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Abstract—In this paper we propose a new class of algorithms
that allows to solve a class of optimization problems including
that of finding an optimal storage policy. The proposed algorithm
is fast with a quadratic time or even quasi linear time in some
cases. The gain in term of complexity with regard to the use of a
commercial linear solver is shown empirically. A freely available
package in the R statistical software has been implemented and
is presented here. Possible extension to more complex framework
are presented. This paper ends with an example of application
for the determination of the market revenue of a storage device
in a local price market as a function of location, energy capacity
and power limits.

Index Terms—Dynamic programming, optimization, storage,
planing, wind power forecast, local price market.

I. INTRODUCTION

THE sustainability of electric power systems is an im-
portant milestone in our path towards decarbonization.

This involves the large scale utilization of renewable energy
sources with the most prominent contribution from wind and
solar energy, as well as biomass, to gradually replace fossil
fuels to produce (mainly electrical) energy. This is encouraged
by policies e.g. goals have been set for member states of the
European Union to reach a 20% share of renewable energy in
its overall final energy consumption by 2020.

The actual claim is that the increased share of fluctuating
renewable power generation in the electricity system will
require a significant investment into storage and transport
capacities. Among the different applications of storage which
are considered in the literature, one can distinguish between
those mitigating constraints at the local level (e.g. capacity or
voltage constraint in the network), and those mitigating global
issues. The use of storage as reserve belongs to this latter
category e.g. to compensate for errors in the consumption or
PV/wind power production forecasts as well as for the intra-
hourly load following but more importantly to displace energy
allowing to meet hourly energy demand at the best price. In
the liberalized electricity market, this theoretically translates
into a use of storage which becomes economically viable from
buying the energy when it is cheap and selling it at a higher
price.

The literature about the use of storage and its optimization
is vast but algorithms which allow to take several applications
into consideration while running fast enough to evaluate the
benefit of storage for a year in a few millisecond (thus allowing
to run it for thousands of configurations) are missing even with
existing commercial software.

This work was partially funded by the ANR project WinPower.

In [1] the proposed procedure considers the mitigation
of wind power forecast errors but relies on a loop over
several disconnected decisions along the year. Each considered
decision is a scheduling problem where the temporal horizon
is relatively small (i.e. few hours to one or two days ahead).
Dynamic programming philosophy has been used for a long
time now in the storage optimization field because it allows
the use of non-linear cost functions (see e.g. [2]). However,
the general use of Bellman’s idea traditionally necessitates a
discretization of the state-space and results in solutions which
are not computationally more efficient than linear commercial
solvers in the case of linear problems [3]. As a result, only few
temporal horizons are considered (in [1], [2], [4]) or weekly
averages are used [3].

In this paper we propose an algorithm to solve a large
class of linear or quadratic optimization problems including
the one of storage scheduling when the temporal horizon is
large (several thousands to millions). It finds an exact solution
in a few milliseconds. The general algorithm together with
the description of the optimization problem it solves are given
in Section II. To our knowledge, this algorithm is new and
relies on the use of ideas from existing algorithms [5] for
the computation of a chain of infimum convolutions transform
together with dynamic programming reasoning. We propose an
implementation in an open source package available into the
R software for statistical computing [6]. This implementation
takes the form of a package which is documented and publicly
available via the CRAN server hence promoting the idea of
reproducible research. We propose several extensions which
are described in Section III: the stochastic case, a case of
non-linear constraints and the case of multivariate state space.
The three extensions are implemented in the R package. We
finally present in Section IV an application to the case of
storage dimensioning and positioning for price balancing. This
application is carried out in the context of a local price market
using hourly price data and imbalance penalties data from
the American PJM market. Section V draws conclusions and
perspectives.

II. STORAGE USE OPTIMIZATION AND DYNAMICAL
PROGRAMMING

In this section we describe the class of optimization problem
that we will consider in the remainder of this article and
we propose an algorithm to solve it. This class is introduced
through a simple storage problem. This Section aims at pro-
viding general ideas and principles, whereas further extensions
of the class and algorithm are presented in the next Section.
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A. Problem

Let us introduce the class of optimization problem consid-
ered here :

min
∑n

i=1 Ci(xi) (1)

s.t.

