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Abstract

Wind power forecasting is a recognized means of facilitating large-scale wind power integration
into power systems. Recently, there has been focus on developing dedicated short-term forecast-
ing approaches for large and sharp wind power variations, so-called ”ramps”. Accurate forecasts of
specific ramp characteristics (e.g., timing, probability of occurrence, etc.,) are important, as related
forecast errors may lead to potentially large power imbalances, with a high impact on the power
system. Various work about ramps’ periodicity or predictability has led to the development of new
characterization approaches. However, a thorough analysis of these approaches has not yet been car-
ried out. Such an analysis is necessary to ensure the reliability of subsequent conclusions on ramps’
characteristics. In this paper, we propose a comprehensive framework for evaluating and comparing
different characterization approaches of wind power ramps. As a first step, we introduce a theoretical
model of a ramp inspired from edge-detection literature. The proposed model incorporates some im-
portant aspects of the wind-power production process so as to reflect its non-stationary and bounded
aspects, as well as the random nature of ramp occurrences. Then, we introduce adequate evaluation
criteria from signal-processing and statistical literature, in order to assess the ability of an approach
for reliably estimating ramp characteristics (i.e., timing, intensity). Based on simulations from this
model and using the evaluation criteria, we study the performance of different ramp detection fil-
ters and multi-scale characterization approaches. Our results show that some practical choices in
wind-energy literature are inappropriate, while others, namely from signal-processing literature, are
preferable.

1 Introduction

Wind power forecasting is recognized as a means of facilitating large-scale wind power integration into
power systems. Considerable R&D in the last 25 years has resulted in the development of numerous
approaches. For a literature overview, we refer to [1, 2]. At an operational level, the applied models
are generally accurate. Shortcomings often relate to challenging and extreme situations, but also to
specialized forecasts for various business processes and their integration into decision-making tools.

Often the aim of ramp forecasting approaches is improving forecasts of specific ramp characteristics,
like the ramps’ timing or probability of occurrence. In related literature however, we observe that there is
no standard definition of what a ramp is. Various work about ramps’ periodicity or predictability has led
to the development of new characterization approaches [3, 4, 5]. However, a thorough analysis of these
approaches, which is necessary to ensure the reliability of subsequent conclusions on ramps characteristics,
has not yet been done.
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Characterizing a ramp in a formal way is not straightforward. Firstly, it requires consensus on a rig-
orous definition of the event, which may not yet exist. Understanding the pros and cons of different ramp
characterization approaches in wind-energy literature is necessary and requires a dedicated mathematical
model of a ramp. In edge-detection literature, the development and evaluation of a detection approach
generally involve an edge1 model and associated evaluation criteria (e.g., Canny’s criteria [8]). There is
no such paradigm in wind-energy literature. In [3] for instance, a singular form of filtering approach is
reported. This approach does not specify a priori the nature of variations to be detected, nor that of the
noise wherein the detection takes place. We do not know what geometry of variation, if there is one, the
approach can detect, nor what the latter behavior could be with respect to other elements of a wind-
power production signal (e.g., noise, nearby edges, etc.,). In [4], the authors propose detecting edges in
a wind-power signal from the local maximum in the absolute response of a derivative filter. They used a
Prewitt filter [9], which has proved efficient in some theoretical work but not optimal, for detecting edges
shaped like a step [8]. Further investigations should determine if the use of such a filter is appropriate
with respect to hypotheses, which better reflect the characteristics of a wind-power production signal.

Beyond the choice of a particular filter, a key issue in the detection of edges in a signal is the
selection of one (or more) appropriate scale(s). Through a scale(s) selection process, the goal is usually
to optimize a compromise between noise reduction and limitation of interactions due to the presence of
neighboring edges [10]. Through a multi-scale detection approach, the goal may be to define an absolute
characterization of an edge, thus unrelated to a particular scale. This characterization may rely on the
estimation of some parameters defining the geometry of a particular edge model [11, 12]. In literature
related to wind energy, a characterization of ramps based on a multi-scale approach has been recently
proposed in [5]. This characterization relies on the definition of a measure of variations from the sum of
filter responses at different scales. However, the proposed approach’s analysis is restricted to the study
of some sample situations. In addition, the approach’s proposal raises interest in alternative approaches.

In this paper, we propose a comprehensive framework for evaluating and comparing different charac-
terization approaches of wind power ramps. As a first step, we introduce a theoretical model of a ramp
inspired from edge-detection literature. The proposed model incorporates some important aspects of the
wind-power production process to reflect its non-stationary and bounded aspects, as well as the random
nature of ramp occurrences. Then, adequate evaluation criteria from signal-processing and statistical
literature are introduced to assess an approach’s ability to reliably estimate ramp characteristics (i.e.,
timing, intensity). Based on simulations from this model and using the evaluation criteria, we study the
performance of different ramp-detection filters and multi-scale characterization approaches. The conclu-
sions illustrate the value of each approach: they show that some filters and approaches generally used
in the wind-energy community for ramps’ characterization and forecasting are inappropriate, while some
approaches from edge-detection literature are preferable.

The paper is organized as follows: in Section 2 we describe the proposed ramp model. First, we
define a ramp profile, where the randomness in the occurrence of two consecutive ramps is modeled.
To this profile we add some noise so as to reproduce the fastest fluctuations of wind power production.
Through modeling of the latter, we strive to adequately represent the bounded aspect of the wind-
power production process, as well as some of its non-stationary aspects. In this section we also define the
performance criteria, which together with the proposed ramp model, constitute our evaluation framework.
In Section 3, we study the performance of state-of-the-art filters in detecting and localizing ramps. In
Section 4, we focus on the performance of different scale selection and combination approaches. Finally,
some summary conclusions are given in Section 5.

