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Stability of continuous-time quantum filters with measurement

imperfections

Hadis Amini ∗ Clément Pellegrini † Pierre Rouchon ‡
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Abstract

The fidelity between the state of a continuously observed quantum system and the state
of its associated quantum filter, is shown to be always a submartingale. The observed sys-
tem is assumed to be governed by a continuous-time Stochastic Master Equation (SME),
driven simultaneously by Wiener and Poisson processes and that takes into account in-
completeness and errors in measurements. This stability result is the continuous-time
counterpart of a similar stability result already established for discrete-time quantum sys-
tems and where the measurement imperfections are modeled by a left stochastic matrix.

Keywords. Quantum filtering, stability, continuous-time stochastic master equations, Wiener
process, Poisson process, quantum trajectories, measurement errors.

1 Introduction

Since the work of Davies [14], the time evolution of the state (density operator) ρt at time
t of an observed quantum system can be described by a Stochastic Master Equation (SME)
taking into account the back-action of the measurements on ρt. Such SMEs (see [5] for a
modern exposure) have been the starting point of the seminal contributions of Belavkin to
quantum filtering and control [7, 8, 4, 9]. Quantum filters are used to get an estimate ρet
of ρt based on an initial guess ρe0 of ρ0 and on the measurement outcomes between 0 and t.
Quantum filtering is related to quantum trajectories [13, 12] and their original motivations for
Monte-Carlo simulations. Roughly speaking, quantum filtering replaces the random numbers
used at each time-step of a Monte-Carlo simulation by the measurement outcomes to update
the estimate ρet . An important practical issue deals with the convergence: does ρet converge
towards ρt when t tends to +∞, even if ρe0 6= ρ0 ? Few convergence results are available up
to now, except the sufficient conditions established in [24, 25] for diffusive SMEs. Particular
results for quantum non demolition indirect measurements have been established in [6, 10]
As far as we know, general and checkable necessary and sufficient convergence conditions do
not exist yet.
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In this paper we do not investigate directly convergence issues. We focus on stability
issues to ensure the absence of time divergence. We prove in Theorem 5 that for a large class
of continuous-time SMEs driven simultaneously by Wiener and Poisson processes, associated
quantum filters are stable: the fidelity between ρ and its estimate ρe,

F (ρ, ρe) = Tr2
(√√

ρρe
√
ρ

)
, (1)

is a sub-martingale. In the Wiener case, Theorem 5 shows that, whatever the Hamiltonian
H, the measurement operators Vν and the detection efficiencies ην ∈ |0, 1] are, the fidelity
F (ρt, ρ

e
t ) is a sub-martingale where ρt obeys the following diffusive SME

dρt = −i[H, ρt] dt+
(
∑

ν

VνρtV
†
ν − 1

2
(V †

ν Vνρt + ρtV
†
ν Vν)

)
dt

+
∑

ν

√
ην

(
Vνρt + ρtV

†
ν − Tr

(
(Vν + V †

ν )ρt

)
ρt

)
dWν(t)

driven by the Wiener processes Wν , and where the estimate ρet obeys the following non-linear
stochastic equation

dρet = −i[H, ρet ] dt+
(
∑

ν

Vνρ
e
tV

†
ν − 1

2
(V †

ν Vνρ
e
t + ρetV

†
ν Vν)

)
dt

+
∑

ν

√
ην

(
Vνρ

e
t + ρetV

†
ν − Tr

(
(Vν + V †

ν )ρ
e
t

)
ρet

)(
dyν(t)−

√
ηνTr

(
(Vν + V †

ν )ρ
e
t

)
dt
)
.

driven by the measures dyν(t) = dWν(t) +
√
ηνTr

(
(Vν + V †

ν )ρt

)
dt and initialized to any

density matrix ρe0. In the Poisson case, Theorem 5 ensures, as for the Wiener case, the
stability of the quantum filtering process. Additionally, it provides a new kind of SMEs
taking into account incompleteness and errors in the jump detections:

dρt = −i[H, ρt] dt+
(
∑

µ

VµρtV
†
µ − 1

2
(V †

µVµρt + ρtV
†
µVµ)

)
dt

+
∑

µ


 θµρt +

∑
ν ηµ,νVνρtV

†
ν

θµ +
∑

ν ηµ,νTr
(
VνρtV

†
ν

) − ρt



(
dNµ(t)−

(
θµ +

∑

ν

ηµ,νTr
(
VνρtV

†
ν

))
dt

)

driven by the the Poisson processes Nµ(t) with 〈dNµ(t)〉 =
(
θµ +

∑
ν ηµ,νTr

(
VνρtV

†
ν

))
dt,

where the detection imperfections are modeled through the parameters θµ ≥ 0 and ηµ,ν ≥ 0
with

∑
µ ηµ,ν ≤ 1.

The proof of Theorem 5 is based on discrete-time approximations of continuous-time
SMEs. Such approximations have already been investigated in [3, 15, 17, 18]. They rely
on indirect measurements, originally introduced in [11] and well explained with suggestive
physical systems in [16, 26]. For discrete-time SMEs, it is proved in [21, 23] that the fidelity
between the quantum state and its estimate is always a submartingale. Theorem 5 is obtained
by passing to the limit from discrete to continuous time. The fidelity between the quantum
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state and its estimate remains a submartingale. The obtained continuous-time SMEs are
slightly more general than the ones usually encountered in the literature. Such SMEs could be
of some interest to derive quantum filters taking into account a larger class of incompleteness
and errors in measurements and jump detections.

This paper is structured in two main sections. Section 2 is devoted to Theorem 2, a
restrictive version of Theorem 5 to the diffusive SMEs with perfect measurements. For this
simplified but representative case, the discrete-time approximation is presented and the pas-
sage to the continuous-time limit is detailed during the proof of Proposition 1. Section 3 is
devoted to Theorem 5 and fully exploits the tools and methods developed in Section 2. We
consider SMEs driven simultaneously by Poisson and Wiener processes. We recall first the
structure, described in [23] and based on a left stochastic matrix, of discrete-time SMEs as-
sociated to imperfect measurements. We apply on the discrete-time approximations such left
stochastic matrix modeling of imperfections and errors. Then we take, thanks to Theorem 4,
the limit to get the continuous-time SMEs and its associated quantum filters with imperfec-
tions. Their structures are more general than the usual ones encountered in the literature.
This leads to Theorem 5 ensuring the stability of the obtained quantum filters. Section 4 is a
short conclusion proposing some connection with Petz characterization of monotone metrics
on matrix spaces.

Some intermediate and partial results related to Theorems 5 can be founded in [2, 1].

2 Perfect measurements

Let us start this section by presenting the jump-diffusive SMEs describing the evolutions of
quantum state ρt and its estimate ρet .

2.1 Continuous-time filters

We consider quantum systems of finite dimensions 1 < N < ∞. The state space of such a
system is given by the set of density matrices

D := {ρ ∈ C
N×N | ρ = ρ†, Tr (ρ) = 1, ρ ≥ 0}.

Formally a real quantum trajectory ρ ∈ D in Schrödinger picture can be described by the
following SME (cf. [8, 9, 5])

dρt =


−i[H, ρt] +

∑

ξ

Lξ(ρt)


 dt+

∑

ν

Λν(ρt)dWν(t)+
∑

µ

Υµ(ρt)
(
dNµ(t)− Tr

(
VµρtV

†
µ

)
dt
)
,

(2)

where

• the notation [A,B] refers to AB −BA;

• H = H† is a Hermitian operator corresponding to the total Hamiltonian of the system;

• dNµ are the Poisson processes with µ ∈ {1, · · · ,mP } and dWν are the Wiener processes
with ν ∈ {mP + 1, · · · ,mP +mW };
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• The Lindblad superoperator Lξ (ξ ∈ {1, . . . ,mW +mP}) is defined by

Lξ(ρ) := VξρV
†
ξ − 1

2
(V †

ξ Vξρ+ ρV †
ξ Vξ), (3)

where Vξ is an arbitrary matrix which determines the measurement process (typically
the coupling to the probe field for quantum optic systems);

• The superoperators Λν and Υµ are defined respectively by

Λν(ρ) := Vνρ+ ρV †
ν − Tr

(
(Vν + V †

ν )ρ
)
ρ and Υµ(ρ) :=

VµρV
†
µ

Tr
(
VµρV

†
µ

) − ρ;

• The measurement outcomes are dNµ and dyν where

Nµ(t)−
∫ t

0
Tr
(
VµρsV

†
µ

)
ds is a martingale and dyν(t) = dWν(t) + Tr

(
VνρtV

†
ν

)
dt.

