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In 1991 I described a particularly simple and elegant watershed algorithm, where the ooding a topographic surface was scheduled by a hierarchical queue. In 2004 the watershed line has been described as the skeleton by zone of inuence for the topographic distance. The same algorithm still applies. In 2012 I dened a new distance based on a lexicographic ordering of the downstream paths leading each node to a regional minimum. Without changing a iota, the same algorithm does the job..

Introduction

This paper is singular as it analyses a paper published in 1991 [START_REF] Meyer | Un algorithme optimal de ligne de partage des eaux[END_REF], known and used by many, describing an algorithm for constructing watershed partitions (for a literature review on the watershed, see [START_REF]Mathematical morphology[END_REF]). The title of this paper was rather presomptuous "un algorithme optimal de ligne de partage des eaux", which means "an optimal watershed algorithm". In the sequel we refer to it as the "HQ algo."

Classically considering a grey tone function as a topographic surface, the algorithm constructs a watershed partition by ooding this surface, the darker levels being ooded before the brighter levels. At the same time it provides a correct treatment of the plateaus of uniform grey tone: the ooding starts at its downward boundary and progresses inwards with uniform speed. The ooding is controlled by a hierarchical queue, i.e. a series of hierarchical FIFO queues. Each queue is devoted to the ooding of a particular level. The FIFO structure cares for the ooding of the plateaus.

If one considers by which other pixel each pixel is ooded, one obtains a ooding trajectory. A pixel is assigned to the catchment basin of a particular minimum m if there exists a ooding trajectory between this pixel and m. A pixel may be linked to several minima by distinct ooding trajectories. The hierarchical queues selects a particular ooding trajectory for each pixel and assigns this pixel to the minimum at the beginning of the trajectory. The quality of the nal watershed partition entirely relies on the choice of the best trajectories.

The algorithm has been developed for a lexicographic order of ooding: between two pixels, the rst to be ooded is the lowest ; and if they have the same gray tone, the rst to be ooded is the nearest to the lower boundary of a plateau.

Later the topographic distance has been developed and a more selective order relation dened. If a node has lower neighbors, it may be ooded only by one of the lowest of them. The behaviour on plateaus remains identical. The "HQ algo". remains valid for this new lexicographic distance derived from the topographic distance [START_REF] Najman | Watershed of a continuous function[END_REF][START_REF] Meyer | Topographic distance and watershed lines[END_REF].

Finally, in 2012, I introduced a new distance for which the geodesics are the steepest possible [START_REF] Meyer | Watersheds on weighted graphs[END_REF]. The steepest paths are chosen among the smallest for a lexicographic order relation based on the gray tone values of all pixels along the path. It was a real surprise to discover that, again, without the slightest modication, the algorithm of 1991 does the job.

The paper explains why the HQ algorithm remains valid for these 3 types of very dierent distances. A slight modication of the HQ algorithm permits to prune the graph in order to keep only the innitely steep ooding paths. We conclude by some applications using these paths.

We conclude, recognizing that the HQ algorithm was, indeed, in more senses than suspected, optimal.

2 The early days of the watershed 2.1 The geodesic distance and the skeleton by zones of inuence Christian Lantuejoul, in order to model a polycrystalline alloy, dened and studied the skeleton by zones of inuence of a binary collection of grains in his thesis [START_REF] Lantuéjoul | La squelettisation et son application aux mesures topologiques de mosa ßques polycristallines[END_REF] ; he studied the geodesic metric used for constructing a SKIZ in [START_REF] Lantuéjoul | On the use of the geodesic metric in image analysis[END_REF]. The shortest distance d Z (x, y) between two pixels x and y in a domain Z is the length of the shortest path linking both pixels within the domain. If X is a subset of Z, we likewise dene the geodesic distance between a point x ∈ Z and the set X, as the shortest path between x and a pixel belonging to X.

Consider now a set X ⊂ Z, union of a family of connected components X i . The skeleton by zone of inuence of X, or skiz(X, Z) assigns to each connected component X i the pixels which are closer to X i than to any other set X j for the geodesic distance d Z .

The rst implementation of the SKIZ was made on the TAS, a hardwired processor developed at the CMM and used homotopic thickenings for constructing the SKIZ. With the advent of cheaper memories and the personal computer, it was possible to represent images on random access memories (whereas the TAS permitted only raster scan access to the images). Luc Vincent proposed a very ecient implementation of a SKIZ [START_REF] Soille | Watersheds in digital spaces: An ecient algorithm based on immersion simulations[END_REF]; the growing of the various germs being governed by a FIFO. The algorithm for constructing the SKIZ skiz(X, Z) of a family of particles X = (X i ) within a domain Z is the algorithm 1. 

