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Abstract—We present a segmentation strategy which first
constructs a hierarchy, i.e. a series of nested partitions. A coarser
partition is obtained by merging adjacent regions in a finer
partition. The strength of a contour is then measured by the
level of the hierarchy for which its two adjacent regions merge.
Various strategies are presented for constructing hierarchies
which highlight specific features of the image. The last part shows
how the hierarchies lead to a final segmentation.
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I. INTRODUCTION

If one considers an image as a topographic surface, the
watershed transform partitions the domain of the function into
catchment basins [4], [11]. Each catchment basin represents
the attraction basin of a regional minimum of the function.
The watershed partition counts numerous tiles, as many tiles
as there are regional minima in the gradient images : the image
is oversegmented and has to be regularized.

For segmenting a scene, the watershed is applied to its
gradient image. Fig.1 presents a grey tone image, its gradient
and the watershed partition, which is oversegmented and has
to be regularized. A popular regularization method chooses a
reduced number of minima and suppresses all others [8]. This
method is called marker driven watershed segmentation, as the
minima to be kept are marked. This method is robust as the
resulting segmentation is insensitive to a large extent to the
shape or position of the markers.

The quality of the result depends on a correct estimation
of the contour strength as given by the gradient image. The
modulus of the gradient is computed within a small window ; it
is sensitive to noise and other perturbations of the images such
as blur. For this reason a purely local estimation of the contour
strength is often not satisfactory. In this paper we propose
more robust but also more selective methods for estimating the
contour strength. Furthermore, these methods may be tailored
such as to take into account specific features of the image.
The fine segmentation is modeled as an edge weighted graph
on which all subsequent processings are performed.

II. FROM THE IMAGE TO A FINE PARTITION

A. The Region Adjacency Graph

To be efficient, we work at two resolutions. The lowest
level is the pixel level: the initial image is segmented and
a fine partition produced. The highest level is the level of

Fig. 1. A gray tone image, its gradient and the watershed segmentation
associated to the minima of the gradient.

regions, of partitions and families of partitions. We suppose
that the fine partition produced by an initial segmentation (for
instance the watershed transform presented above) contains all
contours making sense in the image. We define a dissimilarity
measure between adjacent tiles of the fine partition. As an
example, in the case of the watershed transform, it may be
the lowest altitude or the mean altitude of the watershed line
separating two adjacent basins. In the case of color images the
dissimilarity may be derived from various color distances.

Partition and dissimilarity between adjacent tiles are then
modelled as an edge weighted graph, the region adjacency
graph or RAG: each node represents a tile of the partition
; an edge links two nodes if the corresponding regions are
neighbors ; the weight of the edge is equal to the dissimilarity
between both regions. Working on the graph is much more
efficient as working on the image, as there are fare less nodes
in the graph as there are pixels in the image.

B. Reminders On Node And/or Edge Weighted Graphs

A non oriented graph G = [N,E] contains a set N of
vertices or nodes and a set E of edges ; an edge being a
pair of vertices. The nodes are designated with small letters:
p, q, r...The edge linking the nodes p and q is designated by
epq.The partial graph associated to the edges E′ ⊂ E is G′ =
[N,E′].

Edges and/or nodes may be weighted. Denote by Fe and
Fn the sets of non negative weight functions on the edges and
on the nodes respectively. The function η ∈ Fe takes its value
ηpq on the edge epq. The function ν ∈ Fn takes the weight
νp on the node p.

A path, π, is a sequence of vertices and edges, interweaved
in the following way: π starts with a vertex, say p, followed by
an edge eps, incident to p, followed by the other endpoint s of



Fig. 2. A: a partition represented by an edge weighted graph
B : the minimum spanning tree of the graph
C : two connected subgraphs, obtained by cutting all edges with a weight
above 6. They span a partition of 2 regions.
B : two connected subtrees, obtained by cutting all edges with a weight above
6. They span the same partition of 2 regions

eps, and so on. A connected subgraph is a subgraph where each
pair of nodes is connected by a path. A cycle is a path whose
extremities coincide. A tree is a connected graph without cycle.
A spanning tree is a tree containing all nodes. A forest is a
collection of trees.

