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Abstract. The aim of this paper is to develop the theory, and to pro-
pose an algorithm, for morphological processing of images painted on
point clouds, viewed as a length metric measure space (X, d, µ). In or-
der to extend morphological operators to process point cloud supported
images, one needs to de�ne dilation and erosion as semigroup operators
on (X, d). That corresponds to a supremal convolution (and in�mal con-
volution) using admissible structuring function on (X, d). From a more
theoretical perspective, we introduce the notion of abstract structuring
functions formulated on length metric Maslov idempotent measurable
spaces, which is the appropriate setting for (X, d). In practice, compu-
tation of Maslov structuring function is approached by a random walks
framework to estimate heat kernel on (X, d, µ), followed by the logarith-
mic trick.

Keywords: mathematical morphology ; point clouds image; metric mea-
sure space; idempotent measure; Hamilton-Jacobi semigroup

1 Introduction

With the development of 3D scanning technology it is now easy to generate 3D
models from real objects, together with standard images painted on them. These
discrete objects can be represented either by surfaces (typically as polygonal
meshes) or by scattered point clouds. In this paper we focus exclusively on a
point cloud representation. A typical case of such generalized 3D images are the
point clouds obtained from range cameras, like the Kinect camera. Indeed, this
is the case-study which will be used in the paper to illustrate our methods.

Let us formalize the notion of point cloud and of image on it. A point cloud
(X, d) is a �nite set of points X = {xi}Ni=1 equipped with a distance function
d, which corresponds typically to the Euclidean distance in the ambient space
where X is endowed. This set of points has been irregularly sampled from a
metric space; typically X ⊂ Rd (for instance the 3D space) but X can be also
a sampled manifold with possible complex topological/geometric structure. We
assume unknown inner product and geodesic structure of the underlying mani-
fold. It is also important to note that (X, d) is neither a graph nor a discretized
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Fig. 1. Example of RGB-valued point cloud from a Kinect image: (a) fcolor(x),
(b)fdepth(x), (c) f(xi), (d) zoom-in of (c).

surface with triangulations. Thus there is a lack of natural connectivity (or neigh-
borhood relationship) between the points. A real-valued point cloud (X, d, f), or
image f supported on a point cloud (X, d), is the function f which maps each
point of X to a valuation space, typically the extended real line for gray-scale
images, i.e., f : {xi}Ni=1 −→ R̄. Fig. 1 depicts an example of RGB-valued point
cloud obtained from a Kinect image, based on the 3D reconstruction of the scene
according to the fdepth(x) image.

Point clouds processing is an active research area which have been approached
using geodesic distance methods [19], laplace operator [6] or di�usion PDEs [14].
Connection between heat method on manifolds and shortest geodesic distance
via the Varadhan's formula has been used in [9], which integrates the heat �ow.
Morphological operators have been also considered for point cloud processing [8].
However, here we are interested on processing images painted on point clouds,
without modifying the point cloud itself. The problem of smoothing images
painted on surfaces using the short-time Beltrami kernel was considered for in-
stance in [23].

In this context, the aim of this paper is to develop the theory and to propose
an algorithm for morphological processing of such generalized manifold images.

Mathematical morphology is a nonlinear image processing methodology based
on two basic operators, dilation and erosion, which correspond respectively to the
convolution in the max-plus algebra and its dual. More precisely, in Euclidean
(translation invariant) mathematical morphology the pair of adjoint and dual
operators, dilation (sup-convolution) (f ⊕ b)(x) and erosion (inf-convolution)
(f ⊖ b)(x) of an image f : E ⊂ Rn → R = R ∪ {−∞,+∞}, are given by [21,12]:{

