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Abstract 

We present a new algorithm for solving energy balance in phase change problems, particularly in 

solidification with macrosegregation. The algorithm is based on a nonlinear temperature evaluation using 

the average enthalpy which is provided by i) tabulated phase transformation paths and ii) tabulated phase 

properties. The compatibility of this method with tabulations using a thermodynamic database, allows 

simulating solidification at equilibrium with multiple phase transformations for binary and multicomponent 

alloys. The method has been validated and applied to three-dimensional cases with macrosegregation: a 

binary Sn – 3 wt.% Pb alloy and a ternary Fe – 2 wt.% C – 30 wt.% Cr alloy. For the latter case, predictions 

include composition maps for C and Cr due to thermosolutal instability leading to freckle formation and the 

subsequent distributions of liquid, BCC, FCC, M7C3 and Cementite phases. Compared with a previously 

published enthalpy method, the temperature-based energy solver shows similar accuracy and faster 

computational time. 
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1 Introduction 

Macrosegregation, a well distinguished defect in alloy solidification, has been a main research topic in the 

metallurgy community for the last few decades [1]. It develops within several physical scales: at a 

microscopic scale, solute partitioning between the liquid and solid phases creates composition gradients at 

the interface between the phases, known as microsegregation [2]. Macroscopically, fluid flow in the liquid 

phase as well as other mechanical factors, such as deformation of the mush [3], [4], solidification shrinkage 

[5] and transport of grains [6], [7] may redistribute unevenly the rejected chemical species. These transport 

phenomena gradually enrich or deplete the melt located outside an established mushy zone, leading to 

regions with significant composition differences, hence altering the properties in the finished product. To 

model macrosegregation, a minimum of four conservation principles are used: conservation of mass, 

momentum, chemical species and energy. The phase change literature contains a wealth of numerical 

methods to solve energy conservation in solidifying alloys. A comprehensive overview of these methods is 

given by Swaminathan and Voller [8]. The corresponding equation associates the total average enthalpy to 

the temperature via intrinsic alloy properties, such as the heat capacity of the phases and the latent heat 

associated with the phase transformations. However, in the course of solidification with macrosegregation, 

these properties may change because the average composition may vary significantly: the transformation 

paths are then modified, as well as the phases‟ composition and heat capacity. Similarly, the latent heat of 

phase transformations is not a constant that could be distributed as a function of the phase fractions 

assuming only temperature-dependent phases‟ properties, as often found in the literature [9]. It is thus 

impossible to establish a priori the dependence of the enthalpy with respect to temperature when 

macrosegregation takes place, even in the case of full thermodynamic equilibrium between phases. 

The current work discusses a suitable numerical scheme based on an enthalpy method, already used in the 

literature to alleviate this macrosegregation-related problem [8], [10]. Secondly, we introduce a modified 

formulation, using the effective heat capacity method that increases the original scheme‟s efficiency. The 

current method is thus an enthalpy method that makes use of a temperature-based solver. Moreover, it uses 

tabulated thermodynamic quantities (solidification paths, phases‟ enthalpy and composition) in a range of 

average compositions and temperatures as found in the literature [11]–[13], with the aim of evaluating the 

total average enthalpy as well as the effective heat capacity. The novelty of the modified method resides in 

the use of thermodynamic tabulations without losing the advantages of the previous method, thus yielding 

faster computation times while maintaining a good accuracy. Finally, test cases are presented. 

2 Thermodynamic Considerations 

2.1 Volume averaging 

A volume averaging technique was suggested to deal with the presence of multiple phases [14]. It locally 

considers a Representative Volume Element (RVE) that contains several phases at a mesoscopic scale. We 

represent, for each unknown  , an intrinsic volume average,  (also denoted  in the literature), 

corresponding to a phase  . The volume average  for this unknown in the RVE, hence averaged over all 

the present phases writes: 
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Eq. 1 

where  denotes the volume fraction of phase   in the RVE. It should be emphasized that the averaging 

technique applies to virtually all thermodynamic variables (enthalpy, density …). Among these variables, 

the temperature is considered to be uniform in the RVE. Applying the volume averaging technique to the 

energy conservation principle along with interfacial balances between the phases, results in the following 

averaged equation [15]: 

Eq. 2 

where   stands for the density,   the mass enthalpy,   the velocity field,   the thermal conductivity,   the 

temperature and  a possible volume heat source. While the latter source is zero in the rest of this 

contribution, we keep it to maintain a general formulation of the energy conservation. Eq. 2 is the standard 

averaged form of the energy conservation equation used in non-stationary phase change problems. Once the 

variational form has been discretized in space and time, two possible resolution schemes emerge: the first is 

an explicit forward Euler scheme which gives rise to a linear equation where the temperature denoted by 

is known at time t. This requires very small time steps in the current context, which limits the solver‟s 

usability at the scale of industrial applications. The second scheme is the backward Euler or full implicit 

discretization where terms are function of  . It leads to a nonlinear equation with 2 interdependent 

unknowns,  and  . It is clear that the nature of the temperature-enthalpy relationship plays a 

central role when formulating the resolution strategy of this nonlinear equation. Generally, it is admitted 

that, depending on the resolution strategy, it is necessary to express enthalpy as a function of temperature or 

vice-versa, together with associated partial derivatives,  or  . 