C. The Ultrametric Hierarchy [3]

1) The Ultrametric Distance: We define the altitude of the
path π as the weight of the highest edge along the path. Among
all paths between two nodes p and q, the paths with the lowest
altitude are called critical paths ; their altitude constitutes an
ecart δpq (and not a distance as δpq = 0; p = q) between p
and q :

- δpp = 0
- for (p, q, s) : δps ≤ δpq ∨ δqs . (Proof: Concatenating a

critical path between p and q of altitude δpq and a critical
path between q and s of altitude δqs is a path between p and
s whose altitude is higher or equal to the altitude of a critical
path between p and s). This inequality is called ultrametric
inequality and the ecart δpq ultrametric distance

2) The Minimum Spanning Tree: In a spanning tree, there
exist one and only one path linking two nodes. If this path is
always a critical path, the spanning tree is a minimum spanning
tree, i.e. the sum of the weights of its edges is minimal. Fig.2B
represents a minimum spanning tree T of the graph of fig.2A.
Any two nodes are linked by a unique path in this tree, and
this path is a critical path. Cutting the highest edge in this path
disconnects the MST in two trees, each of them containing one
node. Cutting the edges above a threshold λ in the RAG or in
the MST disconnects the same nodes as illustrated by fig.2C
and D.

3) The Ultrametric Hierarchy: The open ball of center p
and radius ρ is Ball(p, ρ) = {q | δpq < ρ} and the closed ball
Ball(p, ρ) = {q | δpq ≤ ρ}. The following lemmas are easy
to prove.

Fig. 3. An image, its watershed partition, followed by 4 levels of the
ultrametric gradient hierarchy, going from coarse to fine.

Lemma 1: Each element of a ball Ball(p, ρ) is centre of
this ball

Lemma 2: Two balls Ball(p, ρ) and Ball(q, ρ) with the
same radius are either disjoint or identical.

Since each node p belongs to one and only ball, namely
Ball(p, ρ), the balls with the same radius form a partition of
the nodes.

For increasing radii, the balls are increasing : λ < µ ⇒
Ball(p, λ) ⊂ Ball(p, µ). Hence the balls Ball(p, µ) form a
coarser partition as the balls Ball(p, λ). And Ball(p, µ) is the
union of all balls Ball(q, λ) for q ∈ Ball(p, µ). A series of
partition where the tiles of a coarse partition are obtained by
unions of tiles of finer partitions is called a hierarchy.

One would expect that the coarse levels of the hierarchy
represent the most salient features of an image and the finer
levels constitute minor details and refinements. If the fine
partition represented by the RAG is the watershed partition
associated to a gradient image, this is unfortunately not the
case. Fig.3 presents an image followed by the watershed
partition of its gradient image. The contour separating two
tiles is weighted by the ultrametric distance between the tiles.
The next 4 images show 4 hierarchies obtained for decreasing
values of the radius of the balls Ball(p, λ). The coarsest levels
of the hierarchy only contain small and contrasted objects of
the initial image. The larger structures appear only later. This
is due to the fact that the contour surrounding a large object is
more likely to have a weaker portion with low values. For this
reason this region is more likely to merge with neighboring
regions ; it appears as an isolated region for relatively small
values of λ in the balls Ball(p, λ).

4) A Minimum Spanning Forest Associated To Markers:
Cutting all edges of the MST with a weight higher than λ
creates a spanning forest. Among all forests with the same
number of trees, this forest is a minimum spanning forest
MSFλ, the sum of its weights being minimal. Two nodes p
and q belonging to the same tree of the forest have a distance
δpq < λ : they belong to the same ball Ball(p, λ). Hence the



trees of the forest and the balls Ball(p, λ) induce the same
partition of the nodes. As shown above, this partition often
does not well represent the salient features of an image.

More interesting partitions are obtained with the same
number of trees, if we chose the roots of the trees. We select
a subfamily (mi) of nodes, (also called markers) within N
and construct a minimum spanning forest where each tree is
rooted in a marker. Each minimum spanning forest is obtained
by cutting some edges of the MST. Consider two consecutive
markers m1 and m2 on the MST, such that there exists no other
marker along the path along the MST joining both markers. In
order to get a forest, one has to cut an edge along this path ; in
order to minimize the total weight of the edges, one cuts the
highest edge. The same process applied to all pairs of edges
produces the desired minimum spanning forest [9].