δb(f)(x) = (f ⊕ b)(x) = supy∈E {f(y) + b(y − x)} ,
εb(f)(x) = (f ⊖ b)(x) = infy∈E {f(y)− b(y + x)} ,

where b : Rn → R is the structuring function which determines the e�ect of
the operator. The structuring function plays a similar role to the kernel in clas-
sical convolution �ltering. The structuring function is typically a parametric
family bt(x), where t > 0 is the scale parameter. In particular, the canonic



structuring function is the parabolic shape (i.e., square of the Euclidean dis-

tance): bt(x) = −∥x∥2

2t , such that the corresponding dilation and erosion are
equivalent to the viscosity solution of the standard Hamilton-Jacobi PDE [17]:
ut(t, x)∓∥ux(t, x)∥2 = 0, (t, x) ∈ (0,+∞)×E; u(0, x) = f(x), x ∈ E. Theory of
morphological �ltering is based on opening and closing operators, obtained re-
spectively by composition product of erosion-dilation and dilation-erosion. Open-
ing (resp. closing) is increasing, idempotent and anti-extensive (resp. extensive).
Evolved �lters are obtained by composition of openings and closings [21,12]. Mor-
phological operators are classically de�ned for images supported on Euclidean
spaces. A recent work has introduced mathematical morphology for real valued
images whose support space is a Riemannian manifold [5].

In order to extend morphological operators to process point cloud supported
images, one needs to de�ne dilation and erosion as semigroup operators in frame-
work adapted to point clouds (X, d). That corresponds to a supremal convolution
(and in�mal convolution) using admissible structuring function on (X, d). These
operators are formulated in Section 3. In a more theoretical perspective, we
start in Section 2 by introducing the notion of abstract structuring functions
formulated on length metric Maslov idempotent measurable spaces, which is
the appropriate setting for (X, d). In practice, computation of Maslov structur-
ing function will be approached by a random walk framework to estimate heat
kernel on a metric measure space (X, d, µ), followed by the logarithmic trick,
as shown in Section 4. Some preliminary examples of morphological processing
RGB-valued point cloud images are also given in Section 4.

2 From abstract heat semigroups to Maslov structuring

functions

Before introducing the morphological framework, let us review the theory of
abstract heat kernels on a metric measure space, which is based on recent works
by Grigor'yan and co-workers [10,11].

2.1 Heat kernel on metric measure spaces

Let (M,d, µ) be a locally compact, separable metric space, endowed with a Radon
measure µ. Then a family {pt}t≥0 of measurable functions pt(x, y) on M × M
is called a heat kernel is the following conditions are almost surely satis�ed
∀x, y ∈ M and t, s > 0: i) Positivity: pt(x, y) ≥ 0; ii) Total mass inequality:∫
M

pt(x, y)dµ(y) ≤ 1, iii) Symmetry: pt(x, y) = pt(y, x), iv) Semigroup property
ps+t(x, y) =

∫
M

ps(x, z)pt(z, y)dµ(z), v) Approximation to identity: For any f ∈
L2(M,µ)

∫
M

pt(x, y)f(y)dµ(y) −→L2

f(x) as t → 0+. In addition, the heat
kernel is called stochastically complete (conservative) when

∫
M

pt(x, y)dµ(y) = 1.
Given a measurable function f on M , any heat kernel gives rise to the family

of operators {Pt}t≥0, called the heat semigroup, where P0 = id and Pt for t > 0
is de�ned by

Ptf(x) =

∫
M

pt(x, y)f(y)dµ(y). (1)



such that {Pt}t≥0 is continuous, symmetric and a Markovian semigroup PtPs =
Ps+t.

Heat kernels and heat semigroups arise naturally from Markov processes. Let
({Xt}t≥0; {Px}x∈M ) be a Markov process on M , that is reversible with respect
to measure µ. Assume that it has the transition density pt(x, y), i.e., a function
such that ∀x ∈ M, t > 0, and all Borel sets A ⊂ M , one has Px (Xt ∈ A) =∫
M

pt(x, y)dµ(y).

If M is a smooth connected compact Riemannian manifold such that△µ is
the Laplace-Beltrami operator on M , where µ is the Riemannian measure, it
is well known that starting from the heat equation ∂u

∂t = △µu, we have that,
for any y ∈ M , the function (t, x) 7→ pt(x, y) is the smallest positive funda-
mental solution of the heat equation with a source at y, i.e., if u(x, 0) = u0(x),
then u(x, t) =

∫
M

pt(x, y)u0(y)dµ(y). In addition, let {φk}+∞
k=0 be an orthonor-

mal basis of eigenfunctions of Laplace-Beltrami operator −△µ, with eigenvalues
0 = λ0 < λ1 ≤ λ2 ≤ · · · , then the heat kernel is determined by pt(x, y) =∑+∞

k=0 e
−λktφk(x)φk(y).