λ = 1, N do 3 π f = skiz(π f , π f ∪ {f = λ})
One gets the watershed algorithm by introducing the algorithm for the SKIZ into the algorithm of C. Lantuéjoul. L. Vincent and P.Soille completed the algorithm by adding a clever mechanism for nding the successive thresholds of a grey tone function [START_REF] Soille | Watersheds in digital spaces: An ecient algorithm based on immersion simulations[END_REF].

A hierarchical queue algorithm for the watershed

The algorithm 2 repeats the SKIZ construction for all successive levels of the grey tone function sequentially. For each level it uses the algorithm 1. When a pixel is dequeued from the FIFO, its neighbors are labeled if they belong to the same level set, and discarded if not. They will be processed later, when the level set corresponding to their greytone value is processed. The principal innovation of the "HQ algo" [START_REF] Meyer | Un algorithme optimal de ligne de partage des eaux[END_REF] is to create all FIFOs at once, each being devoted to a distinct grey tone, with the advantage to to put all pixels which are met in a waiting position before they ood neighboring pixels. When a node x is dequeued all its neighbors may be processed: the neighbors with the same grey tone as x are put in the same FIFO as x, the others are put in the FIFOs corresponding to their grey tone. The resulting algorithm 3 is particularly simple.

Algorithme 3: The hierarchical queue based watershed algorithm

Input : A gray tone function Result : A partition of labeled catchment basins 1 Initialisation: Detect and label the regional minima Create a hierarchical queue HQ Introduce the inside boundary pixels of the minima in the HQ 2 while HQ not empty do 3 extract the node j with the highest priority from the HQ for each unlabeled neighboring node i of j do 4 label(i) = label(j) put i in the queue with priority fi Analysis of the algorithm The nodes are processed according to a dual order: nodes with a lower altitude are ooded before nodes with a higher altitude. And nodes within a plateau are processed in an order proportional to the distance to the lower border of the plateau.

3 The watershed as the SKIZ for the topographic distance

Each image dened on a grid may be considered as a particular graph. The pixels are the nodes of the graph ; neighboring pixels are linked by a node. All algorithms dened so far immediately to node weighted graphs. We now give a few reminders on graphs

Reminders on node weighted graphs

A non oriented graph G = [N, E] contains a set N of vertices or nodes and a set E of edges ; an edge being a pair of vertices. The nodes are designated with small letters: p, q, r...The edge linking the nodes p and q is designated by e pq .

A path, π, is a sequence of vertices and edges, interweaved in the following way: π starts with a vertex, say p, followed by an edge e pq , incident to p, followed by the other endpoint q of e pq , and so on.

Denote by F n the sets of non negative weight functions on the nodes. The function ν ∈ F n takes the weight ν p on the node p.

A subgraph G of a node weighted graph G is a at zone, if any two nodes of G are connected by a path along which all nodes have the same weight. If furthermore all neighboring nodes have a higher altitude, it is a regional minimum. A ooding path is a path along which the node weights is never increasing. Denition 1. The catchment zone of a minimum m is the set of nodes linked by a ooding path with a minimum.

Obviously, a node may be linked with several regional minima through distinct ooding paths. The catchment zones may overlap and do not necessarily form a partition. They form a partition if each node is linked with one and only one basin through a ooding path. As there may be several paths towards distinct minima, the "HQ algo." selects for each node a particular ooding path linking this node with are regional minimum. The next section shows how to restrict even more the admissible ooding paths.

The topographic distance

Consider an arbitrary path π = (x 1 , x 2 , ..., x p ) of the node weighted graph G between two nodes x 1 and x n . The weight ν p at node x p can be written:

ν p = ν p -ν p-1 + ν p-1 -ν p-2 + ν p-2 -ν p-3 + .... + ν 2 -ν 1 + ν 1 The node k -1 is not necessarily the lowest node of node k, therefore ν k-1 ≥ ε n ν k and ν k -ν k-1 ≤ ν k -ε n ν k . Replacing each increment ν k -ν k-1 by ν k -ε n ν k will produce a sum ν p - ε n ν p + ν p-1 -ε n ν p-1 + .... + ν 2 -ε n ν 2 + ν 1 which is larger than ν p . It is called the topographic length of the path π = (x 1 , x 2 , ..., x p ).
The path with the shortest topographic length between two nodes is called the topographic distance between these nodes. It will be equal to ν p if and only if the path (x 1 , x 2 , ..., x p ) precisely is a path of steepest descent, from each node to its lowest neighbor. The topographic distance has been introduced independantly in [START_REF] Najman | Watershed of a continuous function[END_REF][START_REF] Meyer | Topographic distance and watershed lines[END_REF].