Consider two consecutive markers m1 and m2. Suppose
that the highest edge epq on the path of the MST linking
both markers has a weight λ. If p and m1 (resp. q and m2)
are connected after cutting epq, then the altitude of the path
linking p with m1 (resp. q with m2) is lower then λ. This
gives us a criterion for recognizing whether a given edge of
the MST belongs or not to the MSF associated to a family
of markers: the edge epq with weight λ does not belong to
the MSF if and only if there exists 2 paths with an altitude
lower than λ, one linking p with a marker and another linking
q with another marker. Or equivalently, if the balls Ball(p, λ)
and Ball(q, λ) contain each at least one marker. This criterion
will be used all along of this paper for deriving various feature
driven hierarchies.

5) A Hierarchy Based On Prioritized Markers: The pre-
vious section has explained how to associate a partition to
a family (mi) of the nodes taken as markers. Let F be the
minimum spanning forest associated to these markers. Suppose
that we add a new marker n. A marker mk of the family is a
neighboring marker of n if there exists a path between n and
mk along the MST on which there is no other marker. Such
a path belongs to the tree Tk rooted in mk. The highest edge
along this path has to be cut. Like that the tree Tk is cut in
two parts. Hence, by adding new markers, one obtains finer
partitions [9].

Consider now a family of markers ranked according to some
priority (mi). We want to construct a hierarchy associated to
this family. The coarsest level of the hierarchy is the partition
associated to the markers with the highest priority. Every time
we add a marker, we obtain a finer partition, as a tile of the
coarser partition is cut in several parts. Our goal is to define
new weights θpq for the edges epq such that cutting all edges
with a weight above k produces a minimum spanning forest
associated to the k markers with the highest priorities.

The edge epq with weight ηpq = λ does not belong to the
MSF if the balls Ball(p, λ) and Ball(q, λ) contain each at
least one marker. If there is no marker at all in one of the
balls θpq = 0. If µp and µq are the highest priorities of the
markers present respectively in Ball(p, λ) and Ball(q, λ), then,
by choosing all markers with a priority higher or equal than
µp ∧ µq, there will be a marker in each of the balls. If we

Fig. 4. A number of prioritized markers have been chosen: they appear as
disks whose shade of grey is brighter for higher priorities. The associated
hierarchy is illustrated through the saliency of the contours in the second
image and through 4 levels of the associated hierarchy.

assign to the edge epq the weight µp ∧ µq, we obtain the
desired result.

The algorithm visits all edges of the MST in the order of
increasing weights. Repeat until all edges are processed:

Let epq the current edge to process with a weight λ.
If µp and µq are the highest priorities of the

markers present respectively in Ball(p, λ) and Ball(q, λ), we
assign to the edge epq the weight µp ∧ µq.

Illustration: In fig.4 a number of prioritized markers have
been introduced ; they appear in the second image as disks
whose brightness is proportional to the priority. The saliency
of the hierarchy is indicated in the same image. The boundary
between two regions has a shade of grey proportional to the
hierarchy level for which it disappears. The last 4 images rep-
resent 4 partitions of the associated hierarchy with decreasing
coarseness.

III. THE STOCHASTIC WATERSHED

The last section has shown how ranking the markers gen-
erates a hierarchy. We now replace deterministic markers by
stochastic markers. The seminal idea, introduced by Angulo
[1], [2], is to spread random germs all over the image and to
use them as markers for the watershed segmentation. Large
regions, separated by low contrast gradient from neighboring
regions will be sampled more frequently than smaller regions
and will be selected more often. On the other hand, strong
contours will often be selected by the watershed construc-
tion, as there are many possible positions of markers which
will select them. Evaluating the strength of the contours
by simulation offers a great versatility : various laws for
the implementation of point patterns, various shapes for the
markers themselves may be used. The method suffers however
from a serious handicap, if the contour strength is evaluated
through simulations, as each of them requires the construction
of a watershed segmentation. We show below, not only how
simulations may be avoided, but also how to imagine scenarios
which would be difficult or even impossible to simulate [10].



