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Abstract

Different imaging modalities produce nowadays images on smooth surfaces, repre-

sented by images painted on meshes or point clouds. These Riemannian images are often

nonsmooth and their regularization can be needed in many applications. This paper

deals with the approximation of a bounded nonsmooth image painted on a surface by

a sequence of more regular functions, having in particular Lipschitz gradient, and with-

out any hypothesis of differentiability. We adopt here a geometric framework known as

Lasry–Lions regularization. The aim of the present contribution is to consider the ex-

tension of Lasry–Lions regularization to Riemannian manifolds. We show that the key

ingredients for such regularization are Riemannian morphological operators.
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1 Introduction

Mathematical morphology is a nonlinear image processing methodology based on two ba-

sic operators, dilation and erosion, which correspond respectively to the convolution in the

(max,+) algebra and its dual. More precisely, in Euclidean (translation invariant) mathemat-

ical morphology the pair of adjoint and dual operators, dilation (sup-convolution) (f ⊕ b)(x)

and erosion (inf-convolution) (f 	 b)(x) of an image f : E ⊂ Rn → R = R ∪ {−∞,+∞}, are

given by [25, 26]: {
δb(f)(x) = (f ⊕ b)(x) = supy∈E {f(y) + b(y − x)} ,
εb(f)(x) = (f 	 b)(x) = infy∈E {f(y)− b(y + x)} ,

where b : Rn → R is the structuring function which determines the effect of the operator.

The structuring function plays a similar role to the kernel in classical convolution filtering.

The structuring function is typically a parametric family bλ(x), where λ > 0 is the scale

parameter. In particular, the canonic structuring function is the parabolic shape (i.e., square

of the Euclidean distance):

bλ(x) = qλ(x) = −‖x‖
2

2λ
.

such that the corresponding dilation and erosion are equivalent to the Lax-Oleinik operators

or viscosity solution of the standard Hamilton-Jacobi PDE: ut(t, x)∓‖ux(t, x)‖2 = 0, (t, x) ∈
(0,+∞) × E; u(0, x) = f(x), x ∈ E. Theory of morphological filtering is based on opening

and closing operators, obtained respectively by product composition of erosion-dilation and

dilation-erosion. Opening (resp. closing) is increasing, idempotent and anti-extensive (resp.

extensive). Evolved filters are obtained by composition of openings and closings [25, 26].

Morphological operators are classically defined for images supported on Euclidean spaces.

However, different imaging modalities produce nowadays images on smooth surfaces repre-

sented by meshes or point clouds. Let us consider for instance the image depicted in Fig.1(c),

which corresponds to an grey-scale image painted on a smooth surface. Such support space

can be modeled as a Riemannian manifold M. These Riemannian images are often nons-

mooth and their regularization can be needed in different applications. A recent work has
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(a) (b)

Figure 1: (a) Euclidean real-valued function + smooth surface (as a discrete mesh); (b)

real-valued function on smooth surface.

introduced mathematical morphology for real valued images whose support space is a Rie-

mannian manifold [1].

The problem we consider here concerns the approximation of a bounded nonsmooth image

painted on a surface by a sequence of more regular functions, having in particular Lipschitz

gradient, and without any hypothesis of differentiability. Current state-of-the-art techniques

for regularizing such images is mainly based on heat-kernel and diffusion-like PDE, see for

instance [27].

We adopt here a framework known as Lasry–Lions regularization [18, 3]. Working on

this geometric framework, the aim of the present contribution is to consider the interest of

some recent theoretical results on the extension of Lasry–Lions regularization to Riemannian

manifolds [8, 9] in order to obtain Lipschitz regularized Riemannian images from smooth

surfaces. We show that key ingredients for such regularization are Riemannian morphological

operators.

Paper organization. The rest of the paper is organized as follows.

• The recently proposed canonic framework of morphological operators for images on

Riemannian manifolds [1] is reminded in Section 2. It involves the use of a structuring

function based on the scaled square of geodesic distance. These morphological operators

are the basic ingredients for the regularization discussed in the paper. More general

Riemannian morphological operators are also formulated in [1].