(4)

All the developments remain valid when H and Vξ are deterministic time-varying matrices.
For clarity sake, we do not recall below such possible time dependence.

In this paper, the notation ρe corresponds to the estimate filter associated to the filter ρ.
This estimate filter is provided from the measurement outcomes dyν and dNµ and depends
on the real quantum trajectory ρ via the measurement outcomes (4). It has the following

expression derived from (2) where dWν(t) is replaced by dyν(t)−Tr
(
Vνρ

e
tV

†
ν

)
dt (see e.g., [9,

5]):

dρet =


−i[H, ρet ] +

∑

ξ

Lξ(ρ
e
t )


 dt+

∑

ν

Λν(ρ
e
t )
(
dyν(t)− Tr

(
Vνρ

e
tV

†
ν

)
dt
)

+
∑

µ

Υµ(ρ
e
t )
(
dNµ(t)− Tr

(
Vµρ

e
tV

†
µ

)
dt
)
. (5)

When ρe0 6= ρ0, ρ
e
t and ρt do not coincide in general. However, we will see that the fidelity

between ρet and ρt is a sub-martingale.

2.2 Discrete-time filters

First let us briefly remind the model of quantum repeated indirect measurement approach.
The physics underlying such approach is well explained in [16, 26]. In [3, 15, 19], it was
rigorously shown that such discrete-time approximations associated to the real state converges
to the continuous model described in Equation (2).

2.2.1 Quantum repeated measurement approach

We consider the setup of quantum repeated interaction of H (describing the Hilbert space of
the system state) with an infinite chain

⊗
k Kk (describing the Hilbert space of the environ-

ment) with Kk = K for all k. More precisely, the first copy K1 = K interacts with H during
a time δ and then disappear. Next, the second copy K2 comes to interact with H and so on.
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This setting is coupled with indirect measurement, that is, after each interaction between H
and K, a measurement of an observable of K is performed.

Here, we assume that H = C
N and the environment (meter system) is composed of

mP +mW qubits, so K = (C2)⊗mP+mW . Also, take |ψ〉 as the initial state of the system and
|G〉 as the initial state of the qubits’ meter which is defined as the ground state of the meter
system: all qubits in the ground state |g〉. As a result, the initial state of the system coupled
to its environment is described by |ψ〉 ⊗ |G〉 .

For δ = 1/n with n large, assume that the Schrödinger evolution between time 0 to time
1/n is given by

Htot = H ⊗ I +
√
n
∑

ξ

(
iVξ ⊗ σ+ξ

− iV †
ξ ⊗ σ-ξ

)
, (6)

where

• H is the Hamiltonian of the system used in (2) and the operators Vξ are those appearing
in the Lindblad superoperators (3)

• σ+ξ
= (|e〉 〈g|)ξ and σ-ξ = σ

†
+ξ

= (|g〉 〈e|)ξ where the notation (A)ξ is an operator K
defined by (A)ξ =

⊗

1≤i<ξ

I ⊗A⊗
⊗

ξ<i≤mW+mP

I. Note that σ-ξ |G〉 = 0.

In the sequel, symbol ⊗ will be remove for compact formulae.
Take the observables Xν = (|g〉 〈e|)ν + (|e〉 〈g|)ν for ν ∈ {mP + 1, · · · ,mW + mP} and

Zµ = (|e〉 〈e|)µ − (|g〉 〈g|)µ for µ ∈ {1, · · · ,mP }. For n large, the measurement of all qubits
at final time t = 1/n according to the observables Xν and Zµ, yields an approximation for
the Wiener and Poisson processes, respectively. This results from a development versus 1/n
of the measurement operators associated to the associated discrete-time stochastic evolution.

We have e−iHtot/n = I − i
nHtot − 1

2n2H
2
tot + O(1/n3/2), where I is the identity operator.

Now replacing Htot by its expression given in (6), we find

e−iHtot/n ≈ I+ 1√
n

∑

ξ

(
Vξσ+ξ

− V †
ξ σ-ξ

)
− i

nH − 1
2n

∑

ξ

(
V †
ξ VξPgξ + VξV

†
ξ Peξ

)
,

where ≈ means up to O(1/n3/2) terms. Here, Pgξ = (|g〉 〈g|)ξ and Peξ = (|e〉 〈e|)ξ. Note that

Pgξ |G〉 = |G〉 and Peξ |G〉 = 0.

Thus the system coupled to its environment evolves as follows

e−iHtot/n |ψ〉 ⊗ |G〉 ≈


I− i

nH − 1
2n

∑

ξ

V †
ξ Vξ


 |ψ〉 ⊗ |G〉+ 1√

n

∑

ξ

Vξ |ψ〉 ⊗ |Gξ〉 .

Let us consider the qubits measurements. The measurement outcomes for Xν are stored in
xν−mP

∈ {−1, 1}, x = (xν−mP
) ∈ {−1, 1}mW , and those of Zµ in zµ ∈ {0, 1}, z = (zµ) ∈

{0, 1}mP , as follows (all these observables commute):

• if during the measure of Xν , the corresponding qubit collapses to (|g〉 + |e〉)/
√
2 (resp.

(|g〉 − |e〉)/
√
2) set xν−mP

= +1 (resp. xν−mP
= −1).
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• if during the measure of Zµ, the corresponding qubit collapses to |g〉 (resp.|e〉), set
zµ = 0 (resp. zµ = 1).

The probability to get, for two different µ and µ′, zµ = zµ′ = 1, is in order of O(1/n3/2).
Thus for z, we need only consider the following cases: either all zµ are equal to 0 or only a
single one is equal to 1, the other ones being 0.

Consider the measurement outcomes z = (zµ) and x = (xν−mP
). The associated wave

packet collapse of e−iHtot/n |ψ〉 ⊗ |G〉 yields the un-normalized state Mx,z |ψ〉 ⊗ |x, z〉 , where
the measurement operator is denoted by Mx,z and where |x, z〉 is the normalized state of the
qubits characterized by Xν |x, z〉 = xν−mP

|x, z〉 and Zµ |x, z〉 = (2zµ − 1) |x, z〉. We have to
consider two situations: either

∑
zµ = 0 denoted by z = 0 or

∑
µ zµ = 1. When zµ = 0 for

all µ, some computations yield

Mx,0 ≈
(
∏

ν

1√
2

)
I− i

nH − 1
2n

∑

ξ

V †
ξ Vξ +

1√
n

∑

ν

xν−mP
Vν


 . (7)

When zµ = 1 and zµ′ = 0 for all µ′ 6= µ, similar computations give

Mx,µ ≈
(
∏

ν

1√
2

)
Vµ√
n

(8)

where we have denoted Mx,z by Mx,µ for such z.

For an arbitrary state ρ at t = 0, not necessarily pure as ρ = |ψ〉 〈ψ|, the state ρ1 at time
t = 1/n is given by

ρ1 =
Mx,zρM

†
x,z

px,z(ρ)
, (9)

which happens with probability px,z(ρ) = Tr
(
Mx,zρM

†
x,z

)
.

The expression of ρ1 is obtained by neglecting the terms of orders strictly greater than 1
versus 1/n. Some usual calculations yield

Mx,0ρM
†
x,0 =

cW

(
ρ+ 1√

n

∑

ν

xν−mP
(Vνρ+ ρV †

ν ) +
1
n

(
− i[H, ρ]−

∑

µ

{ρ,V †
µVµ}
2 +

∑

ν

Lν(ρ)
))

(10)

with probability

px,0(ρ) = cW

(
1 + 1√

n

∑

ν

xν−mP
Tr
(
(Vν + V †

ν )ρ
)
− 1

n

∑

µ

Tr
(
ρV †

µVµ

))
. (11)

The notation {A,B} used in (10) corresponds to AB +BA and cW = ( 1
2
)mW .