2 A framework for evaluating ramps’ detection approaches

In this section, we describe the proposed framework for the evaluation of ramps’ detection approaches.
First, we define a theoretical edge model suitable for the particular case of wind power ramps’ representa-

1In edge-detection literature, the term ”edge” is commonly used to denote a sharp and large level change in a signal.
The term ”ramp” then generally refers to a particular geometry of edge (see [6] or [7] for instance). From now on, we will
use the terms ”edge” and ”ramp” in an undifferentiated manner.
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tion. We model the evolution of time separating edges in a signal, since it is a key parameter influencing
detection performance [10]. Then, we describe the parameters’ values used to simulate wind power ramps
from the proposed model. Using a detection approach on a signal with simulated variations allows the
ramps’ detection results to be objectively counted. Finally, we introduce ramp detection as a supervised
classification exercise and derive appropriate evaluation criteria.

2.1 Defining a theoretical model of ramps

In signal-processing literature [8, 13, 14, 15], an edge model is usually based on a decomposition of a
signal pt of the following form:

pt = Rt + εt, (1)

where Rt denotes an edge profile and εt a noise. The definition of Rt enables the detection of a
particular geometry of edge [6, 7, 8]. Its most important detection parameters are: the amplitude of
an edge, its duration (or related, e.g., the edge blur), and the duration between two consecutive edges
[13, 14]. In the latter, the duration is assumed to be constant. However, the random nature of variations
in a non-stationary process - such as ramps in wind-power production - cannot be adequately represented
this way.

In the proposed ramp model, we consider the duration between two consecutive ramps, as well as the
duration of ramps itself as random variables. The ramp profile Rt represents a succession of constant
production episodes joined by segments, namely the ramps. A ramp is then completely defined by
associating a duration Ti with an amplitude A. The amplitude of ramps in wind-power production also
has a random nature. Studying it requires an approach to estimate the amplitude of edges in a signal
(see [11], [12] or [16], for instance). To limit the size of our study, we chose to study the performance of
detection approaches from signals where ramps are of equal amplitude. Considering different amplitude
values from different simulations should allow, to some extent, the study of the influence of this parameter
on detection performances.

Considering null production episodes alternating with constant production episodes of value A, Rt is
the succession of N elementary profiles Rk, each of random duration:

R = (R1, . . . , Rk, . . . , RN ), (2)

Rk = (Rk1 , . . . , R
k
t , . . . , R

k
Tk), 1 ≤ k ≤ N,

T k = T k1 + T k2 + T k3 + T k4 ,

Rkt =


0 if t ∈ [0, T k1 ],
A
Tk
2

(t− T k1 ) if t ∈ [T k1 , T
k
1 + T k2 ],

A if t ∈ [T k1 + T k2 , T
k
1 + T k2 + T k3 ],

− A
Tk
4

(t− T k) if t ∈ [T k1 + T k2 + T k3 , T
k],

(3)

where T k1 (resp. T k3 ) denotes the duration of a null (resp. equal to A) production episode, and T k2
(resp. T k4 ) the duration of an increasing (resp. decreasing) ramp. A representation of the elementary
profile Rk on which the proposed ramp model is built, is shown in Figure 1. The simulation of a complete
ramp profile R then comes from the sampling T ki , k = 1, . . . , N, i = 1, . . . , 4, where T ki are assumed to
be independent truncated exponential variables with support [θim, θ

i
M ], and expectation λTi

.
To achieve realistic assumptions, we did an analysis based on power measurements sampled every 10

minutes and covering more than 18 months of production from three French wind farms. In Figure 2
(graph on the left) is shown the distribution of the signal production derivative of a wind farm estimated
from the Prewitt filter (see [4]). We can see in this figure that the distribution of the power production
derivative is more or less symmetrical (see also [17]). While we observed more decreasing than increasing
variations among variations of lower intensity, increasing and decreasing variations are approximately
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Figure 1: Elementary ramp profile and noise distribution – Diagram showing an elementary ramp
profile Rk defined by Equation (3). Represented here are: the amplitude A of a ramp, the duration
Ti, i = 1, . . . , 4 of ramps and periods between consecutive ramps, and the distribution of the noise
associated to a production level p in Rk. Power level is expressed in percentage of the nominal power Pn.

the same frequency for variations of higher intensity (see Figure 2, graph on the right). For ramps that
are assumed to be of equal amplitude, this translates to an identical sharpness between increasing and
decreasing ramps. In our model, we then assume that T2 and T4 follow the same probability law, i.e.,
θ2m = θ4m, θ2M = θ4M and λT2

= λT4
. As low production is more common than high production, it suggests

that episodes with low production values are generally longer than those with high production values.
We will then assume that λT1

> λT3
.

To reproduce the fastest fluctuations of wind power production, we consider a white noise with
truncated Gaussian distribution of support [−p, 100− p]:

εt ∼ N 100−p
−p (µtr,p, σ

2
tr,p), (4)

where p denotes the power production level represented by the ramp profile Rt at instant t (in per-
centage of the nominal capacity Pn of the wind farm), µtr,p the mean and σtr,p the associated production
standard deviation. Note that since noise distribution is derived from a centered normal distribution
whose truncation generally is not symmetric (except for p = 50%Pn), its mean µtr,p generally does not
equal 0. Actually, µtr,p > 0 when p < 50%Pn and µtr,p < 0 when p > 50%Pn. Note also that σtr,p < σp,
where σp denotes the standard deviation of the initial (i.e. untruncated) normal distribution. Formulae
defining µtr,p and σtr,p, depending on the untruncated normal distribution’s first two moments, can be
found in [18] (Chapter 3, p. 59).

