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Watersheds for weighted graphs

Fernand Meyer
Centre for Mathematical Morphology

Abstract

The watershed is an e¢ cient and versatile segmentation tool,
as it partitions the images into disjoint catchment basins. We
study the watershed on node or edge weighted graphs. We do
not aim at constructing a partition of the nodes but consider the
the catchment zones, i.e. the attraction zone of a drop of water.
Often, such zones largely overlap. In a �rst part we show how to
derive from a node or edge weighted graph a �ooding graph with
the same trajectories of a drop of water, whether one considers
its node weights alone or its edge weights alone. In a second part
we show how to reduce the number of possible trajectories of a
drop of water in order to generate watershed partitions.

1 Introduction

Catchment basins and watershed lines are topographical notions. A
catchment basin is the attraction domain of a regional minimum: a
drop of water falling everywhere within this domain glides towards this
minimum. The catchment basins are therefore disjoint, and the lines
which separate them are called watersheds. To produce such partitions,
each point of the space has to be allocated to one and only one basin,
excepted along the watershed lines.
The transposition of these concepts to image processing proved to be

very e¢ cient for segmentation purposes [11] : the topographic surface
being the gradient image of the image to segment. The inside of the
objects being expressed by low gradient values in form of regional minima
; the boundaries of the object being expressed by high gradient values.
The catchment basins of the gradient image form a partition of the
image, where each region contains one and only one regional minimum.
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On real topographical surfaces however, the watershed lines may con-
tain thick zones, due to the presence of plateaus and button holes, i.e.
large areas from where a drop of water may reach several distinct re-
gional minima. The representation of images on digital grids introduces
additional di¢ culties, due to the discretisation and the anisotropy of
a grid. In order to overcome these di¢ culties, a large number of stud-
ies have been published on the watershed, re�ning the de�nitions and
proposing sophisticated algorithms for producing partitions ([9],[12],[1] ;
see [20] for a recent bibliography). The watershed has been studied and
used in two contexts:
* For images, modelled as node weighted graphs. Reference [21]

presents algorithms for watershed computing, and ref. [18] describes
how the concept and the algorithms of watershed have been in�uenced
by both theoretical considerations and hardware capabilities.
* For edge weighted graphs, in which the nodes represent regions

or pixels and the weighted edges represent the dissimilarity between
adjacent nodes. The waterfall hierarchy is based on a series of watersheds
on such graphs ([2]). J.Cousty et al studied these graphs and called
watershed cut the graph obtained by cutting all edges linking two distinct
basins ([7]).
Two types of algorithms coexist. Shortest paths algorithm construct

the zone of in�uence of the regional minima for various distance function
associated to the topography ([23, 8, 10, 13, 19]). Another class of algo-
rithms are based on thinnings : the topographic surface is progressively
lowered in such a way that the regional minima are expanded without
merging with each other (S.Beucher et al [3] for geodesic binary thin-
nings, G.Bertrand [7] for grey tone thinnings based on W destructible
points).
All these approaches simultaneously create catchment basins by ex-

tending the minima, while creating disjoint basins. We propose below
another point of view, radically di¤erent, and which opens new horizons.
We keep the framework of the �nite weighted graphs and take as basis
of our study, the �ooding paths, i.e. the possible trajectories of a drop
of water. A drop of water may reach several regional minima and belong
to several overlapping catchment zones (a catchment zone contains the
classical catchment basin). The development starts from the �ooding ad-
junction, and reaches the key notion of a �ooding graph, which uni�es
the �ooding paths de�ned by nodes or by edges.
Ordering the �ooding paths according to their steepness and sup-

pressing all those with a low steepness reduces (without modifying the
node or edge weights) shrinks the catchment zones and reduce the do-
mains where they overlap. A parallel algorithm implements this pruning
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of the graph. A �nal section shows how to extract the downstream or
upstream of a node, and by combining them, the catchment zone of this
node. Interestingly, no choice intervenes for establishing the catchment
zones (1st step), and practically none for generating the watersheds (2nd
step).
An early version of this work may be found in [17] and a method for

implementing graph algorithms on images in [16].

2 The topography of node or edge weighted graphs

A non oriented graph G = [N;E] contains a set N of vertices or nodes
and a set E of edges ; an edge being a pair of vertices. The nodes are
designated with small letters: p; q; r:::The edge linking the nodes p and
q is designated by epq:
A path, �; is a sequence of vertices and edges, interweaved in the

following way: � starts with a vertex, say p; followed by an edge epq;
incident to p; followed by the other endpoint q of epq; and so on.
Edges and/or nodes may be weighted. Denote by Fe and Fn the

sets of non negative weight functions on the edges and on the nodes
respectively. The function � 2 Fe takes the value �pq on the edge epq ;
the function � 2 Fn takes the weight �p on the node p:
For the same graph G; we designate G(nil; �); G(�; nil) and G(�; �)

respectively the node weighted, edge weighted, edge and node weighted
graph.