Similarly, we have

Mx,µρM
†
x,µ = cW

n VµρV
†
µ , with probability px,µ(ρ) =

cW
n Tr

(
VµρV

†
µ

)
. (12)

6



Now we can obtain the asymptotic description of the transition for all possible observations.
Indeed, the expression of the whole quantum trajectory ρk can be obtained by replacing ρ1
by ρk+1 and ρ by ρk in Equation (9).

As a conclusion, we find

ρk+1 =
Mx,µρkM

†
x,µ

Tr
(
Mx,µρkM

†
x,µ

) with probability px,µ(ρk) (13)

(14)

where px,µ(ρk) is given by (12,11).

2.2.2 Stability with respect to initial condition

Consider the Markov chain (13). Assume that we do not know precisely the initial state ρ0
and we have at our disposal an estimate ρe0. Assume also that we know the measurement
result at step k (xk, µk) ∈ {−1, 1}mW × {0, 1}. It is then natural to consider the following
recursive update of our estimation ρek+1 using the knowledge of measurement result at step k
and the previous estimate ρek (see e.g., [26]):

ρek+1 =
Mxk,µk

ρekM
†
xk,µk

Tr
(
Mxk,µk

ρekM
†
xk,µk

) (15)

Note that the probability pxk,µk
(ρk) given by (11,12) to get (xk, µk) depends on the hidden

state ρk and not on ρek.

Remark 1. Let us stress that the above description is not always valid. Indeed, the nor-

malization Tr
(
Mxk,µk

ρekM
†
xk,µk

)
can vanish and the formula (15) is then not defined. This

problem does not appear when describing the true evolution since the normalization describ-
ing the true state corresponds to the probability of apparition (then if this vanishes this
means that the corresponding state can not appear). This problem of non-definition for the
discrete-time estimate filter is related to the problem underlined in the definition of (5). In
general, this question has been taken into account in [21, 23] for the discrete-time filter. In
our context focusing on asymptotic evolution, such a problem will not appear.

Theorem 1 ([21]). Consider any arbitrary Markov chain (ρk, ρ
e
k) satisfying respectively

Equations (13) and (15):

(ρk+1, ρ
e
k+1) =

(
Mx,µρkM

†
x,µ

Tr
(

Mx,µρkM
†
x,µ

) ,
Mx,µρekM

†
x,µ

Tr
(

Mx,µρekM
†
x,µ

)

)
with probability px,µ(ρk)

where px,µ(ρk) is given by (12) and (11). Then the fidelity (F (ρk, ρ
e
k)) defined in Equation (1)

is a (Fk) submartingale where Fk = σ{(ρl, ρel )|l ≤ k)}. In particular, we have

E (F (ρl, ρ
e
l )|Fk) = E (F (ρl, ρ

e
l )|(ρk, ρek)) ≥ F (ρk, ρ

e
k),

for all l > k.
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2.3 Stability of continuous-time filters

From the description of the quantum trajectory (ρk) and its associated quantum filter (ρek)
with the time parameter n, we can define the associated continuous-time stochastic processes
denoted by (ρn(t)) and (ρen(t)) with

ρn(t) = ρ[nt], ρen(t) = ρe[nt].

It is clear that (ρn, ρ
e
n) is a Markov process as (ρk, ρ

e
k) is a Markov chain.

Before announcing the main result of this section, first let us show the following proposi-
tion.

Proposition 1. The Markov process (ρn(t), ρ
e
n(t)) with ρn and ρen satisfying respectively

Equations (13) and (15) converges in distribution, when n goes to infinity, to the Markov
process (ρt, ρ

e
t ) with ρt and ρ

e
t satisfying respectively Equations (2) and (5).

Proof. The approach to prove this proposition is usual in probability theory: we show the
convergence of the generator associated to the Markov process (ρn, ρ

e
n) towards the one as-

sociated to the Markov process (ρt, ρ
e
t ). Also, we need to prove the tightness property of the

sequence (ρn, ρ
e
n).

The tightness of the sequence (ρn(t), ρ
e
n(t)) is guaranteed if, for any T > 0, exists M > 0

such that for all 0 ≤ t1 ≤ t2 ≤ T and ∀t ∈ [t1, t2],

E
[
‖(ρn(t2), ρen(t2))− (ρn(t), ρ

e
n(t))‖2‖(ρn(t), ρen(t))− (ρn(t1), ρ

e
n(t1))‖2

]
≤M(t2 − t1)

2.

We do not develop the arguments for showing the tightness property. They can be obtained
directly with the same arguments as [19].

Thus here, we just focus on the convergence of the generators. Take An and A as the
generators associated respectively to the sequences (ρn, ρ

e
n) and (ρ, ρe).We have to prove that,

for any C2−real valued function (ρ, ρe) 7→ f(ρ, ρe),

lim
n→+∞

sup
(ρ,ρe)∈D2

|Anf(ρ, ρ
e)−Af(ρ, ρe)| = 0.

We have the following expression for the generator Af(ρ, ρe)

Af(ρ, ρe) = D(ρ,ρe)f.


−i[H, ρ] +

∑

ξ

Lξ(ρ),−i[H, ρe] +
∑

ξ

Lξ(ρ
e) +K(ρ, ρe)




+ 1
2

∑

ν

D2
(ρ,ρe)f. (Λν(ρ),Λν(ρ

e); Λν(ρ),Λν(ρ
e))

+
∑

µ

Tr
(
VµρV

†
µ

)(
f

(
VµρV

†
µ

Tr
(

VµρV
†
µ

) ,
VµρeV

†
µ

Tr
(

VµρeV
†
µ

)

)
− f(ρ, ρe)−D(ρ,ρe)f. (Υµ(ρ),Υµ(ρ

e))

)
,

(16)

where

K(ρ, ρe) :=
∑

µ

Υµ(ρ
e)
(
Tr
(
VµρV

†
µ

)
−Tr

(
Vµρ

eV †
µ

))
+
∑

ν

Λν(ρ
e)
(
Tr
(
VνρV

†
ν

)
−Tr

(
Vνρ

eV †
ν

))

8



Now let us calculate the expression of An. We have, up to O(n−1/2) terms,

Anf(ρ, ρ
e) ≈

∑

x

npx,0(ρ)

(
f

(
Mx,0ρM

†
x,0

Tr
(

Mx,0ρM
†
x,0

) ,
Mx,0ρeM

†
x,0

Tr
(

Mx,0ρeM
†
x,0

)

)
− f(ρ, ρe)

)

+
∑

x,µ

npx,µ(ρ)

(
f

(
Mx,µρM

†
x,µ

Tr
(

Mx,µρM
†
x,µ

) ,
Mx,µρeM

†
x,µ

Tr
(

Mx,µρeM
†
x,µ

)

)
− f(ρ, ρe)

)
.

Since
Mx,0ρM

†
x,0

px,0(ρ)
= ρ+O(n−1/2) and also, by using Taylor’s formula, we have

f

(
Mx,0ρM

†
x,0

px,0(ρ)
,
Mx,0ρ

eM †
x,0

px,0(ρe)

)
− f(ρ, ρe) = D(ρ,ρe)f ·

(
Mx,0ρM

†
x,0

px,0(ρ)
− ρ,

Mx,0ρ
eM †

x,0

px,0(ρe)
− ρe

)

+1
2D

2
(ρ,ρe)f ·

(
Mx,0ρM

†
x,0

px,0(ρ)
− ρ,

Mx,0ρ
eM †

x,0

px,0(ρe)
− ρe;

Mx,0ρM
†
x,0

px,0(ρ)
− ρ,

Mx,0ρ
eM †

x,0

px,0(ρe)
− ρe

)
+O(n−3/2).