• Section 3 reviewed the main results of Lasry–Lions theory for regularization in Hilbert

spaces. It is discussed also the relationship with the more classical Moreau–Yosida

regularization of convex analysis as well as some extensions of Lasry–Lions for rather

general families of functions.
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• We discuss in Section 4 our extension of Lasry–Lions regularization for Riemannian

manifolds. In particular, we focus on the case of bounded functions on bounded domains

defined on finite dimensional Cartan–Hadamard manifolds.

• In Section 5 it is illustrated the application of this theory to Lipschitz regularization of

images supported on surfaces.

• Some conclusions and perspectives in Section 6 close the paper.

Notation on smooth functions in Hilbert spaces. Let f ∈ BUC(Rn) be space of

bounded uniformly continuous scalar functions in Rn, i.e., assume there exists m continuous,

nondecreasing on [0,+∞[ such that m(0) = 0, m(t+ s) ≤ m(t) +m(s), for t, s ≥ 0 and

|f(x)− f(y)| ≤ m (‖x− y‖) , ∀x, y ∈ Rn

The setting of this paper concerns the approximation of f by a sequence fλ of functions in

C1,1
b (Rn) such that fλ converges uniformly to f in Rn, where

C1,1
b (Rn) =

{
f ∈ C1

b (Rn) : ∇f is Lipschitz on Rn
}
,

with C1
b (Rn) =

{
f ∈ C1(Rn) : f,∇f are bounded on Rn

}
. Therefore, C1,1

b represents the

class of bounded continuously differentiable with a Lipschitz continuous gradient function.

2 Riemannian morphological operators

We consider here that M is a finite dimensional compact and complete manifold. Let dM :

M×M → R+, (x, y) 7→ dM(x, y) be the geodesic distance on M.

In this framework, canonic morphological operators are defined as follows [1].

Definition 1 Given a Riemannian image f : M → R, for any λ > 0, we define for every

x ∈M the canonical Riemannian dilation of f of scale parameter λ as

δλ(f)(x) = sup
y∈M

{
f(y)− 1

2λ
dM(x, y)2

}
(1)

and the canonical Riemannian erosion of f of parameter λ as

ελ(f)(x) = inf
y∈M

{
f(y) +

1

2λ
dM(x, y)2

}
(2)

We note that they are just the supremal convolution (f ⊕ qλ) and infimal convolution

(f 	 qλ) of image f by the “quadratic geodesic structuring function”

qλ(x; y) = − 1

2λ
dM(x, y)2. (3)
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An obvious property of the canonical Riemannian dilation and erosion is the duality by

the involution f(x) 7→ {f(x) = −f(x), i.e., δλ(f) = {ελ({f). As in classical Euclidean

morphology, the adjunction relationship is fundamental for the construction of the rest of

morphological operators.

Proposition 2 For any two real-valued images defined on the same Riemannian manifold

M, i.e., f, g :M→ R, the pair (ελ, δλ) is called the canonical Riemannian adjunction

δλ(f)(x) ≤ g(x)⇔ f(x) ≤ ελ(g)(x) (4)

This result implies in particular that the canonical Riemannian dilation commutes with the

supremum and the dual erosion with the infimum, i.e., for a given collection of images fi ∈
F(M,R), i ∈ I, we have

δλ

(∨
i∈I

fi

)
=
∨
i∈I

δλ(fi); ελ

(∧
i∈I

fi

)
=
∧
i∈I

ελ(fi).

Classical properties of Euclidean dilation and erosion have the equivalent for Riemannian

manifold M, and they do not dependent on the geometry of M.

Proposition 3 Let M be a Riemannian manifold, and let f, g ∈ F(M,R) two real-valued

images M. We have the following properties for the canonical Riemannian operators.

1. (Increaseness) If f(x) ≤ g(x), ∀x ∈ M then δλ(f)(x) ≤ δλ(g)(x) and ελ(f)(x) ≤
ελ(g)(x), ∀x ∈M and ∀λ > 0.

2. (Extensivity and anti-extensivity) δλ(f)(x) ≥ f(x) and ελ(f)(x) ≤ f(x), ∀x ∈ M and

∀λ > 0.

3. (Ordering property) If 0 < λ1 < λ2 then δλ2(f)(x) ≥ δλ1(f)(x) and ελ2(f)(x) ≤
ελ1(f)(x).