The sigmoid form of the wind turbines’ power curve causes wind variability to be amplified during
the wind-to-power conversion process at intermediate wind speeds, while lowered at low and high wind
speeds. Then, wind power variability first increases before stagnating, and ultimately decreases with
wind power level (see Figure 3). However, data analysis suggested that a piecewise linear increase keeping
power variability constant at higher power levels, even at those close to nominal power, was an adequate
modelling of the production standard deviation:

σtr,p(p) = a1 + a2p− a2(p− p1)+, (5)

where ai > 0,∀i, (.)+ denotes the positive part of a real number, and p1 ∈]0, 100[ denotes the power
level above which the production standard deviation remains at a constant maximal value.
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Figure 2: Distribution of the power production derivative – On the left: a kernel density estimation
of the distribution of a wind-power production signal derivative. The latter has been estimated using a
Prewitt filter (see [4]), for filter widths ranging from n = 3 h to n = 24 h, with increments of 20 minutes.
On the right: the difference between the number of increasing and decreasing variations, depending on
their intensity. While decreasing variations outnumber increasing variations among variations of lower
intensity, they have approximately the same frequency for variations of higher intensity.

Some alternatives may represent wind-power distribution more appropriately. For short-term pro-
duction forecasting, production distribution is sometimes identified (through centering and/or scaling
transformations) as a beta-distribution [19] or as a logit-normal distribution incorporating [20], or not
[21], the presence of punctual masses at the null and maximal production values. Here, a more refined
modeling of wind-power distribution could offer further insight into the performance of ramp-detection
approaches. While additional efforts in this direction provide valuable work perspectives, the latter
remain outside the scope of this study.

2.2 Experimental conditions and simulations

The way noise distorts the geometry of a ramp depends on the production level at its beginning and
end. The behavior of a detection approach may then vary with the considered production levels as well.
However, our study is limited to the detection of ramps with null minimum production level, just as given
by Equations (2) and (3). The ramp profile we are considering is then suitable for the representation of
(not too much aggregated) production with recurrent null production episodes. We will consider ramps
of various amplitudes: A = 50, 60, 70, 80, 90 and 100%Pn.

The duration of ramps and in-between consecutive ramps are key parameters for analyzing a detection
approach’s performance. We analyze such a performance by making these parameters vary, then by
simulating different production conditions. The average duration of respectively null and constant high
(equal to A) production episodes are assumed to be related by a multiplicative factor c, i.e. λT1 = c λT3 ,
c ≥ 1. We consider values of c = 1, 1.5, 2, 3, 5, and λT1 = 6, 12, 24, 48, 96 h. Such values may not represent
any real ramp occurrence frequency. Determining realistic values is precisely the purpose of estimation
approaches we need to evaluate first. Anyway, for such values to be relevant here, the most important
aspect is to consider them in conjunction with chosen detection scales, in order to reveal the characteristic
behavior of detection approaches.
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Figure 3: Production standard deviation as a function of the production level – Empirical
estimates of the production standard deviation computed from sliding windows with width ranging from
1 h to 24 h, with 20 minutes’ increment. One can observe how the production distribution tends to spread
out, while the production level increases. The production standard deviation tends to stagnate or even
decrease here, when the production level comes closer to the wind farm’s nominal capacity.

The maximum duration of a null production episode is fixed at θ1M = 20 d. This choice is consistent
with results from other work. In [22] for instance, the return period of a low wind episode of 20 days has
been estimated at 1 every 10 years (in coastal areas). Then, it seems highly unlikely for an episode of null
production to exceed a duration of 20 days. We assume that the maximum duration θ3M of an episode
with high production value is related to θ1M in the same way that the associated average durations are,
i.e., θ1M = c θ3M . We further assume that an increasing ramp cannot be followed by a decreasing ramp
in a period less than θ3m = 1 h. We also discard situations identified with extreme cases of cut-off 2 by
setting θ1m = 1 h. Here again, values are based on our sole judgment and should be checked a fortiori.

Finally, we consider the mean duration of a ramp to have the following values λT2 = 1/6, 1/2, 1, 2, 3
h, while assuming the duration of a ramp does not exceed θ2M = 6 h. A ramp’s minimum duration θ2m
is fixed at 10 min, which also corresponds to the signals’ resolution chosen to simulate production. We
also considered two categories of noise intensity. The first one (low noise intensity) is characterized by
parameters with the value a1 = 2.5 %Pn, a2 = 10 %Pn and p1 = 25 %Pn in Equation (5). The second
one (high noise intensity) with a1 = 5 %Pn, a2 = 20 %Pn and p1 = 25 %Pn. An example of a production
episode lasting 7 days simulated from our ramp model is shown in Figure 4. In the following, we will
consider production episodes derived from the concatenation of N = 100 noisy elementary ramp profiles
Rk.

2A ”cut-off” refers to a situation with strong winds which result in wind turbines halting temporarily for safety purposes,
causing a sudden production decrease. When the wind weakens slightly, the turbines can then restart and production quickly
recovers a high level.
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Figure 4: Simulation example – production episode lasting 7 days simulated from the proposed ramp
model. Here, the amplitude of ramps is set at A = 80%Pn. Ramps are, on average, of short duration, i.e.,
λT2

= 1/2 h, and rather close to one another λT1
= 12 h. The characteristic ratio between the duration

of low and high production episodes has been set at c = 2, while noise of high intensity has been added
to the ramp profile (see text for more details).

2.3 The evaluation of a ramp detection approach seen as the evaluation of a
classification problem

When simulating variations of a signal, one knows exactly which variation is a ramp or not. We can
count the ramps detected by a specific approach and classify the results, considering them in a supervised
classification context. The particularities of ramp detection seen as a classification exercise (e.g., number
and definition of classes), depends on the considered model of ramps. Criteria to consider in the evaluation
of a ramp detection approach may then evolve with the ramp’s model as well. The ramp model proposed in
this paper only distinguishes variations due to noise from ramps in general, through associating identical
properties (i.e., amplitude and duration) to both increasing and decreasing ramps. The ramp detection
exercise then relates to a 2-classes classification problem.