Consequently,

n
∑

x

px,0(ρ)

(
f

(
Mx,0ρM

†
x,0

px,0(ρ)
,
Mx,0ρ

eM †
x,0

px,0(ρe)

)
− f(ρ, ρe)

)

= nD(ρ,ρe)f ·
(
∑

x

Mx,0ρM
†
x,0 − px,0(ρ)ρ,

∑

x

(
Mx,0ρ

eM †
x,0 − px,0(ρ

e)ρe
) px,0(ρ)
px,0(ρe)

)

+ 1
2

∑

x

npx,0(ρ)D
2
(ρ,ρe)f ·

(
Mx,0ρM

†
x,0

px,0(ρ)
− ρ,

Mx,0ρ
eM †

x,0

px,0(ρe)
− ρe;

Mx,0ρM
†
x,0

px,0(ρ)
− ρ,

Mx,0ρ
eM †

x,0

px,0(ρe)
− ρe

)
+O(n−1/2),

(17)

where according to (10) and (11), up to O(n−1/2) terms, we have

n
∑

x

(
Mx,0ρM

†
x,0 − px,0(ρ)ρ

)
≈ −i[H, ρ] +

∑

µ

(
Tr
(
ρV †

µVµ

)
ρ− {ρ,V †

µVµ}
2

)
+
∑

ν

Lν(ρ)

= −i[H, ρ] +
∑

ξ

Lξ(ρ)−
∑

µ

Υµ(ρ)Tr
(
VµρV

†
µ

)
, (18)

since, for any ν,
∑

x xν−mP
Λν(ρ) = 0 and

∑
x cW = 1. Also, we have

Mx,0ρ
eM †

x,0 − px,0(ρ
e)ρe

= cW


 1√

n

∑

ν

xν−mP
Λν(ρ

e) +
1

n

(
− i[H, ρe] +

∑

ξ

Lξ(ρ
e)−

∑

µ

Υµ(ρ
e)Tr

(
Vµρ

eV †
µ

))

 .

Therefore, we find

n
∑

x

(
Mx,0ρ

eM †
x,0 − px,0(ρ

e)ρe
) px,0(ρ)
px,0(ρe)

= −i[H, ρe] +
∑

ξ

Lξ(ρ
e)−

∑

µ

Υµ(ρ
e)Tr

(
Vµρ

eV †
µ

)

+
∑

ν

Λν(ρ
e)
(
Tr
(
VνρV

†
ν

)
− Tr

(
Vνρ

eV †
ν

))
+O(n−

1
2 ) (19)
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since
px,0(ρ)
px,0(ρe)

= 1 + 1√
n

∑
ν xν−mP

(
Tr
(
(Vν + V †

ν )ρ
)
− Tr

(
(Vν + V †

ν )ρe
))

+O(n−1/2). More-

over, we have used the fact that

∑

x

∑

ν

cWxν−mP
Λν(ρ

e)
∑

ν′

xν′−mP

(
Tr
(
(Vν′ + V †

ν′)ρ
)
− Tr

(
(Vν′ + V †

ν′)ρ
e
))

=
∑

ν

Λν(ρ
e)
(
Tr
(
(Vν + V †

ν )ρ
)
− Tr

(
(Vν + V †

ν )ρ
e
))

,

since x2ν−mP
= 1,

∑
x cWx

2
ν−mP

= 1 and

∀ν 6= ν ′ :
∑

x

cWxν−mP
xν′−mP

Λν(ρ
e)
(
Tr
(
(Vν′ + V †

ν′)ρ
)
− Tr

(
(Vν′ + V †

ν′)ρ
e
))

= 0.

Equation (19) can be rewritten as follows

n
∑

x

(
Mx,0ρ

eM †
x,0 − px,0(ρ

e)ρe
) px,0(ρ)
px,0(ρe)

= −i[H, ρe] +
∑

ξ

Lξ(ρ
e) +K(ρ, ρe)−

∑

µ

Υµ(ρ
e)Tr

(
VµρV

†
µ

)
+O(n−

1
2 ).

As a result, the first righthand side term in Equation (17) can be written as follows

nD(ρ,ρe)f ·
(
∑

x

Mx,0ρM
†
x,0 − px,0(ρ)ρ,

∑

x

(
Mx,0ρ

eM †
x,0 − px,0(ρ

e)ρe
) px,0(ρ)
px,0(ρe)

)

= D(ρ,ρe)f.


−i[H, ρ] +

∑

ξ

Lξ(ρ),−i[H, ρe] +
∑

ξ

Lξ(ρ
e) +K(ρ, ρe)




−
∑

µ

Tr
(
VµρV

†
µ

)
D(ρ,ρe)f ·

(
Υµ(ρ),Υµ(ρ

e)
)
+O(n−1/2).

Now let us calculate the second righthand side term in Equation (17). To get the zero order

terms of
∑

x npx,0(ρ)D
2
(ρ,ρe)f ·

(
Mx,0ρM

†
x,0

px,0(ρ)
− ρ,

Mx,0ρeM
†
x,0

px,0(ρe)
− ρe;

Mx,0ρM
†
x,0

px,0(ρ)
− ρ,

Mx,0ρeM
†
x,0

px,0(ρe)
− ρe

)
,

we just need to combine the terms of order n−1/2 in
Mx,0ρM

†
x,0

px,0(ρ)
−ρ and inMx,0ρM

†
x,0−px,0(ρ)ρ.

Since

Mx,0ρM
†
x,0 − px,0(ρ)ρ = cW√

n

(
∑

ν

xν−mP
Λν(ρ)

)
+O(n−1/2)

and

Mx,0ρM
†
x,0

px,0(ρ)
−ρ ≈

ρ+ 1√
n

∑
ν xν−mP

(Vνρ+ ρV †
ν )

1 + 1√
n

∑
ν xν−mP

Tr
(
(Vν + V †

ν )ρ
)−ρ ≈ 1√

n

(
∑

ν

xν−mP
Λν(ρ)

)
+O(n−1/2),

we get, up to O(n−1/2) terms

∑

x

npx,0(ρ)D
2
(ρ,ρe)f ·

(
Mx,0ρM

†
x,0

px,0(ρ)
− ρ,

Mx,0ρ
eM †

x,0

px,0(ρe)
− ρe;

Mx,0ρM
†
x,0

px,0(ρ)
− ρ,

Mx,0ρ
eM †

x,0

px,0(ρe)
− ρe

)
≈

∑

x,ν,ν′

cWxν−mP
xν′D

2
(ρ,ρe)f ·(Λν(ρ),Λν(ρ

e); Λν′(ρ),Λν′(ρ
e)) =

∑

ν

D2
(ρ,ρe)f ·(Λν(ρ),Λν(ρ

e); Λν(ρ),Λν(ρ
e)) ,
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where for the above equality, we have used the following facts

x2ν−mP
= 1,

∑

x

cW = 1 and ∀ν 6= ν ′ :
∑

x

cWxν−mP
xν′−mP

D2
ρf(ρ)·(Λν(ρ),Λν′(ρ)) = 0.

Thus, we find

∑

x

px,0(ρ)

(
f

(
Mx,0ρM

†
x,0

px,0(ρ)
,
Mx,0ρ

eM †
x,0

px,0(ρe)

)
− f(ρ, ρe)

)

= D(ρ,ρe)f.


−i[H, ρ] +

∑

ξ

Lξ(ρ),−i[H, ρe] +
∑

ξ

Lξ(ρ
e) +K(ρ, ρe)




−
∑

µ

Tr
(
VµρV

†
µ

)
D(ρ,ρe)f ·

(
Υµ(ρ),Υµ(ρ

e)
)
.

+ 1
2

∑

ν

D2
ρf(ρ) · (Λν(ρ),Λν(ρ

e); Λν(ρ),Λν(ρ
e)) +O(n−1/2). (20)

According to (12), we have also

∑

x,µ

npx,µ(ρ)

(
f

(
Mx,µρM

†
x,µ

Tr
(

Mx,µρM
†
x,µ

) ,
Mx,µρeM

†
x,µ

Tr
(

Mx,µρeM
†
x,µ

)

)
− f(ρ, ρe)

)

=
∑

µ

Tr
(
VµρV

†
µ

)(
f

(
VµρV

†
µ

Tr
(

VµρV
†
µ

) ,
VµρeV

†
µ

Tr
(

VµρeV
†
µ

)

)
− f(ρ, ρe)

)
. (21)

Finally, by Equations (20) and (21), we find that

Anf(ρ, ρ
e) = Af(ρ, ρe) +O(n−1/2),

which finishes the proof of Proposition 1.