{
lbi ≤ xi ≤ ubi i = 1, .., n

lbCi ≤
∑i

j=1 xj ≤ ubCi i = 1, .., n

where lbC,ulbC, lb and ub are vectors of Rn, and Ci

(i = 1 . . . , n) are cost functions. For now, no specific as-
sumption is required on the cost functions. A specific instance
of this problem appears when one wants to minimize the
cost of a storage use under energy capacity constraint and
power constraint. For example in the case when Ci is linear
with slope πi, xi is the stored power at time i πixi is the
cost. Negative cost (i.e. benefit) appears when energy is sold
(xi < 0) at the moment when the prices are higher. The first
line of constraints are the power limits and the second set of
constraints are energy capacity constraints. The general form
given by Equation 1 may for instance allow to include storage
round trip efficiency, network taxes (with piecewise linear Ci,
one piece for xi < 0 and one piece for xi > 0), or the price
sensitivity to the use of storage in the electricity market.

B. Dynamic programming and the general algorithm

1) Dynamic programming formulation : the recurrence
equations: Dynamic programming was introduced in [7] as
a methodology to transform a high dimensional optimization
problem into that of finding an optimal policy which can
take the form of a recurrence equation on the state of the
recurrence system. We introduce the function Dk(z), defined
for all k ∈ N∗ :

Dk(z) = min

(
k∑

i=1

Ci(xi)

)

s.t.



xi ∈ [lbPi;ubPi] i = 1, .., k
i∑

j=1

xj ∈ [lbCi;ubCi] i = 1, .., k − 1

n∑
j=1

xj = z

In our case, a classical dynamic programming reasoning (i.e.
the so called Bellman principle) gives the recurrence equation
for all k = 2, . . . , n:

Dk(z) = min (Ck(x) +Dk−1(z − x)) (2)

s.t.

{
x ∈ [lbPk;ubPk]

z − x ∈ [lbCk−1;ubCk−1]

and when for all k = 1, . . . , n Dk have been computed,
the state of the storage zn at terminal state is the state
that minimizes Dn while the state of the storage z∗k at step
k < n is obtained through the following descending recurrence
equation:

z∗k = argmin
(
Ck+1(x) +Dk(z∗k+1 − x)

)
(3)

s.t.

{
x ∈ [lbPk+1;ubPk+1]

z∗k+1 − x ∈ [lbCk;ubCk]

2) Formulation of the algorithm with elementary opera-
tions: The operator InfConv (for Infimal convolution, also
called Epi-Sum) appears in the Equation (3) :

(f�g)(x) = min
y∈R
{f(x− y) + g(y)}

This operator has a well known microeconomic interpre-
tation (see e.g. [8]): if f1 and f2 are two cost functions
associated to two production units, (f1�f2)(x) represents the
joint cost for a production level x when this production level
is shared out among the different units in the most efficient
possible way.

In order to integrate the two constraints of the problem,
the functions have to be restricted to a smaller domain of
definition. To carry out this operation, the squeeze operator is
used :

f [a, b](x) =

{
f(x) if x ∈ [a, b]

+∞ otherwise

Another simple operator is the swap operator :

(�[f, y])(x) = f(y − x) (4)

Thus, with these notations, the translation of the recurrence
Equations (3) and (4) into an algorithm using only these
operators is straightforward and gives:

Algorithm 1 Dynamic programming approach for solving
problem 1 with only operators squeeze, sum, swap and InfConv
D1 = C1[lbP1, ubP1]
for i = 2→ n do

Di(z) = (Di−1[lbCi, ubCi])� (Ci[lbPi, ubPi])
end for
z∗n = Dn[lbCn, ubCn]
for i = n− 1→ 1 do

f = �
[
Di[lbCi, ubCi], z

∗
i+1

]
+ Ci+1[lbPi+1, ubPi+1]

z∗i = Argminf
end for

3) The case of piecewise polynomial functions, a fast exact
algorithm: The important point about Algorithm 1 is that
when the cost functions (Ci)i=1,...,n belong to an adapted
function class C it is possible to show that :
• the algorithm is stable i.e. ∀i ∈ {1, . . . , n} Ci ∈ C implies
∀i ∈ {1, . . . , n} Di ∈ C.