2.2 The temperature-enthalpy relationship 

In solidification problems, additional variables are involved in Eq. 1 and Eq. 2, like the transformation path 

that defines the history of the phase fractions, as well as the average chemical composition  ,   being the 

index of the chemical species (only the solutes are considered). The temperature-enthalpy relation averaged 

over the phases in a given RVE writes: 

Eq. 3 

Note that the volume average enthalpy is approximated by the product  in the current 

work. As stated in the introduction, it becomes clear from Eq. 3 that phase properties, i.e. average phase 

density, , and enthalpy, , are temperature and composition dependent. This 

equation is the key to convert the average volume enthalpy to temperature (through a procedure named 

H2T) or vice-versa (T2H). The values of the different phase fractions  (solidification path) and phase 

enthalpies  are thus needed to close the relation. 

2.3 Tabulation of properties 

The complexity of performing a thermodynamic conversion is directly linked to the simplicity of 
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determining the alloy properties, namely the phase fractions and phase enthalpies. In the case of binary 

alloys and with several assumptions with respect to the system (e.g., linear monovariant 

temperature-composition relationships, constant heat capacity of phases and constant latent heat of 

transformations, equilibrium approximations between phases) analytical calculations are often used to 

determine the properties. Nevertheless, analytical relations are more complex or even impossible to derive 

in the case of multicomponent alloys (  ). To overcome this problem, one can resort to thermodynamic 

databases and phase equilibrium calculations to tabulate the transformation paths and the phase enthalpies 

for a given range of temperatures and average compositions. It is a handy solution for two main reasons: 

first, the conversion is merely a binary search in a table; secondly, it is a simple solution for coupling with 

macrosegregation. In this way, phase fractions  are tabulated as functions of temperature and average 

composition, while for each phase the mass enthalpy,  , and the density,  , are tabulated as 

functions of temperature and phase intrinsic average compositions  , as well as other possible 

parameters. Figure 1 summarizes the steps in order to perform a temperature-to-enthalpy (T2H) conversion 

using the predefined tabulation approach. In step 1, the transformation path is acquired for each average 

composition and temperature to determine the list of phases, their volume fractions  and their intrinsic 

compositions  . In step 2, the phase enthalpy  and density  are determined by searching for the 

temperature and the already known phase composition  . In step 3, the average volume enthalpy is 

computed from the volume fraction, density and mass enthalpy of phases using Eq. 3. 

Step # 1 2 3 

Inputs {T,  } {T, } {  , , } 

Outputs { , } { , } {  } (Eq. 3) 

The methodology to build the tabulations is straightforward. It is based on two main scans. On the one hand, 

intervals for the variation of the average composition  are chosen from the known alloy composition. 

These variations have to cover the extreme values adopted during the simulation, which are not known a 

priori. An interval is also selected for the variation of temperature. The latter is easier to determine as it 

usually starts from the initial melt temperature and goes down to the room temperature in a standard casting 

simulation. For these intervals, a systematic scan is made with chosen steps in each composition and T, 

during which a thermodynamic equilibrium is computed. The outputs are the number of phases 

encountered, together with their fraction and intrinsic composition. The minimum and maximum intrinsic 

composition for each phase could then be determined. On the other hand, for each phase, a scan of the 

intrinsic composition and temperature is made to compute the intrinsic properties. The same temperature 

interval and step as defined earlier are used. This strategy based on full thermodynamic equilibrium means 

that it is limited to the so-called lever rule approximation. 

Regarding the enthalpy-to-temperature conversion (H2T), a backward iterative T2H search is performed. 

For a known composition  , denoting   the iteration index to convert the enthalpy  , we start 

with an initial guess for temperature  then convert it to an enthalpy  with the T2H conversion. 