As mentioned in the introduction, all these di�erent viewpoints on heat kernel
theory have been considered in the image processing state-of-the-art dealing with
meshes and point clouds.

The explicit expression of the heat kernel in the Euclidean space (M,d, µ) =
Rn is just the Gaussian kernel. In the case of a Riemannian manifold (M,µ),
only estimates are available, which typically depends on the geodesic distance
in M , see [10,11]. Similarly, in the case of a metric measure space (M,d, µ),
the sub-Gaussian estimate has the following form (assuming a walk dimension
equals to 2) [10,11]:

pt(x, y) ≍
C

V (x, t1/2)
exp

(
−c

d2(x, y)

t

)
(2)

where d(x, y) is a metric, V (x, r) is the volume function of a metric ball on the
space and C and c are positive constants.

2.2 Structuring functions on length metric Maslov measure spaces

We need the counterpart of this abstract theory in the context max-plus mathe-
matics (also known as idempotent analysis [18,15]). More precisely, the max-plus
equivalent of the heat kernel will be here named structuring functions on a length
metric Maslov measure space.

Length metric Maslov measure space. Theoretical foundations of Maslov
idempotent measure theory [20,1] are based on replacing in the structural axioms
of probability theory the role of the classical semiring S(+,×) = (R+,+,×, 0, 1,≤)
of positive real numbers by the idempotent semiring:
S(max,+) = (R̄,max,+,−∞, 0,≤). In this context, a change of the measure in-
volves a consistent counterpart to the standard probability theory.



Let (X, d) be a (Hausdor� topological) metric space and let m be a Maslov
idempotent measure on X, i.e., mapping from X in the max-plus semiring such
that for every function f : X → R̄, we have A ⊂ X,

mf (A) = sup
x∈A

f(x).

In addition, we should assume that (X, d) is a length space. We remind that a
length space is a metric space such that for any pair of points, their distance is
the length of the shortest path between the two points. The triple (X, d,m) is
called a length metric Maslov measure space.

Maslov structuring function. A family {bt}t>0 of Maslov idempotent
measurable functions bt : X × X → R̄ is called for us a Maslov structuring
function in (X, d,m) if the following conditions are satis�ed ∀x, y ∈ X and all
t, s > 0

� Nonpositivity and total mass inequality:

m (bt(x, ·)) = sup
y∈X

bt(x, y) ≤ 0 ⇔ bt(x, y) ≤ 0.

� Completeness (or conservative):

m (bt(x, x)) = 0 ⇔ bt(x, x) = 0.

� Symmetry: bt(x, y) = bt(y, x).
� Semi-group property:

bt+s(x, y) = sup
z∈X

{bt(x, z) + bs(z, y)} .

� Approximation to identity:

sup
y∈X

{f(y) + bt(x, y)} −→ f(x) as t → 0+.

Logarithmic trick: from heat kernel to Maslov structuring function.

Our approach is based on the so-called logarithmic connection between linear
and morphological system theory [7]. The theory of this connection between
the usual convolution and the convolution in max-plus mathematics is based
on the Cramer transform [1], which is de�ned as the Legendre transform of the
logarithm of the Laplace transform. In the particular case of a canonic Gaussian
kernel of type: 1/

√
2πσ2e−x2/(2σ2), it is well known that the Laplace transform is

e(σ
2s2)/2 and the �nal Cramer transform is −x2/(2σ2). In summary the Cramer

transform of the Gaussian kernel is equal to quadratic structuring function.
Similarly, we can easily show that, up to a normalizing constant, the loga-

rithm of the heat kernel pt(x, y) in a metric measure space (X, d, µ) is a Maslov
structuring function bt(x, y) in the counterpart idempotent metric measure space.