A ramp detection approach requires measuring variations of a signal, which quantifies the sharpness
and amplitude of variations. In general, it characterizes the variations of a signal over time. It is then
possible to sum up this characterization to a restricted set of parameters: a particular time stamp tI (e.g.,
the instant with maximum response of a derivative filter [4]), a combined measure I of the sharpness
and amplitude (resp. the intensity of a variation [4]), a set of intensity measurements at different scales,
or an amplitude and a blur parameter of a model estimated from the latter [11, 12]. We consider the
characterization of a variation to be restricted to only two parameters: the timing tI and intensity I of a
variation. By looking at different detection approaches, we will consider different definitions of these two
parameters.

If appropriate, the intensity measure used on a signal simulated from the proposed ramp model results
in a two-component mixture distribution of intensity measurements. A first component is associated with
low (absolute) intensity values which characterize variations due to noise. A second one is associated
with high values of |I| which characterize ramps. In a second step to detect ramps, a detection approach
involves a thresholding procedure. By looking at a threshold intensity value τ > 0, we can classify a
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signal’s variations fτ : I → {0, 1}:

fτ (I) = 1{|I|≥τ}.

Besides the detection results of an approach, it is possible to associate each variation of a simulated
signal with a variable Y ∈ {0, 1}, which denotes if such a variation is actually a ramp or not: Y = 1 if it
is a ramp, Y = 0 if not. Thus, evaluating a detection approach comes down to evaluating a classification
problem.

Detecting a ramp also relies on an approach’s ability to accurately estimate a ramp’s timing. To
consider a ramp detected, a parameter δ representing the maximum admitted error in estimating such
a timing, must be introduced. Our experiment involves two consecutive ramps with the same direction
being separated by at least 2 h and 20 min. To avoid any confusion between two distinct ramps, we fixed
the value of δ at 1 h and 10 min.

Defining the intensity of a ramp from a local maximum in a derivative signal (like it’s done in [4]),
is not always possible. For instance, in the case of filtering performed at a (large enough) scale, the
presence of two ramps with opposite directions in the filter’s support may result in a derivative with low
absolute value and without any local maximum. The filter’s width, which is too large relative to the
time duration separating those ramps allows neither an accurate measurement nor the ability to define
a characteristic intensity. However, it is still possible to define the associated classification result since
the ramps in question may be considered as not detected, i.e. fτ (I) = 0,∀τ > 0. By convention, we may
associate the intensity value I = 0.

We have introduced ramps’ detection in a signal as a classification exercise; we can now evaluate it
using criteria derived from statistical classification literature. This evaluation basically comes down to
assessing the “distance” separating the two distribution components, a detection approach associates to
ramps and variations due to noise intensity values. Canny’s first criterion [8] may be seen as such a
distance. It is defined as the expected value of a ramp intensity I1, divided by the standard deviation of
the intensity value of variations due to noise I0:

SNR =
E[I1]

Var[I0]1/2
(6)

Other distances which may be more appropriate can be found in the literature [23]:

S =
E[I1]− E[I0]

(Var[I1] + Var[I0])1/2
(7)

Criteria defined in Equations (6) and (7) only require that the underlying measure of variations realized
through the detection exercise are evaluated. When considering the further thresholding operation, it
is then possible to define other classification-based detection criteria. Let us denote Eτ the average
classification (i.e., detection) error. From the Bayes formula, we get:

Eτ = P(fτ (I) 6= Y ) = π0qτ + π1(1− pτ ), (8)

where πi = P(Y = i), π0 + π1 = 1 denotes the prior probabilities associated with each class of
variations (noise or ramps), qτ = P[fτ (I) = 1|Y = 0] and 1 − pτ = P[fτ (I) = 0|Y = 1]. The threshold
τ controls a trade-off between these two errors, since qτ decreases, while 1− pτ generally increases with
τ . Such a trade-off can be represented using a curve parameterized by τ showing the probability pτ
depending on the probability qτ (namely a ROC - Receiver Operating Characteristics - curve [24]):

ROC = {(qτ , pτ ), τ > 0}.

Comparing two detection approaches f1τ and f2τ cannot be done objectively from a given threshold
value τ . Indeed, such a value would correspond to different characteristics in the respective trade-off
between the two misclassification error types they define. We may however compare the respective
errors obtained by each approach, with a threshold value defining an optimal classification rule τopt =
argminτ Eτ . To that end, one may introduce a cost C, 0 < C < 1, setting the relative importance of each
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misclassification error type (replacing π0 and π1, respectively by Cπ0 and (1−C)π1 in Equation (8)). An
alternative may be to consider the area under the ROC curve (denoted AUC) as a performance metric:

AUC =

∫ sup I

0

pτq
′
τdτ.

The latter has the advantage of being objective, since with no threshold value selected a priori, it does
not presume any preferable characteristic in the aforementioned trade-off. The calculus actually comes
down to integrating the average classification error Eτ over a set of threshold values, each is optimal
with regard to different cost values C [25]. Further on in the paper, we will use the AUC criterion as it
eases the comparison of different detection approaches by summing up their performances to one unique
number. Of course, the consideration of other, more usual criteria (such as “false alarm” and “ramp
detection” rates [26]), could also be envisaged.