• all elementary operations which are used may have a fast
algorithm, i.e. an algorithm running in a linear or log-
linear time.

For example, it is the case for piecewise polynomial convex
functions. Indeed, for a convex function f one can define its
Legendre transform f∗ (also known as convex conjugate) by:

f∗(p) = sup
x∈R

(px− f(x)),∀p ∈ R

georges.kariniotakis
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It is well known that f∗ is also convex, and satisfies :

(f∗)∗ = f (5)

thus defining a reversible transformation between a x-space
and a p-space.

From these definitions, it is well known [9] that the opera-
tors � and + are dual to each other through conjugation:

(f�g)∗ = f∗ + g∗ (6)

We can transpose the operation in the first loop of Algorithm
(II-B2) through conjugation to obtain:

D∗n = Cn[lbn, ubn]∗ +Dn−1[lbCn, ubCn]∗

In addition, if f is polynomial, its Legendre transform can be
computed explicitly, and if it is a convex polynomial whose
order is d at most, so will be its Legendre transform. The case
of piecewise polynomials follows immediately by treating the
function f piece by piece. This is possible here because of the
convexity of f , as a discontinuity in the first order derivative
results in a linear piece and a linear piece is transformed into
a discontinuity in the first order. In particular, in the case of
piecewise linear convex functions, the Legendre transform is
merely an exchange of breakpoints and slopes. These results
are well known and further details are found in [10].

The algorithmic complexity in the case when C is either
the set of piecewise linear functions or the set of piecewise
quadratic functions as well as the chosen implementation and
further development are discussed in the extended version of
this paper. The corresponding R package ConConPiWiFun
is available on the CRAN server. We only show here the
experimental complexity comparison of our tool with a
numerical solver for linear programming.

4) Empirical complexity comparison with an interior point
algorithm: In the case of problem 1 with linear cost function
it is straightforward to use directly a state of the art linear
programming tool using for instance interior points which are
known to have a polynomial complexity but with an unknown
degree. In the more general case, e.g. with piecewise linear
cost functions, it is possible to recover a linear programming
problem by adding more constraints and more variables to the
initial problem, increasing the number of constraints. Practi-
cally, even in the first, simple case, the proposed procedure and
its implementation are more efficient than those obtained using
the up to date commercial solver CPLEX to solve directly the
linear programming problem. The corresponding benchmark
results are shown in Table I. The solved problem was the one
defined by Equation 1 with random prices (slopes of the cost
functions). Results are presented as a function of the temporal
horizon n. Over a size of n = 10000 the memory was an issue
with the linear programming requiring building a constraint
matrix of size n×2n, and this resulted in non computed values
(NC) in Table I.

III. EXTENSION OF THE CONCEPT

In this section, we show how the algorithm presented in the
previous section can be adapted to a more general framework.
Further extensions are discussed in the extended version of
this paper.

TABLE I
EMPIRICAL SPEED/COMPLEXITY COMPARISON BETWEEN THE PROPOSED

DYNAMIC PROGRAMMING METHOD AND THE USE OF A STATE OF THE ART
LINEAR PROGRAMMING SOLVER (CPLEX).

n 100 1000 5000 104 105 106

dyn.prog. [ms] 0.34 3.06 28.8 61.5 649.2 6285
CPLEX [ms] 4.31 724 63579 NC NC NC

A. The stochastic case

Let us assume now that at any time i ∈ {1, . . . , n}, the
upper and lower power limits can be decreased because of e.g.
a failure from part of the system or a few minutes of required
contribution to the reserve. A mathematical translation of this
may be to assume that lbPi and ubPi are unknown when
the decision on x is made, with independent error terms
respectively σ−i ξ