A. Principle Of The Method

We imagine that we draw random germs on the domain
where the image is defined and compute the probability of
each piece of contour to appear in the associated segmentation.
We have to assign to each edge epq of the MST with an
initial weight ηpq a new weight θpq equal to the probability to
appear as a contour. In a first stage we only consider points a
markers. Later we will also considers arbitrary, stochastic or
deterministic, sets as markers.

As shown above, the edge epq with weight ηpq = λ does
not belong to the MSF if the balls Ball(p, λ) and Ball(q, λ)
contain each at least one marker. Thus the probability θpq is
equal to the probability that there is at least one random marker
in each of the balls Ball(p, λ) and Ball(q, λ).

For the sake of simplicity, we chose a Poisson distribution
of germs over the domain. We fix the number of germs to be
equal to ω ; the distribution is then uniform. Consider a set
X of area A within a domain D of area S. The probability
that there falls no one germ within the domain X is then(
1− A

S

)ω
. And the probability that there is at least one germ

in X is then 1−
(
1− A

S

)ω
1) Absorption Of The Smallest Region:

a) Area Oriented Absorption: Consider the edge epq with
weight ηpq = λ and the balls Ball(p, λ) and Ball(q, λ). Let
ap and aq be the areas of these balls. We place a deterministic
marker in the region with the largest area and a random
marker in the smallest. The probability θpq is then equal to
the probability that there exists at least one random marker in
the smallest region of area ap ∧ aq, i.e. 1−

(
1− ap∧aq

S

)ω
.

b) ”Volume” Oriented Absorption: The previous crite-
rion is based on the area of the balls Ball(p, λ) and Ball(q, λ).
For high values of λ this area is likely to be larger than for
small values. However, in order to reinforce the influence of
the contrast, one may multiply the areas of the balls Ball(p, λ)
and Ball(q, λ) by the value λ. This product λap may be
considered as a kind of volume. Let λmax be the highest weight
of the edges of the MST. The probability that no marker falls
within the volume λap within the total volume λmasS is then(
1− λ ap∧aq

S∗λmax

)ω
. Remark that whereas the absolute values of

λ depend upon the global contrast of the image, the evaluation
of the contour strength is nevertheless relatively robust against
the change of contrast, as it is based on the ration λ/λmax.

c) Contrast Oriented Absorption: Consider again the
watershed segmentation. If the image on which the watershed
is constructed is a gradient image, the significant features
are the levels of the pass points between adjacent regions
; the level of the minima, often near to 0, has not much
signification. In other situations one has to construct the
watershed on images of a different type, for which the levels
of the minima is significant. For instance, the micro-aneurisms
in a retina appear as dark spots for which the level of the
minima is significant. Another example is the segmentation of
text on a document (see fig.9) In such situations, the noise
often appear also as dark spots with less contrast. With the
stochastic watershed less contrasted regions get absorbed by

Fig. 5. The surfacic stochastic watershed hierarchy. The saliency of the
contours followed by 4 levels of the hierarchy.

more contrasted regions. We measure the contrast of the ball
Ball(p, λ) as the difference between λ and the deepest value
ζp taken by the image in Ball(p, λ). We put a hard marker
in the most contrasted region and compute the probability
that there is a marker in the less contrasted region for ω
markers uniformly distributed in the range [0, ζp], yielding(
1− λ−ζp∧ζq

λmax

)ω
.

2) The Symmetrical Stochastic Watershed:
a) The Area Based Stochastic Watershed: We now con-

sider the distributions of markers in both balls Ball(p, λ)
and Ball(q, λ). In short we write Bp = Ball(p, λ) and
Bq = Ball(q, λ). The weight θpq of the edge epq is then equal
to the probability of the event:
E = {there is at least one marker in Bp} and {there is at

least one marker in Bq}
The opposite event is the union of two non exclusive events:
noE = {there is no marker in Bp} or {there is no marker

in Bq}.
Its probability is:
P (noE) = P {there is no marker in Bp} + P {there is no

marker in Bq} - P {there is no marker in Bp ∪Bq}
And P (E) = 1−

(
1− ap

S

)ω − (1− aq
S

)ω
+
(
1− ap+aq

S

)ω
Fig.5 presents the surfacic stochastic hierarchy: the initial

image, the new saliency of the contours, followed by 4 levels
of the hierarchy.