2.1 Flooding edges, �ooding paths, regional min-
ima and catchment zones

A drop of water falling on a topographics surface follows a �ooding path.
In order to be sure that each node is linked by a �ooding path with a
regional minimum, we consider all �ooding paths which are physically
possible: a drop of water may follow any motion, except �owing up-
stream.

2.1.1 Node weighted graphs

We consider a node weighted graph G(nil; �): A drop of water may quit
a node p; follow the edge (p; q) and reach the node q if the nodes p and
q verify np � nq.

De�nition 1 The edge (p; q) is a �ooding edge of its extremity p i¤
np � nq:

De�nition 2 A path p � epq � q � eqs � s::: is a �ooding path if each
node except the last one is followed by one of its �ooding edges.
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It follows that the weights along a �ooding path are never increasing.

De�nition 3 A regional minimum of Gn is a maximal connected sub-
graph, in which all inside nodes have the same weight and all neighboring
outside nodes have a higher altitude.

Criterion 4 A node p belongs to a regional minimum if no �ooding path
with origin p leads to a lower node.

2.1.2 Edge weighted graphs

A drop of water at a node p compares the weights of all edges allowing to
quit p and follows one of the adjacent the edges with the lowest weight.

De�nition 5 An edge (p; q) is a �ooding edge of the node p; if it is one
of the lowest adjacent edges of p:

De�nition 6 A path p � epq � q � eqs � s::: is a �ooding path if each
node except the last one is followed by one of its �ooding edges

It follows that the the weights of the successive edges in a �ooding
path are never increasing (if p; q and r are three successive nodes of a
�ooding path, then eqr is one of the lowest edges of q and thus epq � eqr):
De�nition 7 A regional minimum is a maximal connected subgraph of
G; in which all inside edges have the same weight and all edges linking
an inside node with an outside node have higher weights.

The regional minima contain at least two nodes and isolated regional
minima do not exist.

Criterion 8 A node p belongs to a regional minimum if no �ooding path
with origin p contains an edge which is lower than the edges inside the
minimum.

2.1.3 Common properties of node and edge weighted graphs

The de�nition of �ooding edges, �ooding paths and regional minima is
not the same for node and edge weighted graphs. But given the de�nition
of �ooding edges, paths and regional minima, they share in common the
following properties. A drop of water only follows �ooding paths.

De�nition 9 The catchment zone of a regional minimum is the set of
nodes linked with this minimum through a �ooding path.

Each node of a node or edge weighted graph either belongs to a re-
gional minimum or is linked with a regional minimum through a �ooding
path.

Corollary 10 Each node of a node or edge weighted graph belongs to at
least one catchment zone.
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2.1.4 Completing the missing weights

For a node weighted graph Consider the node weighted graph
G(nil; �): A drop of water may �ow through a �ooding edge epq from
p to q if �p � �q and in both direction if �p = �q: Each edge epq is a
�ooding edge as �p � �q of �q � �p: In any case, the weight �p _ �q
represents the weight of the node from where a drop of water crossing
the edge epq may come from.
We de�ne the operator �en from Fn into Fe : � ! �en�. The function

�en� of Fe takes the value (�en�)pq = �p _ �q on the edge epq: Each edge
eps with extremity p gets a weight �p _ �s � �p: Only the �ooding edges
of G(nil; �), such as epq; verifying �p � �q get the weight �p: Thus these
edges are the lowest adjacent edges of p, i.e. �ooding edges in the graph
G(�en�; nil):

Lemma 11 Each �ooding edge in the graph G(nil; �) also is a �ooding
edge in the graph G(�en�; nil)

The reverse is not true and the graphs G(nil; �) and G(�en�; nil) do
not have the same regional minima as shown by the counter-example in
�g.1.

For an edge weighted graph Consider the edge weighted graph
G(�; nil): A drop of water leaving a node p always follows a �ooding
edge of p: We de�ne the operator "ne from Fe into Fn : � ! "ne�. The
function "ne� of Fn takes on the node p the weight of the �ooding edges
of p; i.e. ("ne�)p =

V
�ps

(r neighbors of p)

.