Let us consider for instance the case of the sub-Gaussian estimate of the heat ker-
nel (2). First, a normalization version p̃t(x, y) is required such that p̃t(x, x) = 1,
i.e., p̃t(x, y) = V (x, t1/2)/Cpt(x, y). Then, the corresponding Maslov structuring
function is de�ned as

bt(x, y) = log p̃t(x, y) ≍ −c
d2(x, y)

t
, (3)

and, without loss of generality, we �x c = 1/2. The nonpositivity, total mass
inequality, completeness, symmetric and approximation to the identity are ob-
vious. In order to prove the semigroup property, we need to assume that d(x, y)
is a metric distance in a length space such that [16]

bt+s(x, y) = sup
z∈X

{bt(x, z) + bs(z, y)} = sup
z∈X

{
−d2(x, z)

2t
− d2(z, y)

2s
}
}

= − inf
z∈X

{
d2(x, z)

2t
+

d2(z, y)

2s
}
}

= −d2(x, y)

2(t+ s)
.

The last equality in length spaces comes from d2(x, y)/(2(t + s)) ≤ infz∈Z[
d2(x, z)/(2t) + d2(z, y)/(2t)

]
(by triangle inequality) by choosing a minimal

geodesic between x and y, and a point z on this geodesic with d(x, z) = t/(t +
s)d(x, y).

3 Morphological scale-space operators on metric

Maslov-measurable space

Let us consider a metric Maslov-measurable space (X, d,m) and a given function
f : X → R. Once an admissible structuring function {bt}t>0 has been de�ned,
the max-plus semigroups Dtf(x) and Etf(x) are given by

Dtf(x) = sup
y∈X

{f(y) + bt(x, y)} , (4)

Etf(x) = inf
y∈X

{f(y)− bt(y, x)} . (5)

which, in the context of mathematical morphology, correspond respectively to
the multi-scale dilation δbt(f)(x) = Dtf(x) and erosion εbt(f)(x) = Etf(x) of
function f by structuring function bt. By the way, we note that by the sym-
metry, one has bt(x, y) = bt(y, x). In max-plus mathematics on Hilbert spaces,
dilation and erosion are known as the Hopf-Lax-Oleinik semigroups. By consid-
ering for instance the sub-gaussian estimate as Maslov structuring function (3),

the obtained semigroups in (X, d,m): Dtf(x) = supy∈X

{
f(y)− d2(x,y)

2t

}
and

Etf(x) = infy∈X

{
f(y) + d2(x,y)

2t

}
, are equal to the so-called Hamilton-Jacobi

semigroup on length spaces, introduced by Lott and Villani in [16] and extend-
edly considered more recently by Ambrosio et al. in [3] for the study of Ricci
curvature bounds in metric spaces.



3.1 Properties of semigroups δbt and εbt

The following properties can be easily proved using the properties of a Maslov
structuring function.

1. (Adjunction) For any two real-valued functions f and g on (X, d,m), the
pair (εbt , δbt) forms an adjunction, i.e., ∀x ∈ X

δbt(f)(x) ≤ g(x) ⇔ f(x) ≤ εbt(g)(x).

2. (Duality by involution) For any function f(x) and ∀x ∈ X, one has δbt
(f)(x) =

−εbt(−f)(x).
3. (Increaseness) If f(x) ≤ g(x), ∀x ∈ X, then δbt(f)(x) ≤ δbt(g)(x) and

εbt
(f)(x) ≤ εbt

(g)(x), ∀x ∈ X and ∀t > 0.
4. (Extensivity and anti-extensivity) δbt(f)(x) ≥ f(x) and εbt(f)(x) ≤ f(x),

∀x ∈ X and ∀t > 0.
5. (Ordering property) If 0 < s < t then εbt(f)(x) ≤ εbs(f)(x) ≤ f(x)

δbs
(f)(x) ≤ δbt

(f)(x), ∀x ∈ X.
6. (Scale-space) For any function f and ∀x ∈ X, and for all pair of scales s > 0

and t > 0, we have the Maslovian semigroup:

δbt (δbs(f)) (x) = δbs+t(f)(x),

εbt (εbs(f)) (x) = εbs+t(f)(x).

In addition, the semigroups operators δbt(f) and εbt(f) are continuous in t.

We note that these properties are a natural generalization of some well known
properties of morphological scale-spaces [13,17].