Now we are in the state to announce the main result of this section.

Theorem 2. Consider the Markov process (ρt, ρ
e
t ) satisfying respectively Equations (2)

and (5). Then the fidelity (F (ρt, ρ
e
t )) defined in Equation (1) is a (Ft)−submartingale, where

Ft = σ{(ρτ , ρeτ )|τ ≤ t}. In particular, we have,

E (F (ρτ , ρ
e
τ )|Ft) = E (F (ρτ , ρ

e
τ )|(ρt, ρet )) ≥ F (ρt, ρ

e
t ),

for all τ ≥ t.

Proof. By Theorem 1, we know that the fidelity F (ρn, ρ
e
n) is a submartingale with respect to

the natural filtration of (ρk, ρ
e
k). In terms of (ρn(t), ρ

e
n(t), it follows that

E (F (ρn(τ), ρ
e
n(τ))|(ρn(t), ρen(t))) ≥ F (ρn(t), ρ

e
n(t)), (22)

for all τ ≥ t. In Proposition 1, we showed that (ρn(t), ρ
e
n(t)) converges in distribution to

(ρt, ρ
e
t ). This implies that for any continuous real function f(ρ, ρe) we have

∀τ ≥ t, lim
n→+∞

E (f(ρn(τ), ρ
e
n(τ))|(ρn(t), ρen(t)) = E (f(ρτ , ρ

e
τ )|(ρt, ρet )) .

As F is continuous, the limit of (22) for n tending to∞ yields E (F (ρτ , ρ
e
τ )|(ρt, ρet )) ≥ F (ρt, ρ

e
t )

for all τ ≥ t. Since (ρt, ρ
e
t ) is a Markov process, the result follows.
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3 Imperfect measurements

By imperfect measurements, we mean both unread measurements performed by the envi-
ronment (decoherence) and active measurements performed by non-ideal detectors. Starting
from the discrete-time case experimentally used in [22] and detailed in [23], we derive the
continuous-time optimal filters driven either by Poisson, Wiener processes or both of them.
We obtain the SMEs and their associated quantum filters.

3.1 Discrete-time filters

The presentation here is very much inspired from [23] and adapted to (13) for n large. The
jump-events labelled by (x, z) are of type (x, µ) with µ ∈ {0, 1, · · · ,mP }. The effectively
measured events are labelled by s ∈ {1, . . . ,m}, with m denoting the number of distinct
experimental detector outcomes. Suppose that we know the correlation between the jump-
events (x, µ) and the experimental detection s. These correlations are modeled here by
classical probabilities through a stochastic matrix η: ηns,(x,µ) that gives the probability of

experimental detection s knowing that the effective jump-event is (x, µ). Since ηns,(x,µ) ≥ 0

and for each (x, µ),
∑m

s=1 η
n
s,(x,µ) = 1, the matrix ηn = (ηns,(x,µ)) is a left stochastic matrix.

We assume the following asymptotic for ηn,

ηn = η∞ +
η̃

n
+O(n−2), (23)

where η∞ is a left stochastic matrix.
We still denote by ρ the state associated to these experimental detections which is the

best estimation of the system state knowing the initial state and all previous experimental
detections. Following [23], it obeys to the following Markov process:

ρk+1 =
M

n
s (ρk)

Tr (Mn
s (ρk))

with probability ps(ρk) = Tr (Mn
s (ρk)) (24)

where M
n
s (ρ) ,

∑
x,µ η

n
s,(x,µ)Mx,µρM

†
x,µ, Mx,0 and Mx,µ are given respectively by Equa-

tions (7) and (8) depending also on n.
Suppose that the initial state of dynamics (24) is not well known. Let ρe0 be an arbitrary

initial estimate, the estimate discrete-time filter satisfies the following dynamics

ρek+1 =
M

n
sk
(ρek)

Tr
(
M

n
sk
(ρek)

) (25)

where sk corresponds to the experimental detection at time-step k.

Remark 2. For the same reason given in Remark 1, the above description is not always
valid. Since the normalization Tr (Mn

s (ρ
e
k)) can vanish and the formula (25) is then not well

defined. Such a problem will not be appeared when ρek is full rank. (When Tr (Mn
s (ρ

e
k)) = 0,

we can still define the value of ρek+1, see more details in [23].) Again, as we consider the
asymptotic evolution, such a problem will not appear.

We now state a theorem ensuring the stability of such estimation procedure whatever the
initial state ρe0 is.
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Theorem 3 ([21, 23]). Consider the Markov chain (ρk, ρ
e
k) satisfying (24) and (25):

(ρk+1, ρ
e
k+1) =

(
Mn

s (ρk)
Tr(Mn

s (ρk))
,

Mn
s (ρ

e
k
)

Tr(Mn
s (ρ

e
k
))

)
with probability ps(ρk) = Tr (Mn

s (ρk)) .

Then the fidelity (F (ρk, ρ
e
k)) is a (Fk)−submartingale where Fk = σ{(ρl, ρel )|l ≤ k)}. In

particular, we have

E (F (ρl, ρ
e
l )|Fk) = E (F (ρl, ρ

e
l )|(ρk, ρek)) ≥ F (ρk, ρ

e
k),

for all l > k.

As far as we know, the continuous-time asymptotic versions of the discrete-time dynam-
ics (24) and (25) associated to a left stochastic matrix ηn with asymptotics (23), have not
been established up to now. In the following, we derive such continuous-time SMEs which
are the limits of these discrete-time dynamics and prove their stability.

3.2 Continuous-time filters as limit of discrete-time filters

Take n large and consider the piece-wise constant continuous-time stochastic processes de-
noted by ρn(t) and ρ

e
n(t) with

ρn(t) = ρ[nt], ρen(t) = ρe[nt]. (26)

where the discrete-time process (ρk, ρ
e
k) obeys to (24) with k = [nt], the entire part of nt. It

is clear that (ρn(t), ρ
e
n(t)) is a Markov process, as (ρk, ρ

e
k) is the Markov chain of Theorem 3.

Now suppose that ρt and ρ
e
t be respectively the solutions of the continuous-time dynamics

of the true filter and its estimate at time t. Let An and A be respectively the Markov
generators of (ρn, ρ

e
n) and (ρ, ρe). Then for all C2−real valued function f, we are looking for

the continuous-time processes ρ and ρe such that the following limit holds.

lim
n→∞

sup
(ρ,ρe)∈D2

|Anf(ρ, ρ
e)−Af(ρ, ρe)| = 0.

We will see that such continuous-time limit depends essentially on the structure of η∞ =
limn→∞ ηn described in Lemma 1 and yields a generalization of the usual stochastic master
equations driven by Wiener and Poisson processes.

Lemma 1. Take the left stochastic matrix η∞s,(x,µ) defined by (23) with line index s ∈
{1, . . . ,m} and column index (x, µ) ∈ {−1, 1}mW × {0, 1, . . . ,mP }. Consider the following
partition (SW , SP ) of {1, · · · ,m} labeling the number of experimental detections:

SP =

{
s ∈ {1, . . . ,m}

∣∣ ∑

x∈{−1,1}mW

η∞s,(x,0) = 0

}
, SW =

{
s ∈ {1, . . . ,m}

∣∣ ∑

x∈{−1,1}mW

η∞s,(x,0) > 0

}
.

Then we have

• The ηs,µ’s defined by

ηs,µ , 2−mW

∑

x∈{−1,1}mW

η∞s,(x,µ), (s, µ) ∈ SP × {1, . . . ,mP }, (27)

satisfy

∀(s, µ) ∈ SP × {1, . . . ,mP }, 0 ≤ ηs,µ ≤ 1 and ∀µ ∈ {1, . . . ,mP }
∑

s∈SP

ηs,µ ≤ 1. (28)
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• The singular values of the matrix E with entries

∀(s, ν) ∈ SW × {mP , . . . ,mP +mW}, Es,ν , 2−mW /2

∑
x xν−mP

η∞s,(x,0)√∑
x η

∞
s,(x,0)

(29)

belong to [0, 1].