Consider now a �ooding edge epq of extremity p : ("ne�)p =
V
�ps

(r neighbors of p)

�

("ne�)q showing that epq also is a �ooding edge of p in the graphG(nil; "ne�):

Lemma 12 Each �ooding edge in the graph G(�; nil) also is a �ooding
edge in the graph G(nil; "ne�)

The reverse is not true and the graphs G(�; nil) and G(nil; "ne�) do
not have the same regional minima as shown by the counter-example in
�g.2.

3 The �ooding adjunction

The pair of operators (�en; "ne) form an adjunction : 8� 2 Fe; 8� 2 Fn :
�en� < � , � < "ne�: The following properties are classical ([22]).

� �en is a dilation from Fn into Fe
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� "ne is an erosion from Fe into Fn

� e = �en"ne is an opening from Fe into Fe

� 'n = "ne�en is a closing from Fn into Fn

Furthermore as "ne = ("ne�en) "ne = 'n"ne; for � in Fe the function
"ne� in Fn is closed by the closing 'n: Symetrically as �en = (�en"ne) �en
for � in Fn; the function �en� in Fe is opened by the opening e:
These operators belong to a larger family of operators between nodes,

edges, faces of planar graphs (in [14] for constructing micro-viscous lev-
elings and �lters, in [6] for binary �lters). The �ooding adjunction has
already been used for studying the watershed and waterfall algorithms
in ([15]).

3.1 Flooding graphs
3.1.1 Identity of the �ooding edges in both node and edge

weighted graphs ?

Lemma 9 states: each �ooding edge in the graph G(nil; �) also is a
�ooding edge in the graphG(�en�; nil) : Replacing � by the function �en�
in the lemma 10 shows that each �ooding edge in the graph G(�en�; nil)
also is a �ooding edge in the graph G(nil; "ne�en�): It follows:

Lemma 13 In the case where "ne�en� = 'n� = �; both graphs G(nil; �)
and G(�en�; nil) have the same �ooding edges.

Similarly lemma 10 states: each �ooding edge in the graph G(�; nil)
also is a �ooding edge in the graph G(nil; "ne�): Replacing � by the
function "ne� in the lemma 9 shows that each �ooding edge in the graph
G(nil; "ne�) also is a �ooding edge in the graphG(�en"ne�; nil): It follows:

Lemma 14 In the case where �en"ne� = e� = �; both graphs G(�; nil)
and G(nil; "ne�) have the same �ooding edges.

In general however, the node weights � of a graph G(nil; �) are not
invariant by 'n and the edge weights � of a graph G(�; nil) not invariant
by e: The next section shows how to edit the graphG without modifying
the weights of the nodes (resp. edges) so that 'n� = � (resp. e� = �)
be satis�ed.
We say that a graph G(nil; �) or G(�; �) is invariant by the closing

if 'n� = �: We say that a graph G(�; nil) or G(�; �) is invariant by the
opening e if e� = �:
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3.1.2 Invariant graphs by the closing 'n
Consider an arbitrary node weighted graph G(nil; �). Its node weights
are arbitrary and are in general not closed by 'n unless the following
lemma is veri�ed.

Lemma 15 The node weights � of a node weighted graph G(nil; �) are
invariant by the closing 'n if and only if the graph has no isolated re-
gional minima.

Proof. For each neighbor s of p; we have eps = �p _ �s � �p. If p is not
an isolated regional minimum, there exists a neighbor q of p verifying
�p � �q; we have epq = �p _ �q = �p and ('��)p = "�e�e�� = �p:
If on the contrary p is an isolated regional minimum, for each neighbor
s of p; we have eps = �p _ �s > �p and ('��)p = "�e�e�� > �p:

If G(nil; �) has isolated regional minima, we add a sel�oop edge
linking each isolated regional minimum with itself and get a new graph
� Gn invariant by 'n: Furthermore, the dilation �en applied to the node
weights of Gn or to the node weights of � Gn produce the same edge
weights (the relation �en'n = �en shows that only the nodes invariant
by 'n contribute to the dilation �en).

Lemma 16 The graph � G is invariant by the closing 'n: Furthermore
it has the same �ooding paths, regional minima and catchment zones as
the original graph G:

Proof. Adding loop edges linking isolated regional minima with them-
selves does not change their nature of being regional minima. It does not
either impact the �ooding paths. Hence the catchment zones remain the
same.
On the graph � G(nil; �) the node function � is invariant by closing:

� = 'n� = "ne�en�: If we assign to the edges of the graph the weight
� = �en�; then � = "ne�en� = "ne�: Such a graph is called �ooding graph
and will be studied below.