Consider again the "HQ algo". The regional minima are labeled. During the execution of the algorithm, each node p, when dequeued, assigns its label to its neighbors without label. If a node q has no label when its neighboring node p is dequeued, it means that q has no other neighbor which has been dequeued before. If the nodes p and q have distinct weights, it means that p is one of its lowest neighbors: between nodes with distinct grey tones, it is the topographic distance which prevails. If the nodes p and q have the same weight, it means that p and q both belong to the same plateau and p is closer to the lower border of the plateau than q. We obtain like that a more restrictive lexicographic distance, where the rst term is the topographic distance and the second term the distance to the lower boundaries of the plateaus. Fig. 1 shows how the hierarchical queue algorithm constructs the watershed partition of a node weighted graphs. A hierarchical queue is created. The regional minima, the nodes a, b and c are detected and labeled each with a distinct colour ; having the grey tone 1, they are put into the FIFO of priority 1.

The rst node to be extracted is a. Its neighboring node d, has no label ; d gets the label of a and is introduced in the FIFO of priority 2.

The node b is extracted. It has no neighbor. The node c propagates its label to e, which is introduced in the FIFO of priority 2.

The node d gives its labels to its unlabeled neighbors f , g and i. The nodes f and g are introduced in the FIFO of priority 3 and the node i in the FIFO of priority 4.

The node f has no unlabeled neighbor. The node g gives its label to the node j ; the node j is introduced in the FIFO with a priority 5 as shown in the last conguration of the HQ in g.1. All nodes of the graph are now labeled and constitute the watershed partition of the graph. The last nodes are extracted from the HQ without introducing new nodes in the HQ. When the HQ is empty, the algorithm stops. lexicographic distance

The hierarchical queue algorithm presented so far makes 2 jobs. The rst job is selecting a family of ooding paths which are all geodesics of the same distance function. If several geodesics link a node to several regional minima, it furthermore selects one of them, the rst which is able to label a node without label.

We now establish, that in fact the HQ algorithm makes a much more severe selection between ooding paths as it appears so far. It does in fact implement a much more selective distance function, based on an innite lexicographic order.

A lexicographic preorder relation between steepest path

Consider now a ooding path, i.e. a path along which the node weights are never increasing, ending at a node m belonging to a regional minimum. If m is an isolated regional minimum node, we articially add a loop edge linking the node m with itself. Like that the ooding path, as it reaches the node m may be prolongated into a path of innite length ; if m is an isolated regional minimum node, the cycles around in the added loop edge ; if m has a neighboring node p belonging to the same regional minimum, the path oscillates between m and p.

A lexicographic preorder relation compares the innite paths π = (p 1 , p 2 , ...p k , ...) and χ = (q 1 , q 2 , ...q k , ...): * π ≺ χ if ν p1 < ν q1 or there exists t such that

∀l < t : ν p l = ν q l ν pt < ν qt * π χ if π ≺ χ or if ∀l : ν p l = ν q l .
The preorder relation is total, as it permits to compare all paths with the same origin p. The lowest of them are called the steepest paths of origin p. is obvious that if π is a steepest path of origin p towards a regional minimum m, then any subpass obtained by suppressing a given number of nodes at the beginning of the path also a steepest path.

A node may be linked by ooding paths with 2 or more distinct regional minima. In this case the watershed zones overlap. If one considers only the steepest paths, this will rarely happen, as the weights all along the paths should be absolutely identical. In particular, steepest paths reaching regional minima with dierent altitude necessarily have a distinct steepness. One obtains like that highly accurate watershed partitions, whereas the classical algorithms, being myopic as they use only the adjacent edges of each node, pick one solution out of many.

The innitely steep lexicographic distance

We dene the innitely steep lexicographic distances (in short ∞sld) between nodes and regional minima as follows. The distance χ(p, m) between a node p and a regional minimum m is equal to ∞ if there exists no steepest path between p and a node belonging to m. Otherwise it is equal to the sequence of never increasing weights of the nodes along a steepest path linking p and a node belonging to m.

The innitely steep skeleton by inuence is the SKIZ associated to this distance [START_REF] Meyer | Watersheds on weighted graphs[END_REF]. Surprisingly enough, the HQ algo.precisely implements the innitely steep lexicographic distance.

We write χ p for the ∞sld of each node. It is an innite series of weights, the rst in the series being the weight of the node p itself. For a regional minimum node m, this weight is equal to an innite series of identical values ν m . As the regional minima nodes are introduced in the FIFO with the same priority as their weights, they are also ranked according to their distances χ m .