3) The Volume Based Stochastic Watershed: For stressing
more the strength of the gradient separating both regions
Ball(p, λ) and Ball(q, λ), we replace the measures of the areas
ap and aq by the pseudo volumes λap and λaq. The markers
being distributed in a total volume S × λmax.

The probability that there exists at least one markers in both
”volumes” is then:
P (E) = 1 −

(
1− λ ap

S×λmax

)ω
−
(
1− λ aq

S×λmax

)ω
+(

1− λ ap+aq
S×λmax

)ω
4) The Symmetrical Stochastic Watershed Within Trans-

formed Domains: Until now we considered the domains
Ball(p, λ) and Ball(q, λ) only through their area or the deepest



value taken by the image within the balls. In order to now
take into account also their shape, we apply an anti-extensive
morphological operator ψ on the balls: ψ(X) ⊂ X . The area
of ψ(X) is thus smaller than the area of X. The most common
operators are the erosion and the opening. This opens a large
choice of possibilities : erosion or opening, type of structuring
elements (often disks or segments in various directions), size
of the structuring element, etc.

We define βp = area[ψBall(p, λ)]. The probability θpq

to be assigned to the edge epq is then 1 −
(
1− βp

S

)ω
−(

1− βq

S

)ω
+
(
1− βp+βq

S

)ω
It is noteworthy that this assignment of probabilities cannot

be obtained by the simulation method used by Jesus Angulo,
consisting in introducing real random germs in the image and
constructing the watershed partition for each new simulation.

5) The Symmetrical Stochastic Watershed With Non Punc-
tual Markers: The computation which follows corresponds to
the experiment where one uses random markers, which are not
reduced to points. We suppose that Zx is a marker implanted at
a random position x. For the sake of simplicity we suppose that
Z is the same marker everywhere, and its implementation is
random. It is possible to imagine and compute the probabilities
using random markers (for instance disks with random radii,
segments with random or regionalized length and orientation
etc.). Recall that the structuring element Zx hits a set X if its
center x belongs to the dilation of X by Z : x ∈ X ⊕ Z.

Taking the same notations as above : the edge epq will be
cut for a random distribution of markers, if the 3 following
events are verified:

- A1 = {∃ random marker Z hitting Bp} = {∃ random
point marker belonging to Bp ⊕ Z}

- A2 = {∃ random marker Z hitting Bq} = {∃ random
point marker belonging to Bq ⊕ Z}

- A3 = {@ random marker Z hitting Bp and Bq} = {@
random point marker belonging to (Bp ⊕ Z) ∩ (Bq ⊕ Z)

The balls Bp and Bq before and after dilation by an
horizontal segment, and the intersection (Bp ⊕ Z)∩(Bq ⊕ Z)
of both dilated sets are illustrated in fig.6

We have to compute P (A1 and A2 and A3) = P (A1 and
A2 | A3)× P (A3).

If Spq is the area of (Bp ⊕ Z)∩ (Bq ⊕ Z) , then P (A3) =(
1− Spq

S

)ω
.

And P (A1 and A2 | A3) = 1 − P (notA1 or notA2 |
A3) = 1 − P (notA1 | A3) − P (notA2 | A3) + P (notA1
and notA2 | A3)

The conditional probability P (. | A3) means that all
punctual germs have been distributed outside (Bp ⊕ Z) ∩
(Bq ⊕ Z) , that is in an area S−Spq. And the event (notA1 |
A3) means that there is no germ falling in Bp ⊕ Z, knowing
that there is also no germ falling in (Bp ⊕ Z) ∩ (Bq ⊕ Z) ,
i.e. there is no germ falling in (Bp ⊕ Z)� (Bq ⊕ Z) , do-
main with an area Sp�q. Thus the probability is equal to(
1− Sp�q

S−Spq

)ω
. Exchanging the roles of p and q, we get

P (notA2 | A3) =
(
1− Sq�p

S−Spq

)ω
.

Fig. 6. 1: The two balls Bp and Bq and a number of structuring elements
hitting the balls. The black ones hit both balls.
2: The dilated balls Bq ⊕Z and Bp ⊕Z and their intersection (Bq ⊕ Z)∩
(Bp ⊕ Z) in cyan colour.