Fig.1A presents a node weighted graph G(nil; �) with 3 isolated
regional minima. Adding sel�oop edges linking each such minimum with
itself produces a graph� G(nil; �) invariant by 'n in �g.1B. The dilation
e = �en� produces the edge weights in the �ooding graph � G(�en�; �)
in �g.1C.

3.1.3 Invariant graphs by the opening e
Consider an arbitrary edge weighted graph G(�; nil): The edge weights
� are arbitrary and are in general not open by e unless the following
lemma is veri�ed.
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Lemma 17 An edge weighted graph G(�; nil) with edge weights � is
invariant by the opening e if and only if each of its edges is a �ooding
edge of one of its extremities.

Proof. Suppose the edge (p; q) is not one of the lowest neighboring edges
of p; i.e. ("ne�)p < epq: If it is also not the lowest neighboring edge of q;
then ("ne�)q < epq and (e�)pq = (�en"ne�)pq = ("ne�)p _ ("ne�)p < epq:
Inversely, if (p; q) is one of the lowest neighboring edges of one of its
extremities, say p; then ("ne�)p = epq: And (e�)pq = (�en"ne�)pq =
("ne�)p_("ne�)p � epq: But e; being an opening, is antiextensive: e� �
�: So (e�)pq = epq:
Hence all edges of G(�; nil) which are not �ooding edges for one

of their extremities have their weight lowered by e: If we cut these
edges, we obtain a new graph # G(�; nil), which is invariant by e:
Furthermore the erosion "ne applied to the edge weights of G(�; nil) or
to the edge weights of # G(�; nil) produce the same node weights (the
relation "nee = "ne shows that only the edges invariant by e contribute
to the erosion "ne.)

Lemma 18 The graph # G is invariant by the opening e: Furthermore
it has the same �ooding paths, regional minima and catchment zones as
the original graph G:

Proof. The edges which are suppressed are the edges which are not the
lowest edges of one of their extremities, such edges are never followed by
a drop of water falling on a node: they do not belong to any �ooding
path nor to the regional minima.
The operator # transforms an arbitrary edge weighted graphG(�; nil)

into a graph # G(�; nil) invariant by the opening e: This means that
e = ee = �en"nee: If we assign to the nodes of the graph the weight
n = "nee; then e = �en"nee = �enn: Again we get a �ooding graph.
Fig.2A shows an arbitrary edge weighted graph G(�; nil) , �g.2B

the graph # G(�; nil) in which all edges not invariant by e have been
suppressed, and �g.2C the �ooding graph # G(�; "ne�) with node weights
� = "ne�:

3.1.4 Flooding graphs

We already met �ooding graphs in the preceding section. We now de�ne
and study such graphs.

De�nition 19 An edge and node weighted graph G(�; �) is a �ooding
graph i¤ its weights (�; �) verify � = �en� and � = "ne�
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Replacing � by its value we get � = �en� = �en"ne� = e�: Replacing
� by its value we get � = "ne� = "ne�en� = 'n�: Hence the following
corollary.

Corollary 20 A �ooding graph is invariant by the opening e and by
the closing 'n:

As established above, as � is invariant by e; each edge is the lowest
edge of one of its extremities. The node weights � being invariant by
'n; G has no isolated regional minima.
The preceding section may be summarized by the following corollary.

Corollary 21 The graphs � G(�en�; �) and # G(�; "ne�) are �ooding
graphs.

Flooding edges and �ooding paths Le G(�; �) be a �ooding graph.
A �ooding graph has no isolated regional minima and to each node may
be associated a �ooding edge with the same weight. According to lemma
13 and 14; the �ooding edges of the graph G(nil; �) and of the graph
G(�; nil) are identical. Hence the �ooding paths, made of successive
�ooding edges also are identical. As each �ooding edge has the same
weight as its origin, node weights and edge weights of a �ooding path
are absolutely redundant.

Lemma 22 The regional minima of the graph G(nil; �) and of the graph
G(�; nil) are identical. The �rst are de�ned for node weighted graphs, the
last for edge weighted graphs.

Proof. The �ooding paths of G(nil; �) and G(�; nil) are identical ;
applying the criteria 4 and 8 shows that G(nil; �) and G(�; nil) have the
same regional minima.
Having the same �ooding paths and the same regional minima, both

graphs also have the same catchment zones.