3 Parametric study of different filters for the characterization
of ramps

Measuring the variations of a signal necessitates repeating a differentiation operation through filtering.
Derivative filters in signal-processing literature generally combine a smoothing operation with the dif-
ferentiation one, so as to attenuate the noise [10]. When it comes to detecting edges, an appropriate
derivative filter’s shape should be related to the geometry of edges one seeks to detect [8]. Using such a
filter at a particular scale provides a detection approach which can be evaluated following the framework
presented in the previous section. In this section, we study the performances of different edge/ramp detec-
tion filters found in both wind-energy and signal-processing literature, following the proposed evaluation
framework.

3.1 Choice of filters

We considered three filters from existing literature. The first one comes from wind-energy literature [3, 26].
It measures variations through computing the difference between the maximum and minimum level of a
signal in a sliding window. Henceforth referred to as ”MaxMin”. The two other filters are derived from
signal-processing literature. These are the Prewitt filter (referred to as ”DOB”), and the first derivative
of a Gaussian filter (referred to as ”FDG”). Each computes finite differences combined with moving
average smoothing, through a rectangular kernel for the former, and a Gaussian kernel for the latter
(for a mathematical formulation of the different filters, we refer to [18]). Of the three filters considered,
the only filter which has infinite support is the FDG. Nevertheless, the numerical discretization involves
assimilating the FDG filter to a filter with finite support. When it comes to smoothing a signal using
a Gaussian filter, truncating the latter to a width equal to four times the value of the scale parameter
is often considered a reasonable choice [27]. The “wider spread” of its derivative requires truncating the
FDG filter to a higher width. We chose to truncate it to a width equal to 6 times the value of the scale
parameter. To ensure correct normalization whatever its width, we renormalized the FDG filter after it
was truncated and discretized. In the following, we study the detection performances of the FDG, DOB
and MaxMin filters for filter widths ranging from 20 min to 12 h with 20 min increment.

3.2 Different filters and their detection performance

The aim of estimating the signal-to-noise ratio (SNR, see Equation (6)) at a filter’s output, is to assess a
filter’s ability to discriminate ramps from noise in a signal. This ratio’s value increases with the difference
between the filter’s response to both a ramp and noise. It evolves with the filter’s width, usually outlining
a trade-off between noise reduction and limitation of interactions in the detection of nearby ramps. This
trade-off can be observed with the DOB and FDG filters (Figure 5 shows the SNR evolution with filter’s
width. Results showed in this figure are average results considering a combination of all ramp’s model
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parameters values3). At first, increasing the filter’s width allows to increase its response to a ramp while
reducing the noise, thus resulting in higher SNR values. Then, the presence of nearby ramps in the filter’s
support causes a decrease in the filter’s response to a ramp, resulting in a stagnation or even a decrease
in the SNR. The DOB filter’s detection performance is generally better than that of the FDG filter. This
is due to the better adequation between the DOB filter’s shape and the geometry of ramps as defined
in our model. However, the FDG filter’s shape makes it less sensitive to disturbances introduced by the
presence of neighboring ramps. Thus, both the filters’ detection performance balances at a filter’s higher
width values.
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Figure 5: Signal-to-noise ratio at filter’s output (Canny’s first criterion) – Average ratio (solid
lines), + / - standard deviation (dashed lines) for DOB, MaxMin and FDG filters, depending on the filter’s
width. Filter’s width here ranges from 20 min to 12 h. Noise attenuation from the smoothing operation
performed by the DOB and FDG filters allows for a rapid increase in detection performance when the
filter’s width increases. The presence of nearby ramps limits the response to a ramp, and ultimately
results in SNR stagnation for a filter’s higher width value. Due to the particular nature of its definition,
the MaxMin filter’s response to noise increases with the filter’s width. This increase counterbalances the
one associated with the filter’s response to a ramp, thus resulting in an overall low level of SNR.

Due to the special nature of its definition, characterized by the absence of a smoothing operation,
the MaxMin filter does not behave as usual. Its detection performance in comparison with the DOB
and FDG filters is much lower (see Figure 5 red curve). When its width increases, its response to noise
increases, instead of decreasing. This increase counterbalances the increase in the response to a ramp,
resulting in the SNR’s overall stagnation.

3In the following, we’ll be discussing filters’ and detection approaches’ properties with regard to some of the proposed
ramp’s model (resp. detection approaches’) parameters. Results showed are then average results computed from the
combination of all other parameters values
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3.3 Different filters and their localization performance

Two of the three criteria proposed by Canny are dedicated to evaluating a filter’s performance in the
localization of an edge. This localization is complicated by the multiplicity of maximum due to noise in
the filter’s response to an edge. It then becomes impossible to distinguish precisely which of the various
maximum locates the edge. This multiplicity tends to disappear when the filter’s width increases (see
Figure 6, graphic on the left). For DOB and FDG filters, the result of the higher filter’s width is more
noise reduction and a lower multiplicity. In the case of the MaxMin filter, this multiplicity is decreased
because of the filter’s propensity to maintain its response to a maximum value4. Some work ackowledges
an important multiplicity in the DOB filter’s response (see [8] and references therein). Theoretically, it
can be explained by a failure of the DOB filter to filter high frequencies. One way to look at it is to
compare the gain of DOB and FDG filters (i.e., the modulus of their Fourier transform [28]).
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Figure 6: Filter’s responses multiplicity and ramps localization error – Multiplicity of maximum
in the response of a filter to a ramp (graphic on the left), and root mean square of the ramp localization
error (graphic on the right), for the DOB, FDG and MaxMin filters, depending on the filter’s width.
Increasing the filter’s width reduces the multiplicity of responses to a ramp. In the case of the MaxMin
filter, this is not due to noise reduction, as it is for the DOB and FDG filters, but to its propensity for
maintaining its maximum value. The MaxMin filter’s noise sensitivity causes a rapid increase of a ramp’s
localization error with the filter’s width. If this error decreases for filter’s higher widths, this is due to the
fact that errors higher than δ, have not been taken into account when computing the average localization
error.