Proof. Inequality (28) is a direct consequence of SP definition, because for any (x, µ),
∑

s η
∞
s,(x,µ) =

1 and x belongs to a set of cardinal 2mW .
The matrix E is well defined because, by definition of SW , the denominators in (29) are

all strictly positive. The singular values of E do not exceed 1, if and only if, for any unitary
vector z ∈ R

mW , the Euclidian norm of Ez does not exceed 1. With z = (zj) we have

‖Ez‖2 = 2−mW

∑

s∈SW

(∑
x,j xjzjη

∞
s,(x,0)

)2

∑
x η

∞
s,(x,0)

where (x, j) varies in {−1, 1}mW × {1, . . . ,mW }. With ϑs =
∑

x η
∞
s,(x,0), ϑs,x =

η∞
s,(x,0)

ϑs
and

〈x|z〉 =∑j xjzj we have ‖Ez‖2 = 2−mW
∑

s∈SW ϑs (
∑

x 〈x|z〉ϑs,x)2 . By convexity of α 7→ α2,
we have

∀s ∈ SW ,

(
∑

x

ϑs,x 〈x|z〉
)2

≤
∑

x

ϑs,x (〈x|z〉)2

since
∑

x ϑs,x = 1 and ϑs,x ≥ 0. Thus

‖Ez‖2 ≤ 2−mW

∑

s∈SW

η∞s,(x,0)
∑

x

(〈x|z〉)2 = 2−mW

∑

x

(〈x|z〉)2

since
∑

s η
∞
s,(x,0) = 1 for any x. We have

∑

x

(〈x|z〉)2 =
∑

x,j,j′

xjxj′zjzj′ =
∑

j,j′

zjz
′
j

(
∑

x

xjxj′

)
=
∑

j

z2j

(
∑

x

x2j

)
= 2mW

∑

j

z2j

since x in {−1, 1}mW implies that
∑

x xjxj′ = 0 for j 6= j′. Thus ‖Ez‖2 ≤ 1 when ‖z‖ = 1.

Next theorem provides a generalization of usual SME driven by Wiener processes with de-
tection errors to SME driven simultaneously by Wiener and Poisson processes with detections
errors.

Theorem 4. Consider (ρn(t), ρ
e
n(t)) defined by (26) and associated to (24,25) with a left

stochastic matrix ηn verifying (23). Then, for n → +∞, the process (ρn(t), ρ
e
n(t)) converges

in distribution to the unique solutions of

dρt = −i[H, ρt] dt+



∑

ξ

VξρtV
†
ξ − 1

2
(V †

ξ Vξρt + ρtV
†
ξ Vξ)


 dt

+
∑

s∈SP


 θsρt +

∑
µ ηs,µVµρtV

†
µ

θs +
∑

µ ηs,µTr
(
VµρtV

†
µ

) − ρt



(
dNs(t)−

(
θs +

∑

µ

ηs,µTr
(
VµρtV

†
µ

))
dt

)

+
∑

s∈SW

√
ηs

(
∑

ν

cs,ν

(
Vνρt + ρtV

†
ν − Tr

(
(Vν + V †

ν )ρt

)
ρt

))
dWs(t) (30)
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and

dρet = −i[H, ρet ] +



∑

ξ

Vξρ
e
tV

†
ξ − 1

2
(V †

ξ Vξρ
e
t + ρetV

†
ξ Vξ)


 dt

+
∑

s∈SP


 θsρ

e
t +

∑
µ ηs,µVµρ

e
tV

†
µ

θs +
∑

µ ηs,µTr
(
VµρetV

†
µ

) − ρet



(
dNs(t)−

(
θs +

∑

µ

ηs,µTr
(
Vµρ

e
tV

†
µ

))
dt

)

+
∑

s∈SW

√
ηs

(
∑

ν

cs,ν

(
Vνρ

e
t + ρetV

†
ν − Tr

(
(Vν + V †

ν )ρ
e
t

)
ρet

))
× . . .

. . . ×
(
dys(t)−

√
ηsTr

(
∑

ν

cs,ν(Vν + V †
ν )ρ

e
t

)
dt.

)
(31)

with partition (SP , SW ) of {1, . . . ,m} defined in Lemma 1, with, in the above sums, µ ∈
{1, . . . ,mP}, ν ∈ {mP + 1, . . . ,mP +mW } and ξ ∈ {1, . . . ,mP +mW}, and where

• s ∈ SP is related to the Poisson process dNs(t) characterized by

〈dNs(t)〉 =
(
θs +

∑

µ

ηs,µTr
(
VµρtV

†
µ

))
dt

with ηs,µ given by (27) and θs = 2−mW
∑

x η̃s,(x,0) ≥ 0 (η̃ defined in (23)).

• s ∈ SW is related to the continuous signal ys related to the Wiener process dWs via

dys(t) = dWs(t) +
√
ηsTr

(
∑

ν

cs,ν(Vν + V †
ν )ρt

)
dt. (32)

The efficiencies ηs belong to [0, 1] and correspond to the eigenvalues of EE† with matrix
E defined in Lemma 1. The real coefficients cs,ν are given by the entries of the orthogonal
matrix C appearing in the singular value decomposition of E = RDC with R and C
orthogonal and D the rectangular diagonal matrix with diagonal entries

√
ηs:

∀s, s′ ∈ SW ,
∑

ν

cs,νcs′,ν = δs,s′

The proof of this theorem is given in the next subsection. It admits the same structure as
the proof of Proposition 1 but with sightly more complicated computations for the Markov
generators. The stability of such quantum filters is ensured in the following theorem.

Theorem 5. Consider the Markov process (ρt, ρ
e
t ), satisfying (30,31) where the positive

integers mP , mW and m are arbitrary, where the mp +mW square matrices Vξ are arbitrary,
where the partition (SW , SP ) of {1, . . . ,m} is arbitrary, where ∀(s, µ) ∈ SP × {1, . . . ,mP },
θs ≥ 0, ηs,µ ∈ [0, 1] and

∑
s′∈SP ηs′,µ ≤ 1, where

∀(s, s′) ∈ SW , ηs ∈ [0, 1] and
∑

ν∈{mP+1,...,mP+mW }
cs,νcs′,ν = δs,s′ .
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Then, the fidelity F (ρt, ρ
e
t ) defined in Equation (1) is a (Ft)−submartingale, where Ft =

σ{(ρτ , ρeτ )|τ ≤ t}. In particular, we have,

E (F (ρτ , ρ
e
τ )|Ft) = E (F (ρτ , ρ

e
τ )|(ρt, ρet )) ≥ F (ρt, ρ

e
t ),

for all τ ≥ t.

Proof. The proof is the similar to the one given for Theorem 2. It relies on a direct application
of Theorem 3 and Theorem 4. The assumptions made on the real coefficients θs, ηs,mu, ηs
and cs,ν implies the existence of a family of stochastic process (ρn(t), ρ

e
n(t)) defined in (26)

converging towards (ρt, ρ
e(t)) for n large. This implication relies on manipulations based on

Lemma 1 and providing a family of stochastic matrices ηn = η∞ + η̃/n + O(1/n) such that
these coefficients (θs, ηs,mu, ηs, cs,ν) are related to η∞ and η̃ according to Theorem 4. These
manipulations are simple and not detailed here.

3.3 Proof of Theorem 4

The tightness property of (ρn(t), ρ
e
n(t)) can be concluded by the similar argument appeared

in [19]. We give here the convergence proof of the Markov generators An of (ρn(t), ρ
e
n(t))

towards the Markov generator A of (ρt, ρ
e
t ). We detail the convergence proof for SP = ∅ with

SW = {1, . . . ,m} and for SP = {1, . . . ,m} with SW = ∅. The general case where both SP

and SW are not empty is just a concatenation of the two previous ones .