Theorem 23 For a �ooding graph G; the �ooding paths, regional min-
ima and catchment zones of the graphs G(nil; �) and G(�; nil) are iden-
tical

Corollary 24 An arbitrary node weighted graph G(nil; �) has the same
�ooding paths, regional minima and catchment zones as the edge weighted
graph � G(�en�; nil).
An arbitrary edge weighted graph G(�; nil) has the same �ooding paths,
regional minima and catchment zones as the node weighted graph #
G(nil; "ne�).
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3.2 Oriented �ooding graphs
In fact the �ooding paths, regional minima, and catchment zones only
depend upon the relative altitudes of neighboring nodes. It is possible
to encode these relations in form of an oriented graph and forget the
values of nodes and edges.
We associate to the �ooding graph G an oriented graph (or digraph)�!

G(�; �) by replacing an edge epq by an arrow
�!pq if epq is a �ooding edge

of origin p: If epq is a �ooding edge of both extremities, we create two
arrows �!pq and �!qp if np = nq. The loop edge linking an isolated regional
minimum node m with itself also is replaced by an arrow ��!mm:
The �ooding paths ofG simply become the oriented paths of

�!
G; which

are su¢ cient for characterizing regional minima or catchment basins. For
instance, a regional minimum of G is characterized in

�!
G by the fact that:

a) any two nodes are linked by a path along which the successive nodes
are linked by two arcs, in both directions ; b) a regional minimum has no
incoming arc. Having the same �ooding paths and regional minima as
the initial graph G; the oriented graph

�!
G also has the same catchment

zones.

3.3 A visual summary
3.3.1 For an initially node weighted graph

Fig.1 presents all avatars of a node weighted graph encountered so far.
A: a node weighted graph G(nil; �)
O: the graph G(�en�; nil) ; the graphs G(nil; �) and G(�en�; nil) do not
have the same regional minima
B: the graph � G(nil; �) obtained by adding to G(nil; �) loop edges
connecting each isolated regional minimum with itself.
C: the �ooding graph � G(�en�; �)
D: the edge weighted graph � G(�en�; nil)
E: the �ooding digraph

��!� G(�en�; �)
F: the digraph without any weights

��!� G(nil; nil)
The sign , indicates an inversible transformation preserving regional
minima and catchment zones
The sign ) marks an operator preserving regional minima and catch-
ment zones, but is not reversible.
The �gures 1 (A,B,C,D,E F) have the same �ooding paths, regional
minima and catchment basins.

3.3.2 For an initially edge weighted graph

Fig.2 presents all avatars of an edge weighted graph encountered so far:
A: an edge weighted graph G(�; nil)

10



Figure 1: A: a node weighted graph G(nil; �) ; O: G(�en�; nil) ; B:
� G(nil; �) ; C: the �ooding graph � G(�en�; �) ; D: the edge weighted
graph � G(�en�; nil) ; E: the �ooding digraph

��!� G(�en�; �) ; F: the di-
graph without any weights

��!� G(nil; nil)
The sign , indicates an inversible transformation preserving regional
minima and catchment zones
The sign ) marks an operator preserving regional minima and catch-
ment zones, but is not reversible.
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O: the graph G(nil; "ne�) has not the same regional minima as the graph
G(�; nil)
B: the graph # G(�; nil) obtained by suppressing the non �ooding edges
of G(�; nil)
C: the node and edge weighted �ooding graph # G(�; "ne�)
D: the node weighted graph # G(nil; "ne�)
E: the node and edge weighted �ooding digraph

�!# G(�; "ne�)
F: the �ooding digraph without weights

�!# G(nil; nil)
The sign , indicates an inversible transformation preserving regional
minima and catchment zones
The sign ) marks an operator preserving regional minima and catch-
ment zones, but is not reversible.
All �gures 2(A,B,C,D,E,F) have the same �ooding paths, regional min-
ima and catchment basins.

3.4 Partial conclusion
It is possible to derive from each node (resp. edge) weighted graph
a �ooding graph and from the �ooding graph an edge (resp. node)
weighted graph. A digraph without edge or node weights may also be
derived from the �ooding graph. All these graphs have the same catch-
ment zones. For this reason, all watershed algorithms developed for node
(resp. edge) weighted graphs also apply to edge (resp. node) weighted
graphs. It is su¢ cient to apply them to the derived node (resp. edge)
weighted graph.
Furthermore new algorithms, as the one presented below, may be

developed applicable to the �ooding digraphs.