4. (Invariance under isometry) If T :M→M is an isometry of M and if f is invariant

under T , i.e., f(Tz) = f(z) for all z ∈ M, then the Riemannian dilation and erosion

are also invariant under T , i.e., δλ(f)(Tz) = δλ(f)(z) and ελ(f)(Tz) = ελ(f)(z),

∀z ∈M and ∀λ > 0.

5. (Extrema preservation) We have sup δλ(f) = sup f and inf ελ(f) = inf f , moreover if f

is lower (resp. upper) semicontinuous then every minimizer (resp. maximizer) of ελ(f)

(resp. δλ(f)) is a minimizer (resp. maximizer) of f , and conversely.

In addition, using the classical result on adjunctions in complete lattices [26, 15], we state

that the composition products of the pair (ελ, δλ) lead to the adjoint opening and adjoint

closing as follows.

5



Definition 4 Given an image fM → R, the canonical Riemannian opening and canonical

Riemannian closing of scale parameter λ are respectively given by

γλ(f)(x) = sup
z∈M

inf
y∈M

{
f(y) +

1

2λ
dM(z, y)2 − 1

2λ
dM(z, x)2

}
, (5)

and

ϕλ(f)(x) = inf
z∈M

sup
y∈M

{
f(y)− 1

2λ
dM(z, y)2 +

1

2λ
dM(z, x)2

}
. (6)

Having the canonical Riemannian opening and closing, all the other morphological filters

defined by composition of them are easily obtained.

In Fig. 2 are depicted some examples of morphological operators applied on a real-valued

function on a smooth surface. The geodesic distances dS(x, y) are calculated using the func-

tion all_shortest_paths() from the toolbox MatlabBGL [19]. This function uses either

the Floyd–Warshall algorithm or the Johnson’s algorithm for finding shortest path in the

weighted graph of faces of the mesh.

3 From Moreau–Yosida regularization to Lasry-Lions regular-

ization

3.1 Moreau–Yosida regularization

In the field of convex analysis [21, 23, 4, 16] and variational analysis [24], Moreau–Yosida

regularization consists in computing a regularized version of a scalar function defined on a

vector space (Euclidean or Hilbert space), by means of a Euclidean erosion using quadratic

structuring functions. Its origin goes back to the work of Yosida [30] on maximal monotone

operators. More precisely, we have the following definition.

Definition 5 Given a lower semicontinuous function f : E → R∪{+∞}, the one-parameter

Moreau–Yosida regularization of f , also called Moreau envelope, is defined as

fλ(x) = inf
y∈E

{
f(y) +

1

2λ
‖x− y‖2

}
= (f 	 qλ) (x). (7)

Obviously, the Moreau–Yosida regularizers has all the properties of the quadratic Eu-

clidean erosion. Associated to the anti-extensivity and ordering with λ, one has that fλ
increases pointwise to f as λ decreases to 0; the convergence is uniform on bounded sets

when f is uniformly continuous on bounded sets In addition, if λ ∈ (0, L) then fλ is every-

where finite and Lipschitz continuous on bounded sets. The following classical result due to

Moreau [20] summarizes the additional properties of the Moreau–Yosida approximation in

the convex setting.
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(a) f(x) ∈ F(S,R+)

(b) δλ=1(f)(x) (c) δλ=10(f)(x)

(d) ελ=1(f)(x) (e) ελ=10(f)(x)

(f) ϕλ=1(f)(x) (g) ϕλ=10(f)(x)

(h) ϕλ=1(f)(x)− f(x) (i) ϕλ=10(f)(x)− f(x)

Figure 2: Morphological operators applied on a real-valued function on a smooth surface: (a)

original image f : S → R, (b) and (c) canonic Riemannian dilation δλ(f) with λ = 1 and

λ = 10, (d) and (e) canonic Riemannian erosion ελ(f) with λ = 1 and λ = 10 , (f) and (g)

canonic Riemannian closing ϕλ(f) with λ = 1 and λ = 10 , (h) and (i) residues between the

original image f and the closings ϕλ(f).

7



Theorem 6 Let f : E → R ∪ {+∞} be a convex, lower semicontinuous proper function.

Then, for any λ > 0, the Moreau–Yosida approximate fλ of f is a convex C1,1 function.

Moreover, the gradient of fλ converges (in the set convergence sense [2]) to the subdifferential

of f .