The filter’s width controls, as for detection performance, a trade-off in reducing ramps’ localization
error. Increasing the filter’s width first allows this error to be reduced through noise reduction. This
phenomenon can be observed with the DOB and FDG filters (see Figure 6, graphic on the right). Then,
for filter’s higher widths, the benefit of reducing noise is counterbalanced by the delocalization effect
produced by the presence of neighboring ramps. Because of its particular shape, i.e., less weighted at

4Typically for a large filter’s width values, its response may remain constant in the interval considered here for the
evaluation of the localization error. In such cases, the number of maximum associated with a response to a ramp has been
set at 0, which explains the average number of maximum < 1 that can be observed in Figure 6 (graphic on the left for
filter’s widths > 4 h).
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the extremities of its support, the FDG filter is less sensitive to it than the DOB filter. The MaxMin
filter’s propensity to maintain its response to a maximum value requires a suitable ramp location strategy.
We chose to locate a ramp from the center of the interval for which the filter’s response maintains its
maximum value. The MaxMin filter does not attenuate the noise. The increase in the filter’s width
results in a rapid increase of the localization error of a ramp.

The use of a large width filter in the detection of nearby ramps may be responsible for a major
relocation of the filter’s response to each of these ramps. It sometimes results in the absence of filter
response in the time interval considered around a ramp (defined by δ, see the previous Section). It would
have been natural to associate a maximum localization error (i.e., equal to δ) with these situations.
However, we chose to ignore them in the calculus of the root mean square ramp localization error. Thus,
the influence of such situations is reflected by a reduction (instead of an increase) in the MaxMin filter
localization error beyond a certain width. Nevertheless, it further serves to underline the generally poor
performance of the MaxMin filter.

4 Parametric study of different multi-scale detection approaches

In this section, we study the performance of different multi-scale ramp detection approaches. The goal
is to determine whether or not (and, if yes, how) the use of information collected at different scales in a
variation’s characterization, allows for the better detection of ramps in a signal.

4.1 State-of-the-art multi-scale detection approaches

We considered two types of multi-scale approaches. In the first case, the characterization of a variation is
based on a combination of scales; while in the second case, it is based on a local scale selection procedure.
In the first type of approaches, the intensity I and the timing tI of a ramp are defined from the local
maximum of a signal ft (in absolute value), defined from the combination of a filter response at different
scales:

ft = K �ni=1 (hsi ∗ p)t,
where s1 < · · · < sn are the different scales, hsi the detection filter at scale si, p the signal of interest,

� the algebraic operation of combination and K an appropriate normalization constant with respect to
�. In [5], � is the sum, and K = 1/max |

∑
i(hsi ∗p)t|. The measure of a variation ft at a given time t is

then expressed relatively to some maximum value measured in a signal. In the following, we prefer using
K = 1/n; the measure of a variation is then expressed in absolute terms. Other measures of variation
can be considered through other algebraic operations. In [15] for instance, � indicates a product. Taking
K = 1, and replacing ft by fnormt by setting fnormt = sign[(hsn ∗ p)t].|ft|1/n, then allows the units of
measurement to be kept. In the following, we denote the two considered approaches (sum and product)
by the names of the authors who proposed them, i.e. “Gallego” and “Bao” respectively.

In the second type of approaches, we consider an approach proposed in [29], henceforth “Lindeberg”.
In this approach, a ramp’s intensity and timing are defined from the local maximum of the filtered signal
(in absolute value), at a scale chosen according to the following:

sloc = argmax
0<s≤smax

|I(s)|.

The latter is defined only if a local maximum associated with a variation in the derivative signal (in
absolute value) exists for all scale values below a maximum scale smax ≤ sn. The FDG filter ensures such
an existence, unlike the DOB and MaxMin filters (see [18] for a counter example with real production
data). More generally, such an existence is related to a property sometimes referred to as causality in
the literature of a signal’s time-scale representations [30, 31]. The causality property means that some
elements describing the structure of a signal disappear as the scale gets coarser, leaving only those offering
a more synthetic representation. According to some work, the Gaussian kernel is probably the only one
from a broad class of operators to offer this property [31, 32].
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In what follows, we study the performance of the different approaches based on the use of a continuous
wavelet transform with the first derivative of a Gaussian as a mother wavelet. The normalization assumed
through the use of a wavelet transform (L2 normalization) must have an influence on the performance
of certain approaches (e.g., through the scale selection procedure defined in the Lindeberg approach).
Nevertheless, such an influence is not studied here and should be further investigated.

The use of multiple scales does not depart from the choice of a minimum and a maximum scale. The
smallest scale s1 is defined here by the resolution of the signals in accordance with the choice made in
[5]. The scale increment is chosen three times lower than that of the resolution of the signals. Finally,
the maximum scale sn is a parameter whose influence on the different approaches’ performance will be
investigated. We consider the following values: sn = 1/3, 1/2, 1, 1.5, 2, 2.5, 3 h.

4.2 Detection performance

The influence of ramps’ closeness: Results from the estimation of the AUC, depending on the
average duration of an episode of low production λT1 and the ratio defining the average duration of
an episode of high production c, are shown in Figure 7 (graphs on top). These results were obtained
from a maximum scale value s?n guaranteeing the best possible detection performance, i.e. s?n(λT1

, c) =
argmaxsnAUC(λT1

, c). They highlight a difference between the detection performances of approaches
based on scales’ combination (i.e., Gallego and Bao), and the approach involving a local scale selection
procedure (i.e., Lindeberg). Indeed, the performance of the latter is maintained at a high level, regardless
of the characteristics defining the time duration separating two consecutive ramps in a signal. On the
other hand, the first two approaches reveal a declining performance when the average time duration that
separates ramps, decreases.