4 Reducing the watershed zones

Each node linked by a �ooding path with several distinct regional min-
ima belongs to the corresponding catchment zones. This makes adjacent
catchment zones overlap. We aim at reducing these overlaping zones, but
without any arbitrary choice between equivalent �ooding paths.
Ordering the �ooding paths according to their steepness and keeping

only the steepest one drastically reduces the overlaping zones of adjacent
basins: all edges not belonging to these steepest paths are suppressed.
The weights of the nodes or the edges of the graph are not modi�ed. The
graph simply has less edges and a drop of water less available trajectories
and less freedom to reach distinct regional minima.
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Figure 2: A: an edge weighted graph G(�; nil) ; O: G(nil; "ne�) ; B: the
graph # G(�; nil) ; C: the �ooding graph # G(�; "ne�) ; D: # G(nil; "ne�)
; E: the node and edge weighted �ooding digraph

�!# G(�; "ne�) ; F: the
�ooding digraph without weights

�!# G(nil; nil)
The sign , indicates an inversible transformation preserving regional
minima and catchment zones
The sign ) marks an operator preserving regional minima and catch-
ment zones, but is not reversible.
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4.1 An order relation between �ooding paths
Consider a �ooding graph G(�; �): A �ooding path � containing the
series of nodes (p1; p2; :::pk = m) ending at a node m belonging to a
regional minimum may be prolongated into a path of in�nite length:
a) if the regional minimum contains another node q; then the path

will inde�nitely go back and forth between m and q ;
b) if the regional minimum is isolated, it has been completed by a

self-loop between m and itself and the path will inde�nitely cycle along
this loop.
The lexicographic preorder relation of length k compares the

in�nite paths � = (p1; p2; :::pk; :::) and � = (q1; q2; :::qk; :::) by considering
its k �rst nodes and edges:

* � �k � if �p1 < �q1 or there exists t < k such that
8l < t : �pl = �ql
�pt < �qt

* � �k � if � �k � or if 8l � k : �pl = �ql :

4.2 The ^k � steep �ooding paths and ^k � steep catch-
ment zones

The preorder relation �k is total, as it permits to compare all paths with
the same origin p. The lowest of them are called the k � steep paths of
origin p:
If a path � is the k � steep of origin p and if for each node q of

�; the sub-path of origin q is itself k � steep of origin q; we say that
� is uniformly k � steep and write ^k � steep: For instance a �ooding
path is a ^1� steep path, as each node is followed by one of its lowest
adjacent edges (the algorithm for constructing waterfalls in [10] and
for constructing watershed cuts in [5] are based on ^1� steep paths).
In a ^2� steep path, each node is linked by an edge with one of its
lowest neighboring nodes ([19, 13] de�ne the catchment basins as Voronoï
tessellation of the regional minima for the topographic distance ; the
geodesics are then ^2� steep paths).
The ^k � steep catchment zone associated to a regional minimum mi

is de�ned as the set of nodes linked by a ^k � steep path with this min-
imum. If l > k; then any ^l � steep path � is also a ^k � steep path.
As a consequence, any ^l � steep catchment zone is included in a larger
^k � steep catchment zone. Increasing the index l reduces the overlapping

catchment zones between basins.
An 1 � steep path of origin p is at the same time ^1� steep, as

any of its sub-paths is an 1� steep path. Such 1� steep catchment
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zones rarely overlap, at least if one considers natural images: it only
happens if a node is linked with two distinct minima by two �ooding
paths holding exactly the same weights. In particular, if the regional
minima have distinct weights, it cannot happen and the catchment zones
are in reality catchment basins and form a partition.

4.3 Method by pruning the graph
We now present a local pruning operator which, when applied iteratively,
suppresses the highest edge of the paths which are not ^k � steep ; with
each iteration the steepness increases by 1: The pruning is applied on
the oriented digraph associated to the initial graph. It makes use of the
orientation of the arcs and of the weights of the nodes. The weights of
the edges are redundant, as each arc has the same weight as its origin.
We de�ne an erosion and a pruning on the digraph. The erosion �!" n

assigns to each node the weight of its lowest target node (if �!pq is an
arrow, then p is the origin and q the target of the arrow). The pruning
�2 considers all arrows with the same origin and suppresses all those
whose target has not a minimal weight.

4.4 Keeping only ^k � steep paths
Consider a �ooding graph

�!
G: We start with the pruning �2 �!G; after

which only ^2� steep paths survive. We then iteratively apply the oper-
ator �2 �!"n to the graph. We call �k

�!
G the result of applying k � 2 times

the operator �2 �!"n to the graph �2 G : �k
�!
G = (�2 �!"n)(k�2) �2

�!
G:

Theorem 25 Each arc of �k �!G is the �rst arc of a ^k � steep path of
the original graph

�!
G: We say that �k �!G is a ^k � steep graph.