3.3.1 Proof of Theorem 4 when SP = ∅ and SW = {1, . . . ,m}
Consider the singular value decomposition of matrix E defined in Lemma 1: E = RDC with
R ∈ O(m), C ∈ O(mW ) and D the rectangular diagonal matrix with diagonal formed by√
ηs. Notice that the entries of C coincide with the cs,ν . Set

p̄s , 2−mW

∑

x

η∞s,(x,0), p̄+s,ν , 2−mW

∑

x|xν−mP
=1

η∞s,(x,0), p̄−s,ν , 2−mW

∑

x|xν−mP
=−1

η∞s,(x,0).

Then Es,ν =
∑

ν
p̄+s,ν−p̄−s,ν

p̄s
. Since R is an orthogonal matrix, dW = (dWs)s∈{1,...,m} and R†dW

define similar Wiener processes. Thus, with replacing dW by R†dW in (30,31), we have

dρt = −i[H, ρt] dt+
∑

ξ

Lξ(ρt) dt+
∑

s

(
∑

ν

p̄+s,ν − p̄−s,ν√
p̄s

Λν(ρt)

)
dWs(t), (33)

dρet = −i[H, ρet ] dt+
∑

ξ

Lξ(ρ
e
t ) dt+K(ρt, ρ

e
t ) dt+

∑

s

∑

ν

p̄+s,ν−p̄−s,ν√
p̄s

Λν(ρ
e
t )dWs(t), (34)

with

K(ρ, ρe) :=
∑

s

(
∑

ν

p̄+s,ν−p̄−s,ν
p̄s

(
Tr
(
(Vν + V †

ν )(ρ− ρe)
)))(∑

ν′

(p̄+s,ν′ − p̄−s,ν′)Λν′(ρ
e)

)
.

The infinitesimal generator associated to the Markov process (ρn, ρ
e
n) satisfying dynamics (24)

and (25), can be written as follows

Anf(ρ, ρ
e) ≈ n

∑

s

ps(ρ)
(
f
(
Mn

s (ρ)
ps(ρ)

, M
n
s (ρ

e)
ps(ρe)

)
− f(ρ, ρe)

)
.
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We can approximate the generator An via the second order expansion of f around ρ and ρe.

Anf(ρ, ρ
e) = nD(ρ,ρe)f ·

(
∑

s

M
n
s (ρ)− ps(ρ)ρ,

∑

s

(
M

n
s (ρ

e)− ps(ρ
e)ρe

) ps(ρ)
ps(ρe)

)

+ n
∑

s

ps(ρ)
1
2D

2
(ρ,ρe)f ·

(
Mn

s (ρ)
ps(ρ)

− ρ, M
n
s (ρ

e)
ps(ρe)

− ρe; M
n
s (ρ)

ps(ρ)
− ρ, M

n
s (ρ

e)
ps(ρe)

)
+O(n−1/2).

Let us first calculate the first term in above. By using (10), (11) and (12), we find

M
n
s (ρ)− ps(ρ)ρ =

∑

x

ηns,(x,0)

(
Mx,0ρM

†
x,0 − px,0(ρ)ρ

)
+
∑

x,µ

ηns,(x,µ)

(
Mx,µρM

†
x,µ − px,µ(ρ)ρ

)

=
∑

x

ηn
s,(x,0)

cW√
n

∑

ν

xν−mP
Λν(ρ)

+
∑

x

ηn
s,(x,0)

cW

n


−i[H, ρ] +

∑

ξ

Lξ(ρ)−
∑

µ

Υµ(ρ)Tr
(
VµρV

†
µ

)



+
∑

x,µ

ηn
s,(x,µ)

cW

n Υµ(ρ)Tr
(
VµρV

†
µ

)
. (35)

We have
∑

s

M
n
s (ρ)− ps(ρ)ρ = 1

n


−i[H, ρ] +

∑

ξ

Lξ(ρ)


 , (36)

since for all (x, 0) and (x, µ):
∑

s η
n
s,(x,0) =

∑
s η

n
s,(x,µ) = 1. Also note that for all ν :

∑

x

xν−mP
Λν(ρ) = 0.

Equation (35) can be rewritten as follows,

M
n
s (ρ)− ps(ρ)ρ =

∑

x

ηn
s,(x,0)

cW√
n

∑

ν

xν−mP
Λν(ρ) +O(n−1/2)

=
∑

ν

p̄+s,ν−p̄−s,ν√
n

Λν(ρ) +O(n−1/2). (37)

Thus Mn
s (ρ)− ps(ρ)ρ = O(n−1/2). Now using (11) and (12), we have

ps(ρ) =
∑

x

ηns,(x,0)px,0(ρ) +
∑

x,µ

ηns,(x,µ)px,µ(ρ) =

∑

x

ηns,(x,0)cW

(
1 + 1√

n

∑

ν

xν−mP
Tr
(
(Vν + V †

ν )ρ
)
− 1

n

∑

µ

Tr
(
ρV †

µVµ

))

+
∑

x,µ

ηn
s,(x,µ)

cW

n Tr
(
VµρV

†
µ

)
.
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By equation in above, the approximate value of ps(ρ)
ps(ρe)

is given by

ps(ρ)
ps(ρe)

= 1 + cW√
np̄s

∑

x

ηns,(x,0)

(
∑

ν

xν−mP

(
Tr
(
(Vν + V †

ν )ρ
)
− Tr

(
(Vν + V †

ν )ρ
e
)))

+O(n−1/2)

= 1 + 1√
np̄s

(
∑

ν

(
p̄+s,ν − p̄−s,ν

)(
Tr
(
(Vν + V †

ν )ρ
)
− Tr

(
(Vν + V †

ν )ρ
e
)))

+O(n−1/2).

Finally, we find the following

∑

s

n
(
M

n
s (ρ

e)− ps(ρ
e)ρe

) ps(ρ)
ps(ρe)

= −i[H, ρe] +
∑

ξ

Lξ(ρ
e) +K(ρ, ρe) +O(n−1/2).

Since ps(ρ) = p̄s +O(n−1/2) and Mn
s (ρ)

ps(ρ)
− ρ = O(n−1/2), the zero order terms of

n
∑

s

ps(ρ)
1
2D

2
(ρ,ρe)f ·

(
Mn

s (ρ)
ps(ρ)

− ρ, M
n
s (ρ

e)
ps(ρe)

− ρe; M
n
s (ρ)

ps(ρ)
− ρ, M

n
s (ρ

e)
ps(ρe)

− ρe
)

is given by the following computations:

n
∑

s

ps(ρ)D
2
(ρ,ρe)f ·

(
M

n

s
(ρ)

ps(ρ)
− ρ,

M
n

s
(ρe)

ps(ρe) − ρe; M
n(ρ)

ps(ρ)
− ρ,

M
n

s
(ρe)

ps(ρe) − ρe
)

= n
∑

s

1
p̄s

D2
(ρ,ρe)f · (Mn

s (ρ)− ps(ρ)ρ,M
n
s (ρ

e)− ps(ρ
e)ρe;Mn

s (ρ)− ps(ρ)ρ,M
n
s (ρ

e)− ps(ρ
e)ρe) +O(n−1/2)

=
∑

s

1
p̄s

D2
(ρ,ρe)f ·

(
∑

ν

(p̄+s,ν − p̄−s,ν)Λν(ρ),
∑

ν

(p̄+s,ν − p̄−s,ν)Λν(ρ
e);
∑

ν′

(p̄+s,ν′ − p̄−s,ν′)Λν′(ρ),
∑

ν′

(p̄+s,ν′ − p̄−s,ν′)Λν′(ρe)

)

+O(n−1/2),

where we have used Equation (37) and the fact that we have to keep only the zero order

terms of 1
ps(ρ)

and ps(ρ)
ps(ρe)2

which is equal to 1
p̄s
.

We get finally the following expression for the generator A which is given as the limit of
An when n goes to infinity.

Af(ρ, ρe) = Dρf ·


−i[H, ρ] +

∑

ξ

Lξ(ρ),−i[H, ρe] +
∑

ξ

Lξ(ρ
e) +K(ρ, ρe)




+ 1
2

∑

s

D2
(ρ,ρe)f ·

(
∑

ν

p̄+s,ν−p̄−s,ν√
p̄s

Λν(ρ),
∑

ν

p̄+s,ν−p̄−s,ν√
p̄s

Λν(ρ
e);
∑

ν′

p̄+
s,ν′

−p̄−
s,ν′√

p̄s
Λν′(ρ),

∑

ν′

p̄+
s,ν′

−p̄−
s,ν′√

p̄s
Λν′(ρ

e)

)
.