AUC’s usually high value makes it difficult to quantitatively appreciate the performance gap between
different approaches. This is a inconvenience sometimes acknowledged in the statistical literature [25].
Here, it must be related to the simplicity of the considered detection exercise. Indeed, our model does not
allow to reproduce properly the numerous textures that appear in real wind power production signals and
that may complicate the detection of ramps. To better appraise the difference in the various approaches’
performances, we made additional simulations considering shorter average duration of an episode of low
production λT1

, i.e., λT1
= 1, 2, 3, 4, 5 h. We realize that such values may be unrealistic. Through such

a procedure however, we may expect to get closer to the difficulty there is to detect ramps on real wind
power production signals. The results can be seen in Figure 7 (graphs at the bottom, please note the
changing scale in the ordinate axis). They confirm our initial observations.

The comparison of these performances with those obtained from the use of a single globally optimal
scale, i.e., sopt(λT1

, c) = argmaxsAUC(λT1
, c), can be well appreciated here. This comparison clearly

discriminates between the approaches based on scales’ combination or on a local scale selection procedure.
On one hand, the use of a single scale sopt in the detection of all ramps of a signal provides better results
than a strategy based on the combination of different scales, as in the Bao or Gallego approach. On
the other hand, a local procedure of scale selection, as in the Lindeberg approach, allows for detection
performance to increase (or at least to maintain) as regards the use of a single globally optimal scale.

The performance gain of a multi-scale approach with respect to another approach is only effective if
the scale s?n can be determined a priori. This requires knowing the value of λT1

and c parameters. A
rough estimate of these parameters made from real signals’ analysis can lead to a poor choice in using
the value of the parameter sn. It is thus desirable to have detection performances that are not too
sensitive to the value of sn. Figure 8 shows the decline in detection performance for the Gallego (left
graphs) and Lindeberg (right graphs) approaches, with respect to their respective optimal performance
(i.e., AUC(s?n)), depending on the value of sn. This decline is represented here as a function of the average
inter-ramps’ duration (the different curves correspond to the different values of the parameter λT1

, graphs
on top are for values λT1 = 6, 12, 24, 48, 96 h while those at the bottom are for values λT1 = 1, 2, 3, 4, 5
h, c has been set at c = 5). When the signal ramps are sufficiently far from one another, the value of
sn has little effect on both the performances of the Gallego and the Lindeberg approaches. However, if
consecutive ramps are close (i.e., λT1

≤ 3 h, graphs at the bottom, again please note the changing scale in
the ordinate axis), the choice of sn becomes critical to ensure the Gallego approach to maintain detection
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Figure 7: Optimal detection performance depending on average inter-ramps’ duration –
Maximum AUC (i.e., for a maximum scale parameter value s?n = argmaxsnAUC(λT1

, c)), depending on
the average duration of an episode of low production λT1

and the ratio defining the average duration of
an episode of high production c, for multi-scale approaches: Gallego, Bao and Lindeberg. Graphs on
top are for parameter values λT1

= 6, 12, 24, 48, 96 h, while graphs at the bottom correspond to values
λT1 = 1, 2, 3, 4, 5 h. Performance when using a single globally optimal scale for detecting all the ramps
in a signal (blue curve), is here given as a reference. It allows for a clear discrimination between an
approach’s performance based on a local scale selection procedure (i.e., Lindeberg), and those based on
scales’ combination (i.e., Bao and Gallego).
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Figure 8: Detection performance sensitivity to the choice of sn – Decrease in detection perfor-
mance with respect to the optimal ones (i.e. AUC(s?n)), for the Gallego (left graphs) and Lindeberg
(right graphs) approaches, depending on the value of sn. Graphs on top are for parameter values
λT1 = 6, 12, 24, 48, 96 h, while graphs at the bottom correspond to values λT1 = 1, 2, 3, 4, 5 h. When
considering close consecutive ramps, i.e. λT1

≤ 3 h (graphs at the bottom), one can see how the perfor-
mance of the Gallego approach is sensitive to the choice of sn. The results presented here were obtained
for a ratio c = 5 between the average duration of an episode of low production, and the average duration
of an episode of high production.
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performance close to the optimal ones. On the other hand, the performance of the Lindeberg approach
does not seem very sensitive to the choice of sn.

The influence of the signal-to-noise ratio - the case of nearby ramps (λT1 = 6 h and c = 5):
We now focus on challenging detection situations, namely on signals in which consecutive ramps are close
to one another. One can have more insight into the different approaches’ performance by looking at the
characteristics of the distributions of the intensity values, associated with each class of variations (ramps
or noise). Considering sample estimates of the average intensity values I0 and I1 and standard deviation
σ̂0 and σ̂1 associated with each class of variations, one can define an estimate Ŝ = (I1− I0)/(σ̂2

1 + σ̂2
0)1/2

of the criterion given in Equation (7). Values close to 0 indicate little discrimination of ramps in a signal,
the higher the better.

Table 1 shows estimates obtained in the case of nearby ramps: for different values of amplitude A
and average time duration λT2 of a ramp, as well as for different intensity j of noise. The combination
of different ramps amplitude and duration values with different noise intensities, can be identified as
different signal-to-noise ratios. A detection approach performs better when this ratio increases. Some
of the detection approaches considered are very sensitive to this ratio. One can see that the Bao and
Gallego approaches have good potential for discriminating ramps in a signal when this ratio is high (i.e.,
for high values of A associated to low values of λT2 and j), even when consecutive ramps are close to one
another. However, these approaches’ performance sharply decreases when the signal-to-noise ratio drops.
Yet, the Lindeberg approach is less sensitive to it, and it performs better for the most difficult detection
cases (see Table 1 (c)).