Figure 1: Tabulation processing for a T2H procedure 
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Using an appropriate nonlinear algorithm (Brent is the most versatile in our case), we aim at minimizing the 

following residual:  . Once the algorithm has converged, the temperature 

 is the result of the H2T conversion. It is inferred that the first conversion (T2H) is a direct one whereas 

the latter (H2T) is indirect and requires a series of iterative steps; each step being a single T2H resolution. In 

other words, a H2T conversion is a backward search for a temperature, hence it‟s slower. This conversion‟s 

speed lag is aggravated when tabulations increase in size (e.g. large number of temperature and composition 

steps) and complexity (e.g., multicomponent industrial alloys used in casting), since the search gets more 

complicated with the increasing number of input columns (one column for each alloying element). 

3 Numerical method 

The finite element method is used to solve the energy conservation as expressed by Eq. 2. A test function 

 belonging to the Hilbertian Sobolev space  of continuous integrable test functions is used to 

formulate the integral variational form of Eq. 2 [16]. A Fourier boundary condition is considered on the 

domain boundary  . The domain is discretized using first-order linear simplexes defined by their 

number of local nodes (denoted “    ”): triangles in 2D with and tetrahedra in 3D 

with  . The outcome is a residual that we aim to minimize so that the conservation principle is 

satisfied. Assuming a static solid phase and an incompressible liquid phase, it can be shown that the second 

term of Eq. 2 can be cast into the expression  . Therefore, its weak (variational) form is 

defined as follows: 

Eq. 4 

The steps for discretizing in time and space the previous equation are detailed in the literature [2], [15]. As 

for enthalpy and temperature, they are spatially discretized in each finite element using interpolations 

functions   , thus defining the nodal values  and   , respectively: 

Eq. 5 

Eq. 6 

Note that  is a volumetric enthalpy. The Galerkin formulation gives the following expression for the 

residual contribution at a mesh node   for time step   in a local element  : 

Eq. 7 

where 
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transient term 

contribution boundary 

condition 

contribution advection 

contribution 

conductivity 

contribution 

source term 

contribution 

The surface integrals     
  and   

  are related to a Fourier-type boundary condition, with      as a 

coefficient of heat exchange and      as the external temperature far from the boundary. The energy 

conservation principle is satisfied when the sum of the residual contributions coming from all the mesh 

elements is zero. In other words, the following global residual defined by the assembly of these 

contributions, should be minimized:  

Eq. 8 

where the global matrices         ,     ,      ,    and    contain respectively, after an assembly step, the 

contributions of the local matrices    
 ,    

 ,     
 ,     

 ,   
  and   

  from each discretized element in the 

domain  . Accordingly, the indices   and   refer to global node numbers, where the total number of nodes 

denoted by       . It is clear that the global residual, inherits the dependence between enthalpy and 

temperature. This is shown in Eq. 8 where the average volume enthalpy is a function of the temperature. It 

infers that this residual is a non-linear function; therefore minimizing it requires an iterative non-linear 

algorithm. Our choice settles on the Newton-Raphson method, known for its quadratic convergence speed. 

A solidification problem can induce severe non-linearities from the release of the latent heat (which itself is 

temperature-composition dependent) and the variations of the thermophysical properties of the alloy with 

respect to temperature and average composition. This algorithm could thus treat such variations. 

Considering the link between enthalpy and temperature, Eq. 8 may be solved either for enthalpy or for 

temperature as a nodal unknown; hence both formulations are presented hereafter. 

3.1 Enthalpy-based approach (Hsolver) 

The residual is re-written using a Taylor series expansion to the first order for a nonlinear iteration  : 

Eq. 9 

Neglecting the second order terms, the suggested correction at each iteration in view of cancelling the 

residual and giving the new value   
 

, is given by the linear system: 

Eq. 10 

where  is a global tangent matrix yielding the variations of the residual with respect to the enthalpy in 
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the last iteration, . If Eq. 7 is considered, then the contribution of an element  writes: 

Eq. 11 

Eq.11 is the core of the enthalpy-based solver. The resolution of Eq.10 then yields a new estimate of the 

vector of nodal enthalpies  , which are the only unknowns to be solved for. Once determined at 

iteration  , convergence tests are performed as explained in section 3.3. 

3.2 Temperature-based approach (Tsolver) 

Similarly to the Hsolver, the local residual is recast for a nonlinear iteration   , leading this time to an 

iterative temperature correction: 

Eq. 12 

where  is a global tangent matrix yielding the variations of the residual with respect to temperature 

 at the previous iteration.  The contribution of an element  to this tangent matrix is evaluated as: 

Eq. 13 

In contrast to the previous solver, Eq. 13 is the core of the temperature-based solver. The resolution of 

Eq.12 yields a new estimate of the vector of nodal temperatures  , which are the only unknowns to be 

solved for. Once updated for iteration  , convergence tests are performed (see next section). 