3.2 Multi-scale openings and closings and other derived operators

From these two basic well formalized operators, all the morphological �ltering
theory is generalized to images on (X, d,m). In particular, as a consequence of
the classic theory of morphological operators [21,12], the composition products
of the adjoint operators (εbt , δbt) lead to the multi-scale opening and closing:

γbt(f)(x) = δbt ◦ εbt(f)(x) = sup
z∈X

inf
y∈X

{f(y)− bt(y, z) + bt(z, x)} ,

φbt(f)(x) = εbt ◦ δbt(f)(x) = inf
z∈X

sup
y∈X

{f(y) + bt(z, y)− bt(x, z)} .

Having the opening and closing, all the other morphological �lters de�ned by
composition of them are easily obtained, such as the alternate sequential �lters.
It is also possible to extend the geodesic dilation [12], denoted by δgeobt

(m; f),
of a marker function m constrained by the reference function f , de�ned as
δgeobt

(m; f)(x) = δbt(m)(x) ∧ f(x) and t being a small scale. The iteration of
this operator until converge is called geodesic reconstruction [12]. This is an
extremely useful operator which, based for instance on an opening m = γbt(f)
as marker, removes the bright objects and leaving intact the contours of dark
structures.



(a)
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Fig. 2. Heat kernel at a given point: (a) RGB-valued point cloud f(xi) of N points;
(b) matrix of all-pairs of Euclidean distances dEuclid(xi, xj), 1 ≤ i ≤ N , 1 ≤ j ≤ N ;
(c) matrix of all-pairs of heat distances dHeat

T (xi, xj), 1 ≤ i ≤ N , 1 ≤ j ≤ N ; (d) in
red, a given point xk, (e) heat kernel pt(xk, xi) at this point xk.

4 Application to processing images supported on point

clouds

4.1 Computing Maslov structuring functions on point clouds

According to the theory discussed above, to compute a Maslov structuring func-
tion on a point cloud is equivalent to compute the heat kernel followed by the
logarithmic trick. In the case of point clouds, like those of the Kinect camera,
the initial ambient space embedding (X, dEuclid) is not straightforwardly use-
ful for image processing since the intrinsic geometry of the 3D objects is not
taken into account by dEuclid(x, y). Local geometry of the underlaying sampled
manifold could be approximated by means of manifold learning techniques (e.g.,
ISOMAP). That is basically computation of geodesic distances which are then
plugged into the heat kernel. Another possibility involves to transform the point
cloud into a triangular mesh surface. Heat kernel can be obtained by numerical
computation of eigenfunctions of Laplace-Beltrami operator.

We consider here an alternative approach based on random walk paradigm,
which does not need a mesh nor an explicit graph. Hence, heat di�usion can be
modeled as a large collection of hot particles taking random walks on space X
starting at xi ∈ X: any particle that reaches a distance point y after a small
time has had little time to deviate from the shortest possible path. Probabilities
of random walks of length p can be computed by looking at the power p of the
transition probability matrix of the stationary Markov chain. A similar approach



was used in [4], to formulate the notion of stochastic morphological �ltering on
Euclidean images.

In practice, the algorithm is based on the following steps.

1. Euclidean distance matrix. Given a point cloud (X, dEuclid), compute the
matrix of all Euclidean distances between pairs of points of X: D(i, j) =
dEuclid(xi, xj), ∀xi, xj ∈ X. This matrix can be made sparse by hard thresh-
olding at ϵ (this is equivalent to so-called ϵ-graph).

2. From Euclidean distance matrix to stochastic matrix. Transform distances of
each point i to the others (column i of matrix D) into transition probabilities
using Boltzmann-Gibbs distribution depending on temperature T : PT (i, j) =

Z−1
i e−D(i,j)2/T , Zi =

∑
j e

−D(i,j)2/T .
3. Probability of going from point i to j after p steps: Compute power to p of

stochastic matrix PT . Each i column of the corresponding matrix can be
interpreted as the approximation to the heat kernel at point i, kHeat

T (xi, xj),
on the underlying manifold when p → +∞.

4. Maslov structuring function. Compute the scaled logarithm of the heat ker-

nel: bt(xi, xj) =
log(kHeat

T (xi,xj))
2t .