Fig. 7. A: Partition and its minimum spanning tree
B: Area stochastic watershed: a random marker in both colored regions Bp

and Bq

C: Area oriented absorption stochastic watershed: a fixed marker in the largest
region Bp and a random marker in the smaller region Bq

D: Area stochastic watershed with transformed domains: a random marker in
the regions obtained by a linear opening of Bp and Bq .

The event {notA1 and notA2 | A3} means that
there is no punctual germ in (Bp ⊕ Z)� (Bq ⊕ Z)
nor in (Bq ⊕ Z)� (Bp ⊕ Z) . If Sp4q is the area
of (Bp ⊕ Z)� (Bq ⊕ Z)∪ (Bq ⊕ Z)� (Bp ⊕ Z) , we
obtain the probability P (notA1 and notA2 | A3) =(
1− Sp4q

S−Spq

)ω
.

Putting everything together, we get the new weight θpq ={
1−

(
1− Sp�q

S−Spq

)ω
−
(
1− Sq�p

S−Spq

)ω
+
(
1− Sp4q

S−Spq

)ω}
×(

1− Spq

S

)ω
6) Illustration: Fig.7A presents the partition and a mini-

mum spanning tree derived from the dissimilarities between
adjacent regions. We want to evaluate the strength of the blue
edge epq , having a weight equal to 4. This edge will get a new
weight θpq according various scenarii:
Fig.7B: Area stochastic watershed : All edges with a weight
above or equal to 4 are cut, leaving two trees representing the
regions Bp = Ball(p, 4) and Bq = Ball(q, 4). Two yellow



polygons symbolize two random markers in these balls. θpq
is the probability that at least one marker falls in each of the
regions Bp and Bq.
Fig.7C: Area oriented absorption: A non random marker (large
red polygon) is placed in the largest ball Bp. θpq is the
probability that a random marker (yellow polygon) falls in
the smallest region Bq
Fig.7D: Area stochastic watershed with transformed domains:
Both balls Bp and Bq are submitted to an opening γ by a
segment in the direction 2π/3. θpq is the probability that at
least one marker falls in each of the opened regions γBp and
γBq.

B. More Hierarchies

1) The Waterfall Hierarchy: Starting with the MST of
the RAG, we keep for each node one and only one of its
lowest neighboring edges. We create like that a spanning
forest. Assigning the same label to all nodes of each tree
yields the level 2 of a hierarchy. The next level is obtained
by retaining for each tree one and only one of the edges
linking this tree with a neighboring tree. A number of tree
has merged, creating a forest with less trees, inducing the
partition of level 3 of the hierarchy. The same process may go
on, creating at each stage a new level of the hierarchy. This
hierarchy has first been described in the context of flooding a
topographic surface, and called waterfall hierarchy [5]. If the
nodes represent the catchment basins of a topographic surface,
and a basin is flooded, then it overflows, creating a waterfall,
into a neighboring basin and this overflow occurs along its
lowest edge.

It is possible to produce the waterfall hierarchy in one pass
through the edges of the MST, with initial weights τpa. We
will assign to each edge epq of the MST a new weight θpq
expressing the level of the waterfall hierarchy. The algorithm
visits all edges of the MST in the order of increasing weights
τ . Repeat until all edges are processed:

Let epq the current edge to process with a weight
λ. The initial weights τ of the edges of Bp = Ball(p, λ) and
Bq = Ball(q, λ) are lower than λ. Hence all the new weight θ
of these edges has already been computed. The highest weight
taken by the function θ in the ball Bp is called diameter of
the ball and we write diamBp. The waterfall level θpq is then
equal to: θpq = 1+min(diamBp,diamBq). The diameter of
the ball Bp ∪ {u} ∪Bq is then max(diamBp, θpq,diamBq).

Fig.8 presents the waterfall hierarchy: the initial image, the
waterfall saliency of the contours, followed by 4 levels of the
waterfall hierarchy.