Suppose now that when a node p is extracted from the HQ, all nodes labeled so far have got their correct ∞sld distance. The ∞sld distance of p is χ p and has been correctly estimated. If q is a neighboring node of q without label, this means that p is the neighbor of q with the lowest ∞sld distance. The ∞sld distance of q is then obtained by appending the weight ν q of q at the beginning of the ∞sld distance of p : χ p = ν q χ p . The node q gets the same label as the node p, and is introduced in the FIFO with the priority equal to its weight ν q . It takes a place in this FIFO after all nodes with the same weight but with lower ∞sld distances and before all nodes with the same weight but with higher ∞sld distances.

The order in which each node oods its neighbors is much more subtle as imagined in 1991: the nodes ood their neighbors according to their ∞sld distances. The order in which the plateaus are ooded is only a particular case. When a plateau is ooded, its lower boundary pixels are not equivalent, but enter into play according to their own ∞sld distances.

The watershed for edge weighted graphs

There are situations where one desires obtaining the watershed partition associated to an edge weighted graph. For instance, the relations between the catchment basins of a topographic surface also may be modelled as a graph. The catchment basins are the nodes of the graph : neighboring basins are linked by an edge, which is weighted by the altitude of the pass point leading from one basin to the other.

The denition of regional minima, ooding paths and catchment basins are similar to those dened for node weighted graphs.

Denote by F e the sets of non negative weight functions on the edges. The function η ∈ F e takes the value η pq on the edge e pq , and the graph holding only edge weights is designated by G(η, nil).

A subgraph G of an edge weighted graph G is a at zone, if any two nodes of G are connected by a path with uniform edge weights. If in addition, all edges in its cocycle have a higher altitude, it is a regional minimum. A path

π = {v 1 .e 12 .v 2 .e 23 .v 3 • • • } is a ooding path, if each edge e k = (v k , v k+1 ) is one 2.
A: an edge weighted graph B: each edge which is not the lowest edge of one of its extremities has been suppressed. Each node is assigned a weight equal to the weight of its lowest adjacent edge. C: The edge weights have been dropped and the regional minima detected and labeled.

of the lowest edges of its extremity v k , and if along the path the edge weights are never increasing. Denition 2. The catchment zone of a regional minimum m is the set of nodes linked by a ooding path having its end-node within m.

Jean Cousty et al. studied the watershed on edge weighted graphs, calling it watershed cuts, as each catchment basins is represented by a connected subgraph or a tree [START_REF] Cousty | Watershed cuts: Minimum spanning forests and the drop of water principle[END_REF]. Cousty found that in some respects, the watershed on edge weighted graphs is superior that the watershed on node weighted graphs.

In fact, there is no such superiority and I established in [START_REF] Meyer | Watersheds on weighted graphs[END_REF] the perfect equivalence of node or edge weighted graphs with respect to the watershed. Figure 2 shows how to transform an edge weighted graph into a node weighted graph having the same regional minima, ooding paths and catchment zones as the initial edge weighted graph. Figure 2A presents an edge weighted graph. The edges which are not the lowest of one of their extremities do not belong to any ooding path. In gure 2B, each edge which is not the lowest edge of one of its extremities has been suppressed. Each node is assigned a weight equal to the weight of its lowest adjacent edge. Finally in gure 2C, the edge weights have been dropped and the regional minima detected and labeled. The HQ algorithm for node weighted graphs may be applied on this graph, yielding the correct watershed partition for the initial edge weighted graph.

Constructing the steepest subgraph of a node or edge weighted graph

We have established that the HQ algorithm choses among al ooding paths the steepest. If there are 2 paths with identical weights leading to 2 distinct minima, it does an arbitrary choice between both for constructing a watershed partition. It is possible to slightly modify the HQ algorithm for constructing a subgraph G with the same nodes as the initial graph but without any edge which does not belong to a steepest path. We have seen that all nodes with the same Close the FIFOs 2 while HQ not empty do 3 extract all nodes up to the rst tag into a set P Suppress this tag for each q ∈ ∂ + P ∩ S do 4

for each p ∈ P, such that (p, q) neighbors do 5

E = E ∪ eqp 6 S = S ∪ {q} put q in the queue with a priority equal to its weight 7

Close all FIFOs lexicographic distance to a minimum are regrouped in the same FIFO before they ood their unooded neighbors. We will introduce tags in the FIFOs of the HQ in order to separate between 2 tags all nodes with the same ∞sld distance.