Proof. Suppose that after iterating (k � 3) times the operator �2 �!"n
on �2 �!G; we get a ^(k � 1)� steep graph. Consider now two paths � =
(p1 ; p2 ; :::pk) and �

0 = (p1 ; p
0
21; :::p

0
k) in this graph. The weights of pi and

p0i are �i and �
0
i: The k�1 �rst nodes have identical weights but the last

ones verify �k > � 0k; indicating that �
0 is steeper than �: Eroding the

graph
�!
G once assigns to the node p1 the weight �2 = � 02 and to the nodes

p2 and p02 the weights �3 = �
0
3: The subsequent pruning �2 preserves the

edges (p1; p2) and (p1; p02): With successive erosions, the weights of the
nodes along the paths � and �0 �le past the two �rst nodes. Since the
weights of the nodes p2 and p02 are equal after each of these erosions, the
operator �2 preserves both edges (p1; p2) and (p1; p02). The erosion k � 2
assigns to the node p1 the weight �k�1 = � 0k�1 and to the nodes p2 and p

0
2
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Figure 3: In a ^k � steep graph, each oriented path is a ^k � steep path

respectively the weights �k and � 0k verifying �k > �
0
k. Thus he operator

�2 cuts the edge (p1; p2). The graph is now ^k � steep:

4.4.1 Properties of ^k � steep graphs

In a ^k � steep graph, each arc is the �rst arc of a ^k � steep path of
the original graph

�!
G: This means that through each arc �!pq passes a

^k � steep path with origin p: The following theorem states a stronger
result.

Theorem 26 In a ^k � steep graph, each oriented path is a ^k � steep path.

Proof. The theorem is obviously true for ^1� steep and ^2� steep graphs.
Suppose that it is true for ^(k � 1)� steep graphs and lets show it is

true for ^k � steep graphs. Consider the �g.3 ; we suppose that it is
a ^k � steep graph. Through the arc �!pq passes a ^k � steep path �!pq B
�1: Consider another arbitrary oriented path

�!pr B �2 and let us show
that it is also a ^k � steep path. The arc �!pr belongs to a ^k � steep graph
and thus is the �rst arc of ^k � steep path �!pr B �3: (�2 and �3 may be
identical). But then �2 and �3 are 2 ^(k � 1)� steep paths, which by
hypothesis are identical. This means that the paths �!prB �3 and �!prB �2
also are identical.
Let us now analyse under which conditions double arcs may subsist

in a ^k � steep graph. Consider the �g.4 of a ^k � steep graph. The paths
�!pqB �rstk�1(�1) and �2 are two oriented paths with origin p of length k
; hence they are identical. Similarly the paths �!qp B �rstk�1(�2) and �1
are two oriented paths with origin q of length k are identical. We have
�!pq B �rstk�1(�1) = �2 and �!qp B �rstk�1(�2) = �1
If the weight of the arcs�!qp and�!p q is � and the weights of the path �2

are (�1; �2; :::; �k); then
�!pqB�rstk�1(�!qpB�rstk�1(�2)) = (�; �; �1; :::�k�2) =

�2 = (�1; �2; :::; �k):;
From this relation we derive �1 = �; �2 = �; �3 = �1 = �; etc: All

weights of the paths �1 and �2 are equal. This means that there exists in
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Figure 4: For k large enough, there are no double arcs anymore in the
graph �k �!G

the graph G plateaus with a depth larger than k: Applying the operator
�k did not succeed in letting a smaller value than � occupy the node p or
the node q: However, after with the operator �1, such a situation cannot
happen any more and no plateaus subsist.

4.5 Demonstration
Fig.5A (resp. �g.6A) is the same �ooding digraph as in �g.1E (resp.
�g.2E) in which we only keep the node weights. The successive draw-
ings of �g.5 represent the evolution of the graph during the successive
operations, alternatively pruning �2 and eroding �!"n until stability. After
each iteration, the overlapping zones of neighboring catchment zones is
reduced. At each iteration, up to convergence the catchment zone get
reduced.