Fig. 2 illustrates the approach for a RGB-valued point cloud image f(xi) of
N points. Including the shape of the heat kernel at a given point. Structure of
the matrix of Euclidean distances with the respect to that of the �heat distances�,

obtained as dHeat
T (xi, xj) =

√
−2T log kHeat

T (xi, xj), are compared too. We note

that this distance can be considered as an approximation based on the well-
known Varadhan's formula which link the short time heat kernel to the geodesic
distance, i.e.,

dGeodesic(x, y) = lim
t→0

√
−2t log pt(x, y).

4.2 Examples of morphological processing

Fig. 3 depicts some examples of morphological processing of a RGB-valued point
cloud f(xi), using the multi-scale structuring functions bt(xi, xj) obtained by the
random walk paradigm. We �rst note that each color component is processed
separately; but using the same structuring function for the three components.
The e�ects of morphological operators are as expected: erosion εbt(f)(xi) in
Fig. 3(b) to (f), (resp. dilation δbt(f)(xi) in (g)) enlarges dark structures and
reduces bright ones (resp. enlarges bright zones and reduces dark areas). Opening
γbt(f)(xi), in (h) removes bright structures at the corresponding scale t, without
modifying the dark ones. The di�erence between the original image f(xi) and
the opening, given in (i), shows the removed bright zones.

Considering for instance the erosion εbt(f)(xi) at a given scale t = 1, it is
compared, on the one hand, the e�ect of the temperature parameter T . As usual
in such probabilistic framework, for very low temperatures, e.g. T = 0.05 as in
(b), the estimated heat kernel is too tightly adjusted to the local shape of the
point cloud. On the contrary, with high temperatures, e.g. T = 0.4 in (c), the



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Morphological processing a RGB-valued point cloud: (a) original image f(xi).
Erosion εbt(f)(xi) with (b) t = 1, T = 0.05, (c) t = 1, T = 0.4, (d) t = 0.5, T = 0.1,
(e) t = 1, T = 0.1, (f) t = 2, T = 0.1. (g) Dilation δbt(f)(xi) with t = 1, T = 0.1. (h)
opening γbt(f)(xi) and (i) top-hat transform f(xi)− γbt(f)(xi) with t = 1, T = 0.1.

geometry of the point cloud is not captured by the heat kernel. For the current
example, T = 0.1 seems an appropriate choice. Then, by �xing T = 0.1, we
observe that by modifying the scale, t = 0.5 (d), t = 1 (e) and t = 2 (f), a
scale-space representation is obtained.

Other examples of morphological transforms on the same image are included
in Fig. 4. See legend of the �gure for details.

5 Perspectives

We have formulated the abstract theory of morphological semi-groups on length
metric Maslov-measurable spaces. These operators can be used for processing
images on valued point clouds by heat kernel embedding. Typical applications



(a) (b) (c)

(d) (e) (f)

Fig. 4. Morphological processing a RGB-valued point cloud (original image in 3(a)).
Corrupted image f̃(xi) by white impulse noise in (a) and restored image by open-
ing γbt(f̃)(xi) in (d). In (e), geodesic reconstruction using a single-pixel marker (blue
point in (b)): we note that all brighter objects than the marker zones are removed.
Closing φbt(f)(xi) in (e), which removes dark areas, and corresponding dual geodesic
reconstruction which perfectly restores contour of bright objets.

are: geometric object extraction, non-linear scale-space representation and de-
composition, regularization, etc.

Our estimation of the heat kernel, based on random walks, is not very precise.
A better approximation of underlying geodesic distances can be obtained by a
local tangent space approximation and local mesh construction, by introducing
the measure of Voronoi volumes, etc. However for the purpose of computing the
Maslov structuring function on the point cloud, the random walk estimation can
be considered as satisfactory.

In metric measure spaces, the heat kernel can be also approximated using
Laplace-Beltrami eigenfunctions. For the need of morphological operators, the
equivalent paradigm involves harmonic functions in max-plus algebra and eigen-
functions of Hopf-Lax-Oleinik semigroups. The theory is known in the Euclidean
case (also some results in graph optimization) [22,2]. This point will be explored
in ongoing research.
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