3.3 Convergence 

The previous two sections described the iterative resolution of the same discretized energy conservation 

(Eq.4) by Tsolver and Hsolver. However, in both equations 11 and 13, an important term emerges from the 

tangent matrix evaluation describing the variations between temperature and enthalpy: (or its 

inverse). This term invokes the previously mentioned temperature-enthalpy tabulations which depend on the 

alloy composition. Consequently,  (respectively its inverse) has a great influence on the 

convergence of the Tsolver (respectively the Hsolver). At a nonlinear iteration  , this term is written using 

a finite difference: 

Tsolver Eq. 14 

Hsolver Eq. 15 

For the Tsolver, the enthalpy is needed to evaluate Eq. 14. In contrast, the Hsolver requires the value 

of  to evaluate the corresponding Eq. 15. In both cases, the unknown is determined by the temperature-

enthalpy relation. The indices next to the mentioned unknowns indicate that this relation is used for each 
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iteration     at each mesh node  , hence affecting the global resolution time between the two solvers. The 

Hsolver needs a H2T to evaluate      , whereas the Tsolver needs a T2H to evaluate      . The 

flowchart in Figure 2 demonstrates the process. 

It can be seen that Tsolver uses solely T2H procedure and the thermodynamic tabulations to determine the 

enthalpy, hence the term      . On the other hand, Hsolver repeats the same procedure a finite number of 

times in order to determine a temperature output through H2T and use it to compute      . This 

algorithmic difference leverages the Tsolver in terms of computation time providing the same numerical 

accuracy while conserving the total system energy.  

Figure 2: Flowcharts showing the steps to compute the nonlinear terms using tabulations 

Convergence tests are necessary at the end of each iteration of the energy solver to determine the 

convergence status of the algorithm. In the context of the Tsolver for instance, the residual is re-evaluated 

with the newly determined temperature    and enthalpy    so Eq. 8 rewrites: 

Eq. 16 

The norm of the current residual,  , is compared to a fixed small value  . The 

resulting temperature variation,  , has also to verify a similar condition between two 

consecutive iterations. For that purpose, we compare it to another fixed value  . 
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Convergence is ultimately achieved when the following criteria are simultaneously met: 

Eq. 17 

A comparison of both solver formulations is done in the hereafter test cases section. 

4 Test cases for binary alloys 

4.1 Pure diffusion 

The two solvers are first tested in a purely diffusive case for a one-dimensional solidification configuration. 

Predictions with a 1D front tracking model [17] is used as a benchmark. It provides solutions for the 

temperature and solid fraction during directional solidification of a 10 cm long Al – 7 wt.% Si ingot. The 

melt, with initial uniform temperature, is cooled with a heat exchange coefficient (assuming a Fourier 

boundary condition) from one side, the other side being adiabatic. All values for alloy properties, initial and 

boundary conditions and numerical parameters are listed in Table 1. For this simple test case, we use linear 

temperature dependence of the intrinsic phase enthalpies, that is  and   , 

where  is the heat capacity per unit volume and  is the latent heat per unit volume. Values for 

and   , as well as for the thermal conductivities,  =  , are taken constant. Moreover, a 

Gulliver-Scheil approximation is used to compute a single temperature – fraction of solid relationship in the 

absence of macrosegregation. This is done assuming a linear binary phase diagram and thus requires using 

the properties listed in Table 1, i.e. the segregation coefficient, k, the liquidus slope, mL, the liquidus 

temperature, TL, and the eutectic temperature, TE. Figure 3 shows the comparison with the Hsolver and 

Tsolver. The results are found superimposed to the front tacking solution, thus giving validation of the 

implementation as well as the iterative schemes presented above to solve the energy conservation. 

Parameter Symbol Value Unit 

Nominal composition 7 wt.% 

Liquidus temperature TL 618 °C 

Eutectic temperature TE 577 °C 

Segregation coefficient k 0.13 wt.% / wt.% 

Liquidus slope mL -6.5 wt.% °C
-1

 

Heat capacity (liquid and solid) 2.6 ∙10
6
 J m

-3
 °C

-1
 

Enthalpy of fusion  L 9.5 ∙10
8
 J m

-3
 

Thermal conductivity (liquid and solid)   70 W m
-1

 °C
-1

 

Heat transfer coefficient 500 W m
-2

 °C
-1

 

External temperature 100 °C 

Initial temperature T0 800 °C 

Ingot length 0.1 m 

FE mesh size 10
-3

m 

Time step 0.1 s 

Convergence criterion (residual) R 10
-6

- 

Convergence criterion (temperature) T 10
-2

K 

Table 1: Parameters for the pure diffusion test case with alloy Al – 7 wt.% Si presented in Figure 3 
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4.2 Convection-diffusion with macrosegregation 