Table 1: Characteristics of the distributions of the intensity values associated with each class
of variation – Sample estimates of the mean and standard deviation of the intensity value associated
with each class of variation (ramps of noise), along with estimates of the S criterion (see Equation
(7)). The results shown here were obtained for a maximum scale parameter value sn = s?n, parameters
characterizing nearby ramps λT1

= 6 h and c = 5, different amplitudes A and average durations λT2
of

ramps, and for different intensities of noise j. The combination of these last three parameters defines
a signal-to-noise ratio ((a), (b) and (c) describes decreasing ratios). If the Gallego and Bao detection
approaches are potentially good for discriminating ramps when this ratio is high, their performance
sharply decreases with it. However, the Lindeberg approach shows superior performances in the most
difficult detection cases (e.g. (c)).

(a) A = 100% Pn, λT2 = 10 mn, j = 1

I1 [%Pn.
√
h] I0 [%Pn.

√
h] σ̂1 [%Pn.

√
h] σ̂0 [%Pn.

√
h] Ŝ [ ]

Gallego 62.9 1.2 5.5 0.8 11.2
Bao 51.6 1.4 1.6 0.9 27.3
Lindeberg 75.3 2.0 4.7 2.5 13.7

(b) A = 70% Pn, λT2
= 1 h, j = 1

I1 [%Pn.
√
h] I0 [%Pn.

√
h] σ̂1 [%Pn.

√
h] σ̂0 [%Pn.

√
h] Ŝ [ ]

Gallego 43.0 1.7 6.7 3.1 5.6
Bao 28.7 2.3 8.3 3.0 3.0
Lindeberg 59.4 2.1 5.1 1.9 10.6

(c) A = 50% Pn, λT2
= 3 h, j = 2

I1 [%Pn.
√
h] I0 [%Pn.

√
h] σ̂1 [%Pn.

√
h] σ̂0 [%Pn.

√
h] Ŝ [ ]

Gallego 22.2 5.4 6.1 5.3 2.1
Bao 14.4 3.9 4.9 2.9 1.8
Lindeberg 34.7 4.1 6.6 2.8 4.2
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4.3 Localization performance

In addition to detection performance, we studied the performance of multi-scale detection approaches in
locating well ramps. The results contrast with those obtained in terms of detection. Figure 9 shows the
ramp localization root mean squared error (RMSE) for different detection approaches, depending on the
parameters controlling the in-between-ramps’ duration, λT1

and c. The results shown here were obtained
from a maximum scale parameter value sn minimizing the localization RMSE. The Gallego approach has
the best localization performance, especially for close ramps. It must be taken into account that this
result cannot be generalized to any other detection approach based on scales’ combination. Indeed, the
Bao approach has a very poor localization performance.

The choice of an appropriate maximum scale parameter value sn is difficult, because a suitable value
for detection is not necessarily adapted in terms of localization. Our simulations showed that to keep
localization performances close to optimal, sn should stay around 1 and 1.5 h for the Lindeberg approach.
These values seem particularly suitable as they also allow good detection performance (see Figure 8). In
the case of the Gallego approach, choosing sn so as to keep performance satisfactory both in terms of
detection and localization may be more difficult. Indeed, if low values of sn (e.g., sn = 0.5 h or 1 h) are
adapted in terms of detection, it is necessary to use larger values (e.g., between 1.5 h and 2 h) to optimize
localization performance.
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Figure 9: Optimal localization performances depending on average inter-ramps’ duration –
Ramp localization root mean squared error of the considered detection approaches, depending on the
inter-ramps’ duration parameters λT1

and c. These results contrast those obtained for detection, since it
is the Gallego scales’ combination approach which performs the best for close consecutive ramps.

5 Conclusion

In wind-energy literature, the study of large and sharp wind-power variations has seen new characteriza-
tion and detection approaches emerge. However, there is no existing work dedicated to their evaluation
using tangible quantitative criteria, to establish these approaches’ validity. In this paper, we have pro-
posed a framework from which these approaches can, indeed, be evaluated. We have proposed a theoretical
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model to formally define the “large” and “sharp” character of wind-power ramps. We have also described
quantitative criteria to objectively evaluate different approaches to detecting ramps as defined by our
model.

The ramps’ model we propose includes some of the essential aspects already described in edge-detection
literature. We have pushed the model further so as to adequately represent certain properties of the wind-
power production process. By modeling the time between two consecutive ramps using random variables,
we tried to reproduce the random nature with which such ramps follow one another in real production
signals. Through noise modeling, we took care to reproduce some of the non-stationary characteristics
and bounded aspect of the wind-power process. Besides the usual criteria proposed by Canny [8], we
described some criteria derived from statistical-classification literature which can be used to evaluate a
detection approach’s performance.

From the proposed ramp model and evaluation criteria, we studied different filters and multi-scale
detection approaches found in wind-energy literature. We compared their performance with filters and
other multi-scale detection approaches from edge-detection literature. The results of our study show that
the filter proposed in [3] is very sensitive to noise and has a lower performance than more conventional
filters. They also show that some of the multi-scale approaches proposed in the literature which are
based on scales’ combination, may have difficulties in maintaining a high performance level in detecting
ramps when those are closely surrounded by other ramps or by other elements in a signal. Moreover,
their performances may be very sensitive to the choice of the highest scale used for combination which
then makes the interest of using those approaches less obvious. Finally, other multi-scale approaches like
the ones based on local scale selection procedures for instance, may be preferable.

Of course, the proposed ramp’s model upon which rely our observations is limited. Nevertheless, we
believe the work proposed here is a first step towards systematically evaluating ramp characterization
approaches. More insight could be obtained about them if the proposed ramp model is further devel-
oped to better integrate some characteristics of the wind power process (e.g., better distribution and
auto-correlation modeling, etc.,), and is able to reproduce important textures that are observed in real
production signals.
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