In algorithm 4, the expression "close the FIFOs" means introduce a tag in all non empty FIFOs which are without a tag on top.

At initialization a HQ is created. The boundary nodes of the regional minima are introduced in a set S and in the FIFOs corresponding to their weight and all non empty FIFOs are closed. The set S will contain the union of all nodes which are or have been in the HQ. The algorithm stops when S contains all nodes of N.

As long as the hierarchical queue is not empty, all nodes with the same highest prioriry are extracted, including the tag itself. They are put into a set P. We call ∂ + P the set of nodes which are not in P but have a neighbor in P. The set ∂ + P ∩S represents the nodes of ∂ + P which are not yet in the set S. For each couple of nodes (p, q), p ∈ ∂ + P ∩S and q / ∈ S, the edge e pq is added to the edges E of the graph G (these edges are indicated in red in g.3) . The complete algorithm is described in algorithm 4.

Ilustration of the algorithm (g.3): A hierarchical queue is created. The boundary nodes of the regional minima, here the nodes a, b and c are put in the HQ. A tag (red line) is added to the FIFO.

The rst set of most priority nodes (a, b, c) are extracted from the HQ including the tag in top of them. The node d is neighbor of a and of b. The edges e ad and e bd are created in E. The node e is neighbor of the node c. An edge e ce is created in E. The nodes d and e are put in the FIFO of priority 2 and in the set S; this FIFO is then closed, by adding a tag (second gure in g.3). The next group of nodes below a tag to be extracted are the nodes d and e. The node d has three neighbors (f, i, g). The node g is also neighbor of the node e. The node h is a second neighbor of e. The edges e df , e di , e dg and e eg , e eh are created in E, the nodes f, i, g, h are introduced in the HQ in their corresponding FIFOs and in the set S. The open FIFOs are then closed (third gure in g.3). The next group of nodes are (f, g, h). The nodes g and h have a neighbor outside S, the node j The edges e gj , e hj are created in E, and the node j introduced in the HQ and in S. The node i has no neighbor outside S. At this point all nodes of N are inside S. The algorithm will stop when the last nodes are extracted without sending new nodes in the HQ.

Application: Fig. 4A represents a digital elevation model. In Fig. 4B a number of points have been hand marked. Following the ∞ -steepest paths starting from these points creates the upstream of the rivers. It is important for this application that all steepest paths are detected, in order to avoid any bias.

Conclusion

The HQ algorithm has been developed with a given denition of the watershed in mind and revealed to be still valid for two dierent mathematical formulations of the watershed. This paper illustrates the major and often ignored role of the data structure used for implementing a mathematical concept: among all possible solutions compatible with a particular denition, it does a hidden sampling.
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 1 Fig. 1. The hierarchical queue algorithm constructing the watershed partition of a node weighted graph

Algorithme 4 :

 4 Construction of the steepest partial subgraph of G Input : G = [N, E], a node weighted graph Result : G = [N, E], the steepest partial graph of G 1 Initialisation: HQ = hierarchical queue Create a set S containing the regional minima of G Put the inside boundaries of the regional minima in HQ Create G = [N, ∅]

Fig. 3 .

 3 Fig. 3. A hierarchical queue algorithm for constructing the steepest paths (bold red edges) in a node weighted graph.

Fig. 4 .

 4 Fig. 4. Left : a digital elevation model Center: Hand marked extremities of rivers Right: The union of the steepest paths having these nodes as extremities.

π f of f 1 Initialisation: Initialize the set π f with the regional minima of f 2 for each gray level

  The level by level construction of the watershedThe watershed partition π f of a grey tone image represented by a function f, dened on a domain D and taking its value in the interval [0, N ] is then easily obtained with the algorithm 2, by iteratively constructing a series of SKIZ in increasing domains depending on the successive thresholds of f[START_REF] Beucher | Use of watersheds in contour detection[END_REF]. In algorithm 2, the notation {f = λ} means the set of pixels of D for which f takes the value

	Algorithme 1: A fo based algorithm for constructing the geodesic SKIZ
		Input : A family of seeds (Ki)i∈I within a domain Z
		Result : The geodesic SKIZ of the of seeds (Ki)i∈I within Z
	1 Initialisation: Create a FIFO Q
		Introduce the inside boundary pixels of the seeds Ki in Q
	2 while Q not empty do
	3	extract the node j with the highest priority from Q
		for each unlabeled neighboring node i ∈ Z of j do
	4	label(i) = label(j)
		put i in the queue Q
	2.2 λ	
	Algorithme 2: A level by level watershed algorithm
		Input : A function f

Result : the watershed partition