Table 2 presents the additional equations used in a second solidification benchmark with macrosegregation 

for a simple binary alloy (i=1). For the conservation of energy, Eq.2 is kept. Conservation equations in 

Table 2 are for mass, momentum and chemical species. As for energy, they are presented after the volume 

averaging technique has been applied [2], [14]. Moreover, an assumption of a static and non-deformable 

solid phase is made. Consequently, the mechanical model is reduced to the conservation of momentum in 

the liquid phase. This assumption also yields some other consequences on the mass balance and the liquid 

momentum conservation. In the latter,  is the stress deviator tensor in the liquid phase. A Darcy term is 

added to take into account the dissipative interfacial stress in the porous-like mushy zone. Its main 

parameter is the permeability of the mushy zone, K. It is considered isotropic, hence reducing to a scalar 

which is given by the Carman-Kozeny relation, based on the secondary dendrite arm spacing   : 

. The liquid density being taken constant, its spatial variations as a function of 

temperature and average composition are still needed to compute thermosolutal convection forces. For that 

purpose, the Boussinesq approximation  is 

used, considering the thermal  and solutal  expansion coefficients and a reference density, , 

defined at a reference temperature  and reference composition  . Values for the references are 

taken at the liquidus temperature and the nominal composition of the alloy,  [10]. More details about 

the FE formulation can be found in [18], [19]. Also note that the macroscopic solute diffusion coefficient in 

the solid phase is neglected in Eq. 20. 

Figure 3: Computed unidirectional heat diffusion during solidification of an Al – 7 wt.% Si alloy using 

(orange) the enthalpy method and (black) the temperature method, comparison being made for (left) 

cooling curves and (right) time history of the liquid fraction. Each curve corresponds to a position along 

the sample, from 0 cm (cooling side) to 10 cm (insulated side), with 2 cm spacing between the positions. 
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 Mass Eq. 18 

Momentum Eq. 19 

Chemical species Eq. 20 

Table 2: Averaged conservation equations for the conservation of mass, momentum and solute mass 

The Tsolver‟s ability to be coupled with various physical phenomena like macrosegregation and fluid flow 

in porous medium is displayed in this test case. It consists of a solidification benchmark where a 

10 cm width × 6 cm height × 1 cm thick cavity containing a Sn – 3 wt.% Pb melt is cooled down from its 

two narrowest vertical sides using heat exchangers (LHE: left heat exchanger, RHE: right heat exchanger). 

The experiment, inspired by Hebditch and Hunt‟s [20] similar set up, has been revisited by Hachani et al. 

[21] who performed the solidification with better controlled conditions and using an increased number of 

samples for composition analysis. Recently, a successful attempt to simulate the experiment was carried out 

by Carozzani et al. relying on an enthalpy resolution [10]. All details regarding geometry, finite element 

discretization, material properties and boundary conditions can be found in the latter reference. For this 

computation, solidification paths, phase compositions and phase enthalpies were determined by a 

thermodynamic module dedicated to equilibrium calculations for binary alloys. The 3D simulation results in 

Figure 4 show a satisfactory agreement with the experimental temperature measurements recorded at 

mid-heights of the cavity and uniformly distributed along its width [10]. In fact, simulation results with the 

Tsolver and the Hsolver were found to be almost superimposed, as in Figure 4. Regarding the computation, 

the Tsolver resolution proves to be faster than the Hsolver used in [1]: a process time of 7000s required a 

computation time of 90 hours 13 minutes compared to 114 hours 21 minutes spent by the enthalpy 

resolution with 32 cores on the same cluster. The gain factor is about 20%. 

Figure 4: Experimental cooling curves overlap with the results of the 3D FE simulation.  

The left (LHE) and right (RHE) heat exchangers impose the boundary temperature in the experiment 
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5 Casting of a multicomponent alloy 

The efficiency of the temperature-based resolution resides in its performance when combined with 

thermodynamic tabulations. A multicomponent alloy consists of at least two solute elements, and therefore 

the tabulation size increases, hence the number of search operations also increases. To demonstrate the 

speed-up ability of the temperature-based approach while predicting all phase transformations during 

macrosegregation, we consider the solidification of a ternary alloy, Fe – 2 wt.% C – 30 wt.% Cr. As 

illustrated in Figure 5a, the alloy domain has a cylinder shape close to 3 inches height × 1 inch diameter. 