−
i and σ+

i ξ
+
i and with Φ− (resp. Φ+) the

cumulative distribution function of ξ−i (resp Φ−). In this case
if α is an accepted rate of error, one may want to solve :

min
∑n

i=1 Ci(xi) (7)

s.t. ∀i = 1, . . . , n, lbCi ≤
∑i

j=1 xj ≤ ubCi

α ≤ P
(
lbPi + σ−i ξ

−
i ≤ xi ≤ ubPi + σ−+ξ

+
i

)
(8)

In this case Di, i = 1, . . . , n can be similarly defined and
the recurrence relation given by Equation 3 becomes

Di(z) = min Ci(x) +Di−1(z − x)

s.t. x ∈ Ii
lbCi ≤ z − x ≤ ubCi (9)

where for all i = 1 . . . , n Ii is the set of u ∈ R solutions of(
1− Φ−

(
u− lbPi−1

σ−i−1

))
Φ+

(
u− ubPi−1

σ+
i−1

)
≥ α

and can be computed easily from the knowledge of
σ+
i−1, σ

−
k−1, α, lbCi−1, ubCi−1. Note that in this case a nec-

essary condition is that for all i = 1 . . . , n, Ii is convex.

B. Extension to the multivariate case

The extension of the optimization problem corresponding to
Equation 1 to the more general case when for all i = 1, . . . , n,
xi can be multivariate (i.e. d−dimensional vectors, d ≥ 1
) is relatively straightforward. The subsequent optimization
problem is as follows:

min
∑n

i=1 Ci(xi) (10)

s.t.

{
xi ∈ Pi ⊂ Rd i = 1, .., n∑i

j=1 xj ∈ Qi ⊂ Rd i = 1, .., n

where Pi and Qi are convex Nef Polyhedron of Rd,
i.e. convex polyhedron generated by hyperplane separating
partitions (see e.g. [11]). The first recurrence relation (the
multidimensional counterpart of Equation 3) is :
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Dk(z) = min (Ck(x) +Dk−1(z − x)) (11)

s.t.

{
x ∈ Pk

z − x ∈ Qk−1

Algorithm 1 as presented in subsection II-B still applies if
fast algorithm for the Epi-Sum, the sum and a multidimen-
sional version of the squeeze (which is simply the truncation
of a convex Nef polyhedron by an hyperplan) exist. However
if the procedure to compute either the Epi-sum of the sum
or the Legendre transform can be extended with a controlled
algorithmic cost for d ≤ 3, the curse of dimensionality rapidly
makes it computationally extensive for d > 3. The algorithmic
and implementations issues are discussed after one motivating
example for the case where d ≤ 3 to solve a storage problem
with market coupling. Another one with temporal coupling is
given in the extended version of the paper.

1) Storage and market coupling: In the case where 2
storages A and B, connected to two different markets, are
linked together by a line with power limit PAB , the subsequent
optimization problem can be solved with the same techniques
in dimension 3. If xAB

i is the power flowing from A to B
at time i, this indeed leads us to a problem of the following
form:

min

n∑
i=1

Ci(x
A
i , x

B
i , x

AB
i ) (12)

s.t lbi ≤ xsi + εsx
AB
i ≤ ubi i = 1, . . . , n s = A,B

−CAB ≤ xAB
i ≤ CAB i = 1, . . . , n

lbCi ≤
i∑

j=1

xsj + εsx
AB
j ≤ ubCi i = 1, . . . , n s = A,B

where εA = −1 εB = 1 and

Ci(x
A
i , x

B
i , x

AB
i ) = CA

i (xAi − xAB
i ) + CB

i (xBi + xAB
i )

2) The multivariate case general form and computational
geometric algorithmic: Fast algorithms to manipulate piece-
wise linear-quadratic bivariate functions have recently been
proposed in [12] for convex hull computation and more
recently in [13] for the Legendre transform. They both rely on
the decomposition of R2 induced by hyperplan, i.e. a partition
using convex Nef polyhedron. Efficient implementation of 3
dimensional Nef polyhedron has been proposed in [14] and
[15] and is now implemented in the computational geometric
library CGAL [16]. Integrating the implementation of CGAL
into our software to propose algorithms for solving the opti-
mization problem of Equation 10 in the case when d = 2, 3
will be the purpose of further work.