2) Cascading And Combining Hierarchies: All hierarchies
described so far are fully characterized by their ultrametric
distance (UD) ; these distances have as support the same MST
spanning the nodes/regions of the same fine hierarchy and
differ by the weights of the edges. Each operator described so
far takes as input a set of weights of the MST and produces a
new set of weights on the same MST ; in some cases additional
measurements taken in the image are needed. This new MST
may then be submitted to the same process and a second

Fig. 8. The waterfall hierarchy. The saliency of the contours followed by 4
levels of the waterfall hierarchy.

hierarchy produced, taking into account different features of
the image.

3) The Lattice Of Hierarchies: Two hierarchies A and B
may be compares through their UD χA and χB : B ≤ A ⇔
∀p, q ∈ E χA (p, q) ≤ χB (p, q)

As ∀p ∈ E : BallB(p, ρ) ⊂ BallA(p, ρ), the hierarchy A is
coarser than the hierarchy B.

Consider now a family of hierarchies (Ai)i∈I , with the
associated UD χi. The infimum ∧Ai is the largest hierarchy
which is smaller than each Ai and its UD is χ∧Ai =

∨
i

χi.

The infimum of hierarchies is particularly useful for dealing
with color images, as the hierarchies produced for each
color component may be combined. The supremum ∨Ai is
characterized by its UD, the largest UD below

∧
i

χi.The

supremum of hierarchies retains the contours which are present
in various hierarchies, and thus emphasizes the strength of
these contours.

IV. CONCLUSION: TAILOR THE HIERARCHY WHICH IS
BEST FOR YOUR PROBLEM

A hierarchy aims at proposing a reduced but sufficient
set of contours in an image, ranked by their pertinence and
importance. There is nothing like an optimal hierarchy, adapted
to all types of images or objects to segment.

Each method presented above constructs a particular hierar-
chy, although they are all derived from the same fine partition.
Hierarchy A will highlight some contours of this fine partition
and neglect others, whereas hierarchy B makes another choice.
For this reason will a particular hierarchy inform us about
the image content. For instance, if a contour appears strong
in a stochastic watershed hierarchy based on openings with
large horizontal structuring elements but is weak for vertical
structuring elements, it informs us about the local orientations
in the image. Combining the weights of the same piece of
contour obtained for various hierarchies constitutes a powerful
signature which may serve for object recognition or image
matching.



Fig. 9. Waterfall hierarchy used for the segmentation of text.

If we have to segment an image we have to design a
hierarchy which discards the structures of no interest and
highlights those which are interesting for us. In order to design
a useful hierarchy which will facilitate the further processing
we have to analyze carefully the image and determine which
features best characterize the image and the objects to detect
: size, contrast, orientation, color, texture etc. ? We then have
to design one or several hierarchies which highlight these
features.

Let us now give some cues on how to use hierarchies for
extracting among all weighted contours the contours of the
objects we want to detect.

A. Marker Based Segmentation

Marker based segmentation has been rephrased above as the
construction of a hierarchy, in which the coarsest level of the
hierarchy corresponds to the desired segmentation; each region
containing one and only one marker. We have shown also how
to use a family of prioritized markers. We have seen that the
hierarchies may be cascaded. If the first hierarchy highlights
correctly the contours of interest, it will be possible to extract
the regions of interest with a reduced number of markers. The
segmentation will be more robust and less sensitive to the
shape or size of the markers.

B. Robust Ans Pararmeter Free Top-Hats

The top hat, the residue of an opening or a closing, is a use-
ful operator for detecting text on a non uniform background.
The waterfall hierarchy is a hierarchy which does not depend
on any parameter. Consider the image 9: the text is dark on a
brighter background. The watershed segmentation of this im-
age (and not on its gradient) produces a fine segmentation. The
waterfall hierarchy analyses how the structures of the image
are nested. The ranking of the contours is an enumeration of
these nested levels, is completely independent of the contrast
of the image and does not depend upon any parameter. We take
the contours of the last but one level in the waterfall hierarchy
and derive from it a ceiling function which is equal to the
initial image along these contours and is white everywhere
else. The highest flooding of the image under this function
fills completely the text. The residue produces a bright text on
a uniformly dark background.

C. Interactive Segmentation With Hierarchies

Interactive segmentation strategies are particularly efficient
when applied on hierarchies. As the hierarchy is constructed
beforehand, the computing time after each interaction is

greatly reduced. The library of routines for interactive seg-
mentation, as well for segmenting multimedia images [14] as
for segmenting medical images [13].