Exact values are reported in Table 3 with all material properties, initial and boundary conditions, as well as 

numerical parameters for the simulations. The melt steel is initially at 1395°C. The temperature of the 

bottom surface is imposed with a constant decreasing rate of 0.1 K.s
-1

 starting with 1380 °C, i.e. 40°C 

higher than the nominal liquidus temperature, as shown in Figure 5b. The other surfaces are kept adiabatic. 

The cylinder is held in a vertical position. In these conditions, and knowing that the carbon and chromium 

solutes have lightening effects on the liquid at nominal composition, the density inversion resulting from the 

composition gradient in the interdendritic liquid, may cause flow instability (segregation plumes) at the 

solidification front. While the selected alloy is a steel, this application is also representative of directional 

cooling in a single crystal casting, e.g. for nickel-base superalloys [22]. Figure 5c also provides the 

transformation path of the alloy at nominal composition, i.e. assuming no macrosegregation and full 

thermodynamic equilibrium as computed with ThermoCalc and the TCFE6 database [23], [24]. A total of 5 

phases need to be handled, the characteristic temperature for their formation being reported in Figure 5b. 

(a) (b) (c) 

Figure 5: Configurations for directional casting of (a) a 1 inch diameter × 3 inches height cylindrical domain for which 

(b) temperature-time conditions are imposed at its bottom surface. The alloy is Fe – 2 wt.% C – 30 wt.% Cr, its computed 

transformation path [23], [24] at nominal composition being displayed in (c). 

Thermodynamic tabulations 

Full thermodynamic equilibrium is considered in the present case. Due to macrosegregation, the average 

composition is expected to continuously vary in time and space during casting. Transformation paths are 

thus determined a priori for a set of average compositions around the nominal value. Hence, carbon content 

is arbitrarily varied in the interval [1.8wt.%, 2.2wt.%] while chromium content variation is in the interval 

[27wt%, 33 wt%]. The offset of ±10% with respect to the nominal composition value allows tabulating 
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relatively small composition steps to ensure a fairly accurate mapping when compared to the corresponding 

ternary phase diagram. The average composition step is 0.04wt.% for carbon and 0.6 wt.% for chromium, 

thus representing 2% intervals with respect to the nominal composition. The temperature varies in the 

interval [100°C, 1600°C] by 5°C steps. For each triplet (carbon content  in wt.% C, chromium content 

in wt.% Cr, temperature T in K) corresponds a phase fraction and a pair of intrinsic phase 

composition  . For the 5 phases listed in Figure 5c (LIQ≡liquid, BCC≡ferrite, 

FCC≡austenite, M7C3≡carbide, CEM=cementite), the enthalpy and density  , are tabulated as 

functions of temperature and phase intrinsic composition. If this latter input lies between two tabulated 

values, a linear interpolation is performed to determine the output, i.e. phase enthalpy and density. With the 

advancement of solidification, the liquid is enriched with solute by macrosegregation, which enables new 

solidification paths. It means that the primary solidifying phase is not necessarily the same as when 

considering the nominal composition. For this reason, the tabulation approach is interesting inasmuch as it 

provides phase transformation paths and values of phase properties that are compatible with the system‟s 

actual composition. Figure 6 summarizes the tabulated thermodynamic data for two sets of average 

composition for the considered ternary system. Note that in the present test case, phase densities are taken 

constant (           kg.m
-3

). Therefore they are not tabulated. With this assumption, no shrinkage 

occurs upon phase change. 

Parameter Symbol Value Unit 

Nominal composition 2 wt.% 

30 wt.% 

Characteristic temperatures Ttop, Tbottom Figure 5b °C 

Phase fraction Tabulations Figure 7 - 

Phase enthalpy  Tabulations Figure 7 J kg
1
 

Phase composition Tabulations Figure 7 wt.% 

Phase composition  Tabulations Figure 7 wt.% 

Diffusion coefficients  15∙ 10
-10

 m
2
 s

-1
 

 15∙ 10
-10

 m
2
 s

-1
 

Dynamic viscosity  2∙ 10
-3

 Pa s 

Solutal expansion coefficient  1.54∙ 10
-3

 wt%
-1

 

 1.72∙ 10
-2

 wt%
-1

 

Thermal expansion coefficient  8.96 ∙ 10
-5

 °C
-1

 

Thermal conductivity in the solid  40 W m
-1

 °C
-1

 

Thermal conductivity in the liquid  28 W m
-1

 °C
-1

 

Dendrite arm spacing 60∙ 10
-6

 m 

Density  6725 kg m
-3

 