IV. APPLICATION EXAMPLE : THE VALUE OF STORAGE FOR
ENERGY DISPLACEMENT IN THE LOCAL PRICE MARKET

PJM

In this section we propose to show that the tool presented in
the previous section can be used to evaluate rapidly the future
yearly income of energy storage in a local price market such
as PJM, as a function of its position and dimensions.

A. Storage positioning and dimensioning in the PJM Ameri-
can market

Here, we are interested in studying the operations of a
storage operator buying and selling energy on the electricity
market (i.e. respectively storing and consuming or discharging
and generating electricity). To carry out this optimization,
the cost functions i.e. the functions representing the storage
operator’s gains or losses according to the level of production
have to be determined.

We consider that the storage operator is a price-maker,
i.e. that the electricity bought (or sold) by the operator
increases (respectively decreases) the market price. Therefore,
we assume that at a given node the prices are linear functions
of the local demand (including the storage effect). This as-
sumption and the subsequent model are described further in
the extended version of this paper. The optimization problem
for maximizing the benefit of the storage at any given node
belongs to the class defined by Equation 1 with quadratic cost
function of the form S ∗π(S) where S is the power delivered
by storage and π(S) is the cost of delivered power (which is a
linear function of S). The prices are determined empirically on
each node from historical demand data, and prices data with a
linear regression. One of the corresponding linear regression
is represented in Figure IV-A. It allows, for each node n, to
obtain the price sensitivity δn (dollard/MW) with respect to the
demand modification induced by the use of the storage itself.
In the end, for a given time i the quadratic cost function is
Cn

i (xi) = xi∗(πn
i +δnxi) (where πn

i is the spot price at node
n and time i).

Fig. 1. Scatter plot of the Market prices according to the demand levels

Based on these cost functions that aim at modelling the
market revenue of the storage, we calculate the storage unit
policy which enables the highest revenue in each of the 93
nodes of the PJM market. Results are presented in Figure IV-A.
The number of configuration - localisation and dimension
in term of capacity and power limit - is very large (100
localisations, 100*100 dimensions) but our algorithm takes a
few milliseconds to compute the revenue for each of these
configurations.

This estimation procedure assumes that the prices and their
behaviour with respect to the storage participation level are
known in advance. It can be shown however that a more
complex but realistic procedure gives similar incomes and can
also be pursued with our optimization tool. This more complex
procedure relies on the evaluation of a storage policy at the
scale of month at the beginning of the year, then at the week
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Fig. 2. Benefit opportunities for storage in each PJM zone at fixed capacity and power limit (right) and for one selected zone as a function of capacity and
power limit (left). Lines on the left hand side figure range from 10 to 100 Million dollars per year.

scale at the beginning of the month, at the daily scale at the
beginning of the week etc. While the price prediction at the
hourly time scale are not possible a year in advance, their
monthly average are more predictable etc. This kind of more
complex multi-scale policy allows to recover similar incomes
than that obtain with the simple unrealistic procedure (the
difference of revenue being within 5% to 10%).

In any case, the obtained revenues are upper bound of
revenues that could be obtained in an operational framework
and it is clear that none of the revenues obtained are large
enough to justify an investment of storage. In addition the life
length of storage would necessitate that the kind of spread in
the prices that is observed now is not going to decrease in the
next 40 years.

V. CONCLUSION

In this paper we have proposed a new algorithm to solve
efficiently and with an exact solution a class of optimization
problems including the one of storage operation with po-
tentially a very long horizon. The proposed implementation
is freely available through the R software [6]. In practice,
if one wishes to balance prices in the electricity market,
this allows to find a solution in less than a second even
for an horizon of several years at a hourly resolution. Our
implementation handles quadratic cost functions and a certain
class of stochastic optimization problems. We have shown how
the proposed algorithm extends with the same efficiency to the
case of a multivariate state space as long as this space has a
low dimension (i.e. not greater than 3) and we have provided
application examples to the case of operation of two storage
interconnected with possibly congested line.

This efficient algorithm can be used to evaluate rapidly an
upper bound on the return on a storage investment in a lot of
different configurations.
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