into three statements, S1, S2 and S3. The first
statement, S1, copies the current values of locations used by S into new locations.
The second statement, S2, is a copy of statement S, but it uses the new locations.
Finally, the third statement, S3, copies the values back from the new locations
into the initial locations. All in all, S2 has no impact per se on the initial store
and can be performed on an accelerator. Statement S1 is linked to the IN regions
of statement S, while Statement S3 is linked to the OUT regions of Statement
S. Since only values are copied, it is useless to count variables declarations as
some kind of IN effect, although type information may be needed to declare the
new variables, especially if dependent types are used.

7.3 Transformations That Need Further Work

Some transformations do not use scheduling information, but the standard im-
plementations may not be compatible with type declarations or dependent types.

For instance, the pass that moves declaration statements at the beginning of
a function, called Flatten_Code in PIPS, does not use data dependence arcs.
When dependent types or simply variable length arrays are used in typedef or
variable declaration statements, scheduling constraints exist and must be taken
into account. A new algorithm is required for this pass, and the legality of the
existing pass can be temporarily enforced by not dealing with codes containing
dependent types.

In the same way, loop unrolling, full or partial, does not modify the statement
order and does not take any scheduling constraint into consideration. However,
its current implementation in PIPS is based on alpha-renaming and declaration
hoisting to avoid multiple scopes within the unrolled loop or the resulting basic
block. This is not compatible with dependent types, and non-dependent types
are uselessly renamed like ordinary variables.

A last transformation that is impacted, in PIPS at least, is Loop-Invariant
Code Motion [2]. PIPS uses a non-standard Invariant Code Motion algorithm.
It is described in [15] and is based on the Allen & Kennedy algorithm, hence on
the Data Dependence Graph. Intuitively, invariant pieces of code should be de-
tected as distributable and idempotent. The tentative distribution is performed
by Allen & Kennedy, and surrounding loops are not generated when useless be-
cause S;S; is equivalent to S. Consider for instance an invariant statement such
as t=1;. Before the distribution, a simplification of the Data Dependence Graph
occurs to detect and simplify arcs on loop invariant statements. This simplifica-
tion should not take environment and type effects into account. On the contrary,
Allen & Kennedy needs the whole Effects Dependence Graph and cannot operate
correctly with only store effects.



8 Conclusion

C99 is a challenge for the source-to-source compilers that intend to respect as
much as possible the scopes defined by the programmer because of the flexibility
of the type system and the lack of rules about declaration statement locations.
We show that some traditional algorithms fail because the use-def chains and the
data dependence graph do not carry enough scheduling constraints. We explored
three different ways to work around this problem and showed that adding arcs
for transformations of the current type set and environment was the easiest to
implement. The new kinds of read and write effects fit easily in the traditional
use-def chains and data dependence graph structures. Passes that need the new
constraints are working right away when fed the effects dependence graph. Some
passes are hindered by these new constraints and must filter them out, which
is very easy to implement. Finally, some other passes are disturbed by the C99
declarations, but are not simply fixed by using the Effects Dependence Graph
because they do not use scheduling constraints.

The newer C11 standard [12], released in 2011 by the ISO/IEC as a revision
of C99, is more conservative in terms of disruptive features. In some ways, C11 is
actually a step backwards: some mandatory C99 features have become optional.
Indeed, due to implementation difficulties in compilers, Variable-Length Arrays
support is not required by the C11 standard. With VLAs out of the scope, decla-
rations can more easily be moved around without modifying the code semantic.
The solution proposed in this article is still valid for C11 code.
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