The expression given in above corresponds well to the infinitesimal generator associated to
the Markov process (ρ, ρe) satisfying dynamics (33) and (34).

Comparing this equation to the one given in (2) and (5) for perfect measurements, we
observe that the Poisson processes have completely disappeared. It just remains the ensemble
average

∑
µ Lµ(ρ) in the deterministic part. Also, the original mW Wiener processes indexed

by ν have been reorganized in m Wiener processes indexed by s.
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3.3.2 Proof of Theorem 4 when SP = {1, . . . ,m} and SW = ∅

In this case, we have

dρt = −i[H, ρt] dt+
∑

ξ

Lξ(ρt) dt

+
∑

s


 θsρt +

∑
µ ηs,µVµρtV

†
µ

θs +
∑

µ ηs,µTr
(
VµρtV

†
µ

) − ρt



(
dNs(t)−

(
θs +

∑

µ

ηs,µTr
(
VµρtV

†
µ

))
dt

)
, (38)

and

dρet = −i[H, ρet ] dt+
∑

ξ

Lξ(ρ
e
t ) dt

+
∑

s


 θsρ

e
t +

∑
µ ηs,µVµρ

e
tV

†
µ

θs +
∑

µ ηs,µTr
(
Vµρ

e
tV

†
µ

) − ρet



(
dNs(t)−

(
θs +

∑

µ

ηs,µTr
(
Vµρ

e
tV

†
µ

))
dt

)
. (39)

The infinitesimal generator associated to the Markov process (ρn, ρ
e
n) is given by the following

Anf(ρ, ρ
e) ≈ n

∑

s

ps(ρ)

(
f

(
M

n
s (ρ)

ps(ρ)
,
M

n
s (ρ

e)

ps(ρe)

)
− f(ρ, ρe)

)
.

The equation in above can be rewritten as follows

Anf(ρ, ρ
e) ≈ n

∑

s

ps(ρ)

(
f

(
M

n
s (ρ)

ps(ρ)
,
M

n
s (ρ

e)

ps(ρe)

)
− f(ρ, ρe)

)

+ nD(ρ,ρe)f ·
(
∑

s

(Mn
s (ρ)− ps(ρ)ρ) ,

∑

s

(Mn
s (ρ

e)− ps(ρ
e)ρe) +K2(ρ, ρ

e)

)

− n
∑

s

ps(ρ)D(ρ,ρe)f ·
(
M

n
s (ρ)

ps(ρ)
− ρ,

M
n
s (ρ

e)

ps(ρe)
− ρe

)
, (40)

with K2(ρ, ρ
e) :=

∑
s

(
Mn

s (ρ
e)

ps(ρe)
− ρe

)
(ps(ρ)− ps(ρ

e)) .

Now let us give the expression of Mn
s (ρ)

M
n
s (ρ) =

∑

x

ηns,(x,0)Mx,0ρM
†
x,0 +

∑

x,µ

ηns,(x,µ)Mx,µρM
†
x,µ

=
1

n

(
θsρ+

∑

µ

ηs,µVµρV
†
µ

)
+O(n−

3
2 ), (41)

where for the last term in above, we have used (10), (12), (23), θs = cW
∑

x η̃s,(x,0) and
ηs,µ = cW

∑
x η

∞
s,(x,µ).

Consequently, the probability ps(ρ) has the following form

ps(ρ) =
1

n

(
θs +

∑

µ

ηs,µTr
(
VµρV

†
µ

))
+O(n−

3
2 ). (42)
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Now by using Equations (36), (41) and (42), we find the following expression for the limit of
the generator An expressed in (40)

Af(ρ, ρe) = D(ρ,ρe)f ·


−i[H, ρ] +

∑

ξ

Lξ(ρ),−i[H, ρe] +
∑

ξ

Lξ(ρ
e) +K2(ρ, ρ

e)




+
∑

s

(
θs +

∑

µ

ηs,µTr
(
VµρV

†
µ

)
)
×



f



 θsρ+
∑

µ ηs,µVµρV
†
µ

θs +
∑

µ ηs,µTr
(
VµρV

†
µ

) ,
θsρ

e +
∑

µ ηs,µVµρ
eV †

µ

θs +
∑

µ ηs,µTr
(
VµρeV

†
µ

)



− f(ρ, ρe)





−
∑

s

(
θs +

∑

µ

ηs,µTr
(
VµρV

†
µ

)
)
×

D(ρ,ρe)f ·


 θsρ+

∑
µ ηs,µVµρV

†
µ

θs +
∑

µ ηs,µTr
(
VµρV

†
µ

) − ρ,
θsρ

e +
∑

µ ηs,µVµρ
eV †

µ

θs +
∑

µ ηs,µTr
(
VµρeV

†
µ

) − ρe


 .

In fact, we have

Anf(ρ, ρ
e) = Af(ρ, ρe) +O(n−

1
2 ).

We observe that the expression of Af(ρ, ρe) corresponds well to the generator associated to
the Markov process (ρ, ρe) satisfying SMEs (38) and (39). Now use the tightness property of
the sequence (ρn, ρ

e
n) to conclude the convergence of the processes (ρn, ρ

e
n) towards (ρ, ρ

e).

3.3.3 Proof of Theorem 4 when SP 6= ∅ and SW 6= ∅

In this general case, the Markov generator of (ρn, ρ
e
n) is decomposed into two different sums:

Anf(ρ, ρ
e) ≈ n

∑

s∈{1,...,m}
ps(ρ)

(
f
(
Mn

s (ρ)
ps(ρ)

, M
n
s (ρ

e)
ps(ρe)

)
− f(ρ, ρe)

)

= n
∑

s∈SW

ps(ρ)
(
f
(
Mn

s (ρ)
ps(ρ)

, M
n
s (ρ

e)
ps(ρe)

)
− f(ρ, ρe)

)
+n

∑

s∈SP

ps(ρ)
(
f
(
Mn

s (ρ)
ps(ρ)

, M
n
s (ρ

e)
ps(ρe)

)
− f(ρ, ρe)

)
.

The limit for n large of each sum versus s ∈ SW and s ∈ SP is then obtained following exactly
the same calculations as the ones given in subsections 3.3.1 and 3.3.2. Since (30,31) are just
the concatenation of (33,34) for the Wiener part and (38,39) for the Poisson part, we get
directly the convergence of the processes (ρn(t), ρ

e
n(t)) towards (ρt, ρ

e
t ).

4 Conclusion

For a large class of SMEs driven by Wiener and Poisson processes, Theorem 5 shows that
Tr2

(√√
ρρe

√
ρ
)
between the quantum state ρt and its estimate ρet is a submartingale. Thus

the ”metric” 1−Tr2
(√√

ρρe
√
ρ
)
is a non-negative super-martingale that vanishes only when

ρ = ρe. A natural question is the following: do there exist other ”metrics” D(ρ, ρe) that are
super-martingales for such a large class of quantum systems?

Any such ”metric” D must be contractive for all Lindblad equations: in Theorem 5, there
is no restriction on the degree of incompleteness of the measurements. Thus we can assume
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ηs = 0, SW = {1, . . . ,m} and SP = ∅. In this case, ρ and ρe obey the same ordinary Lindblad
differential equation

d

dt
ρ = −i[H, ρ] +

∑

ξ

VξρV
†
ξ − 1

2
(V †

ξ Vξρ+ ρV †
ξ Vξ),

where H and Vξ are arbitrary. In [20], Petz has given, via the theory of operator mono-
tone functions, a complete characterization of distance that are contractive for all Lindblad
evolutions. Could we exploit Petz results to characterize ”metrics” D(ρ, ρe) that are super-
martingale for all the quantum filtering processes considered in this paper?
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[3] Stéphane Attal and Yan Pautrat. From repeated to continuous quantum interactions.
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