4.6 Downstream and upstream construction

In a ^k � steep (resp. ^1� steep) graph, each �ooding path is a ^k � steep
(resp. ^1� steep) path. Following these paths either downstream or
upstream permits to segment graphs or parts of graphs. The objects of
interest are marked by assigning a label to one or several inside nodes
in each object. Distinct objects get distinct labels. Two adaptative op-
erators are used, one for propagating the labels upstream, the other for
propagating them downstream.
Downstream operator
If the node p holds a label � : for each node q such that p ! q :

assign the label � to q:
If several nodes with an arrow towards q hold distinct labels, one

assigns to q one of them (according to any arbitrary or speci�c rule).
This operator is applied until stability.
Upstream operator
If the node q holds a label � : for each node p such that p ! q :

assign the label � to p:
If several nodes with distinct labels are the target of an arrow with

origin p; one of them is assigned to p (according to any arbitrary or
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Figure 5: A: an oriented �ooding graph
��!
G(0) with its node weights.

B: �2
��!
G(0)

C: �!"n �2
��!
G(0)

D:
��!
G(1) =�2 �!"n �2

��!
G(0) = � �2

��!
G(0)

E: �!"n
��!
G(1)

F:
��!
G(2) =�2 �!"n

��!
G(1) = �

��!
G(1): The resulting graph is cut in 4 connected

components, each containing one regional minimum.
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Figure 6: A: an oriented �ooding graph
��!
G(0) with its node weights.

B: �2
��!
G(0)

C: �!"n �2
��!
G(0)

D:
��!
G(1) =�2 �!"n �2

��!
G(0) =�3

��!
G(0): The resulting graph is cut in 4 connected

components, each containing one regional minimum.
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speci�c rule).
This operator is applied until stability.
Remark
It is the �rst time that we meet an arbitrary choice in this paper.

This choice occurs if there is a con�ict between several downstream or
upstream regions withs distinct labels.

4.6.1 Extraction of one or marked catchment zones

The downstream and upstream operators permit toselectively extract
one or several catchment zones in an image or in a graph. A �ooding
graph is �rst produced, transformed in its �ooding digraph and then
pruned in order to extract a ^k � steep or ^1� steep digraph.
One or several nodes are then assigned labels. These labels are �rst

propagated downstream ; after convergence, the resulting labeled nodes
contain the regional minima of the labeled catchment zones ; their up-
stream propagation extracts the marked catchment zones.
Fig.7 presents a digital elevation model of a landscape containing

multiple rivers belonging to distinct geographical catchment basins. A
node has been marked in the left image. The downstream of this node
is a river and a regional minimum, illustrated in the central image. The
upstream of this river constitutes the catchment zone of the marked
node.
As the value k increases, the catchment zones get smaller and be-

comecloser and closer to the ideal catchment zones associated to ^1� steep:
Already small values of k give acceptable approximations of catchment
zones. In �g.8 we compare the catchment zones extracted from the same
�ooding digraph after only a few steps of pruning. The �rst one has been
obtained for �3 �!G; : the second for �4 �!G; the third for �6 �!G: This last
one is almost identical with the catchment zones associated to �1 �!

G:
As the operator �k is extremely simple, it may be easily implemented
in any architecture. Therefore, it is not costly to apply it to the �ood-
ing digraph for small values of k. A parallel algorithm as in [12] will
give better results as the original paper which only considers ^2� steep
graphs.
The ^1� steep paths are extremely narrow. In �g. 9 we have marked

a few minor rivers. The downstream operator nicely and selectively ex-
tracts the complete river having the marked points as origins.

5 Conclusion

Considering overlapping catchment zones in place of a partition of catch-
ment basins has opened new perspectives. Representing the topographic
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Figure 7: Left: a node p is marked ; Centre: Downstream of the node ;
Right: Upstream of the downstream=catchment zone containing p

Figure 8: Extraction of a marked catchment zone. Details showing the
evolution of the contour after respectively 1, 2, 4 and an in�nite number
of pruning steps.

Figure 9: Left: a number of pixels are marked
Right: Downstream of the markers = rivers
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surface as weighted graphs permits to address both the construction of
the watershed on images as the construction of the waterfall or watershed
on region adjacency graphs.
In a �ooding graph, the �ooding paths, regional minima and catch-

ment basins remain the same whether one considers the node weights
only or the edge weights only. We have shown how to transform any node
or edge weighted graph into a �ooding graph. Like that, all algorithms
developed for node weighted graphs or for edge weighted graphs may be
applied on the �ooding graph.
By reducing the number of available trajectories a drop of water

may follow, the catchment zones also overlap less. An iterative prun-
ing algorithm progressively suppresses �ooding paths according to their
steepness. According to the degree of pruning, approximative catchment
basins or exact catchment basins may then be obtained, with minimal
arbitrary choices.
As the remaining �ooding paths are extremely selective, they lead

to new applications: following the downstream or the upstream of a
node, studying the local orientation of the steepest paths, constructing
adaptive neighborhoods for �ltering images.
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