Reference composition  2 wt.% 

Reference composition 30 wt.% 

Reference temperature   1377 °C 

Initial temperature T0 1395 °C 

Ingot diameter  25 ∙ 10
-3

 m 

Ingot length  75 ∙ 10
-3

 m 

FE mesh size  10
-3

m 

Time step  0.1 s 

Convergence criterion (residual) R 10
-5

- 

Convergence criterion(temperature) T 10
-3

K 

Table 3: Parameters for solidification of alloy Fe – 2 wt.% C – 30 wt.% Cr presented in Figure 5 – 10 
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Figure 6: Tabulated thermodynamic data for the ternary system Fe-C-Cr alloy with software Thermo-Calc [23]  with database TCFE6 [24] 
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Solidification without macrosegregation 

A first case is considered without macrosegregation, that is, all mechanical driving forces are bypassed, 

leading to a static melt. This is achieved by nullifying the thermal and solutal expansion coefficients, which 

is equivalent to a constant density in space and time, i.e. no Boussinesq force is considered. This way, the 

average composition may only vary due to diffusion in the liquid phase according to Eq. 20 where the 

convection term is neglected. Diffusion is significantly small in the present case and can be neglected too. 

In such a case, the composition distribution maintains a homogeneous aspect throughout the sample during 

the entire cooling sequence. The phase transformations then are necessarily expected to follow the unique 

path shown in Figure 5c. After 407 s of cooling, the liquidus isotherm enters the bottom surface of the 

geometry and starts its upward propagation, marking the solidification onset. Figure 7 presents the 

simulation results at 3 successive times for the distribution of the solute species and the temperature, as well 

as for the fraction of phases listed in Figure 5c. At 600 s, a fully liquid region is still largely present while 

the mushy zone is made of liquid plus the primary solid phase (ferrite). At 10560 s, the sample is full solid, 

with fractions of ferrite and cementite that corresponds to the values read in Figure 5c at low temperature. 

At the selected intermediate time, the presence of 4 phases is found. The solid region at the bottom of the 

cylinder is made of ferrite, austenite plus carbide, the temperature being still too high to permit the 

cementite to form. The mushy zone above the solid region is characterized by the presence of 3 phases due 

to a peritectic reaction taking place that progressively transform ferrite into austenite in the presence of 

liquid. It can be noticed that the phase fraction isovalues in Figure 7 (at 600 s) are horizontal, owing this to 

two factors: the first is the temperature field, which varies unidirectionally from bottom to top, controlled by 

thermal diffusion, while the second is the uniform average composition throughout the sample due to the 

absence of convection. In fact both factors are consequences of the flow absence, which would transport 

heat and solute by advection, thus inevitably changing the phase distribution. The succeeding phase change 

is a solid-state transformation where  -ferrite and the carbide M7C3 react to form cementite at 490°C at 

nominal composition, as shown in Figure 5b. The reaction is relatively slow, ending with 28% of cementite 

and 72% of  -ferrite. 

Solidification with macrosegregation 

In this case, the artificial consideration of a still flow is dropped, hence taking into account 

macrosegregation caused by the fluid motion by using realistic values of the expansion coefficient given in 

Table 3. Solidification starts at 407 seconds when the cylinder‟s bottom base temperature reaches the 

liquidus temperature of the alloy. In fact, the solidification onset is the same as in the former case, since the 

average composition remains unchanged for an entirely liquid domain (assuming an initially infinite solute 

mixing in the melt). As shown in Figure 8 at 600 s, the first solid phase to form remains ferrite. We can also 

see solute-rich channels forming in the mushy zone and solute plumes rising in the melt above the mushy 

zone due to a subsequent upward flow. It is actually caused by the thermosolutal buoyancy force created by 

the carbon and chromium solutes. Such phenomenon could delay solidification inside liquid-rich channels 

and results in a freckling defect [25] on the surface of the cylinder as well as inside, as shown later in this 

section. As solidification proceeds, the liquid becomes more enriched with solute and the peritectic reaction 
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forming the austenite phase is reached. However, for very large enriched melt, it can also be observed that 

primary solidification proceeds with the austenite phase rather than the ferrite phase. The carbide phase can 

also form with the austenite phase at some locations. These observations correspond to a simulation time of 

2000 s in Figure 8. Solidification ends at around 2475 s, the last liquid solidifying at the cylinder‟s top 

surface, where the average composition reaches a maximum of Fe – 2.151 wt.% C – 30.633 wt.% Cr, i.e. a 

relative positive macrosegregation,                   , of 7.5% for carbon and 2.1% for chromium. The 

fact that the maximum average composition is observed at the top, is verified in Figure 9a which shows the 

composition map in a 2D vertical slice through the longitudinal axis of the cylinder. We can also see it in 

Figure 9b where the relative composition profile are plotted at the end of the cooling process along the 

longitudinal cylinder axis Z-Z‟ and along the axis of the freckle, F-F‟. The negative segregation up to 1 cm 

from the chill corresponds to the solute depletion caused by the first solid formation. The subsequent 

solidification enriches further the liquid; hence the solid composition also increases. The composition 

evolution trend for both solutes is similar: an overall rise until positive segregation is achieved above 5 cm 

from the chill. The positive macrosegregation intensifies when the profile is chosen at the center of the 

freckle, negative segregation then becoming less pronounced. 