Local resegmentations or mergings : a first partition is
chosen in the hierarchy and then adapted locally by reseg-
menting regions which are two large or inversely by merging
adjacent regions. Both operations are simply obtained by going
up or down in the hierarchy.

Magic wand To extract a region with uniform color, most
drawing/painting software packages have a function called
”magic wand”. For each position of the mouse, the color is
determined and the connected region composed of all pixels
with more or less the same color, depending on some tolerance
threshold, is selected. This procedure is often helpful, but fails
in some situations, when there is a progressive change of color
shade, as is the case with the yellow apple in fig.10. The
darker part of the apple is not selected and an irregular contour
produced. On the contrary, using a hierarchy has the advantage
of providing well defined contours. The hierarchy based magic
wand selects the largest region in the hierarchy such that its
mean color remains within some predefined limits.

Fig. 10. On the left, initial image ; center: all pixels which are within a
colour tolerance of an initial pixel. On the right, result of the magic wand.

Lasso Another classical interactive tool is the lasso : the
user draws an approximate contour around the real contour as
shown in fig.11a. The classical solution consists in applying
the magic wand defined above to each pixel belonging to the
approximate contour. For each such position one gets a piece
of the background. The union of all such pieces constitutes
the background. As shown on fig.11b, the result is not very
satisfactory. Using a hierarchy, one may select the union of
all regions of the hierarchy contained in the contour yielding
a much better result as shown on fig.11c.

Fig. 11. Construction of all tiles of a hierarchy entirely included in an
approximate outside contour

Intelligent Brush: An intelligent brush segments an image



by ”painting” it: it first selects a zone of interest by painting.
Contrary to conventional brushes, the brush adapts its shape to
the contours of the image. The shape of the brush is given by
the region of the hierarchy containing the cursor. Moving from
one place to another changes the shape of the brush, when one
goes from one tile of a partition to its neighboring tile. Going
up and down the hierarchy modifies the shape of the brush.
In fig.12, on the left, one shows the trajectory of the brush ;
in the centre, the result of a fixed size brush, and on the right
the result of a self-adapting brush following the hierarchy. This
method has been used with success in a package for interactive
segmentation of organs in 3D medical images [13].

Fig. 12. Comparison of the drawing with a fixed size brush and a self
adaptive brush.

D. Energy Minimization In A Hierarchy

An additional way to construct hierarchies is through energy
minimization, which becomes a tractable problem if it is
applied on a hierarchy. Given a hierarchy A, one wants
to extract a partition π, whose regions verify an optimality
criterion. The regions all belong to the hierarchy but not
necessarily to the same hierarchical level. Philippe Salembier
et al proposed to construct optimal partitions in the context of
image coding ; the aim is to produce a partition where each
region is described by a simplified model under the constraint
that the encoding cost is not too high [12].

Laurent Guigues [6] analyzed the types of energies which
may be minimized within hierarchies. His work has been
continued and extended by Ravi Kiran and Jean Serra [7].
The energies contain two terms, a data fidelity term and a
regularization term ; the value of the first increases and the
second decreases, by climbing in the hierarchy towards coarser
levels. Both terms are linked by a scale parameter. As an
example, consider the Mumford-Shah model where D(Ri)
represents the total variance of the image in the region Ri
of the partition and the second term measures the length of
the contours present in the partition ; we get like that a kind
of energy: E(π, λ) =

∑
Ri∈π

D(Ri) + λC(π) where λ is a

scale parameter. For each scale parameter an optimal parti-
tion is easily extracted from the hierarchy through dynamic
programing. For increasing values of λ one obtains a series of
nested partitions, i.e. a new hierarchy. There are then various
strategies for approximating or finding the global minimum.
The following example in fig.13 is due to the courtesy of
Jean Stawiaski, from Philips Medical Systems. It presents the

Fig. 13. Segmentation of a tumor in a liver: initial image, gradient, fine
segmentation, saliency of the gradient, saliency of the stochastic watershed,
final segmentation

various steps for segmenting a tumor: initial image, gradient,
fine segmentation, saliency of the initial contours, saliency of
the surfacic stochastic watershed, extraction of the contours
minimizing the Mumford Shah functional.
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