Figure 7: Upward solidification of a cylinder rod with a static liquid at 3 stages in a Fe – 2 wt% C – 30 wt% Cr 

alloy. The left columns show the average composition and temperature distribution, while the right columns show 

the phase fractions 
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Figure 8: Upward solidification of a cylinder rod at 3 stages showing the metallurgical consequences of macrosegregation 

in a Fe – 2 wt% C – 30 wt% Cr alloy. The left columns show the average composition and temperature distribution, while 

the right columns show the obtained phase fractions 

Beyond 2475 seconds, no variations of the average composition maps are observed since solute diffusion in 

the solid phases is neglected. Nonetheless, as temperature decreases, solid-state transformations are still 

possible as for the case with no macrosegregation. The formation of a cementite phase begins at the cylinder 

base at 8843 s with a temperature of 496.9°C. At about 9293 s, the isotherm 488.5°C reaches the top 

surface. This temperature value is the local cementite solvus temperature. The difference in the solvus 

temperature between the bottom and top surfaces is due macrosegregation. Macrosegregation also explains 

the variation in the cementite content. The solid state transformation ends shortly before 10500 s. The final 

phase distribution is clearly dependent on the final macrosegregation pattern. They retain the shape of the 

freckles that were caused by thermosolutal convection, hence demonstrating the heritage of the 

solidification process on the final distribution of phases. This is better illustrated by drawing the time 

evolution of the fraction of phases at the center of the bottom and top surfaces of the cylinder in Figure 10. 

With no macrosegregation, in Figure 10a, the final distribution of the phases is the same at time 12000 s, 

while with macrosegregation, in Figure 10b, variations of the cementite and ferrite are revealed. 

The previously mentioned segregation plumes have transformed to freckles, inside the cylinder and on the 

boundary. This defect is marked by a noticeable gradient of composition and phase fractions, possibly 

changing the mechanical properties in the channels, hence the overall mechanical behavior of the alloy [26]. 
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The coupling of the Tsolver with thermodynamic tabulations is thus demonstrated. It shows the ability to 

predict complex solidification paths, even if only at equilibrium. As for the computation time, the Tsolver 

resolution performed better: 500 seconds of solidification required 6 hours 14 minutes compared to 8 hours 

6 minutes spent by the enthalpy resolution with 12 cores on the same machine. The gain factor is about 

22 %. 

Figure 10: History of phase fraction (a) without macrosegregation and (b) with macrosegregation at the center of the 

(plain) bottom and (dashed) top surfaces of the cylinder surfaces, extracted from simulation displayed in (a) Figure 7 and 

(b) Figure 8 

(a) (b) 

Figure 9: (a) average composition map on a vertical section inside the sample, with 

 (b) relative macrosegregation profiles on the vertical revolution axis 
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6 Conclusions 

A new algorithm for solving the energy balance has been presented. It is particularly suited for solidification 

problems with macrosegregation. Tabulated thermodynamic data makes it possible to predict several 

solidification paths for a range of average compositions. The algorithm, based on a temperature-stepping 

resolution, is compared to a classical enthalpy solver with the same tabulated properties for phase fractions, 

compositions and enthalpies. Validation has been performed with a 1D pure diffusion solidification case, as 

well as a 3D case with macrosegregation, the alloys being binary in both cases. A demonstration has then 

been shown with an iron-carbon-chromium ternary alloy. 

The temperature-based method proved to be faster in computation time in all cases. Coupling with the 

prediction of grain structure is presently under development [27], considering the importance already 

demonstrated elsewhere [10], [17]. Besides, this article only presents tabulations used with the 

approximation of full equilibrium -or lever rule- for macrosegregation calculations. Only for the test case 

considering pure diffusion in Al-7wt%Si the Gulliver-Scheil path was considered. For this particular alloy, 

there is little difference between these two paths. And in case of macrosegregation in binary systems such as 

SnPb and PbSn alloys, literature shows that little difference is found [28]. It is clear however that this 

approximation remains limiting for multicomponent alloys. For steels, a third type of approximation is even 

required, named partial equilibrium, that considers equal chemical potential of interstitial elements in all 

phases (e.g., C), while substitutional species in the solid phases (e.g., Cr) are frozen [29]. 
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