A dual result is naturally obtained for upper semicontinuous concave functions, by re-

placing the quadratic erosion (f 	 qλ) by a quadratic dilation (f ⊕ qλ).

In general, when f is not convex, fλ is not smooth, even in the one-dimensional case

E = R. This is a strong limitation in order to regularize images which are rarely convex

functions.

3.2 Lasry–Lions regularization: original formulation

As a generalization of the use of Moreau–Yosida approach, Lasry–Lions regularization [18]

is a theory of nonsmooth approximation for functions in Hilbert spaces using combinations

of Euclidean dilation and erosion with quadratic structuring functions, which leads to the

approximation of bounded lower or upper-semicontinuous functions with Lipschitz continuous

derivatives which approximate f , without assuming convexity of f . The main results of this

approach are summarized in the following theorem [18].

Theorem 7 (Lasry and Lions, 1986) Let f ∈ BUC(Rn). For all 0 < µ < λ, let us define

the Lasry–Lions regularizers, according to our morphological framework, based on dilation and

erosion by quadratic structuring function:

(fλ)µ(x) = ((f 	 qλ)⊕ qµ) (x), (8)

(fλ)µ(x) = ((f ⊕ qλ)	 qµ) (x). (9)

Then the functions (fλ)µ and (fλ)µ belong to C1,1
b (Rn). Lasry–Lions regularizers converges

uniformly to f as λ goes to 0. In addition,

|(fλ)µ(x)− (fλ)µ(y)| ≤ m(‖x− y‖) ; |(fλ)µ(x)− f(x)| ≤ m(tλ + tµ) +
t2λ
2λ

;

sup
Rn

|(fλ)µ(x)− f(x)| ≤ m(tλ) ; sup
Rn

|(fλ)µ(x)− f(x)| ≤ m(tλ);

|∇(fλ)µ(x)−∇(fλ)µ(y)| ≤Mλ,µ‖x− y‖ ; |∇(fλ)µ(x)−∇(fλ)µ(y)| ≤Mλ,µ‖x− y‖

sup
Rn

|∇(fλ)µ| ≤ tλ
λ

; sup
Rn

|∇(fλ)µ| ≤
tλ
λ

;

where tλ is the maximum positive root of t2λ = 2λm(λ) and Mλ,µ = max(µ−1, (λ− µ)−1).

If f is uniformly continuous on balls (bounded domains), the regularizers converge uni-

formly on balls to f . If f is lower-semicontinuous and bounded below, the (fλ)µ ∈ C1,1
b (Rn)

for 0 < µ < λ, and (fλ)µ converges pointwise to f when λ → 0. Dually, if f is upper-

semicontinuous and bounded above, the (fλ)µ ∈ C1,1
b (Rn) for 0 < µ < λ, and (fλ)µ converges

pointwise to f when λ→ 0.
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As a general rule, if f ∈ BUC(Rn) enjoys more regularity or symmetry, the functions

(fλ)µ and (fλ)µ will also enjoy more regularity and symmetry preserving. For instance,

• If f is convex (resp. concave) then (fλ)µ is also convex (resp. (fλ)µ is also concave).

• If f is invariant to a group of isometries, so are (fλ)µ and (fλ)µ. This fact is interesting

for critical point theory.

• The set of minima (resp. maxima) of f is preserved by (fλ)µ (resp. (fλ)µ).

For an analysis on the second-order differentiability of approximations fλ and (fλ)µ (i.e.,

existence and expressions of Hessian) see [22].

3.3 Lasry–Lions regularizers from a mathematical morphology viewpoint

We note that Lasry–Lions regularizers can be seen in a qualitative sense as quadratic Eu-

clidean pseudo-opening and pseudo-closing. We remind that, given a function f : E → R, its

opening γλ(f) and closing ϕλ(f) by the quadratic structuring function qλ are given by the

composition of the corresponding dilation and erosion, i.e.,

γλ(f)(x) = ((f 	 qλ)⊕ qλ) (x),

ϕλ(f)(x) = ((f ⊕ qλ)	 qλ) (x).

For the case of Riemannian images, those correspond just to canonic Riemannian opening (5)

and closing (6). Openings and closings have the following properties [25]: they are increasing

operators (ordering preserving); idempotent operators (stable at the iteration) γλ ◦ γλ(f) =

γλ(f), ϕλ ◦ ϕλ(f) = ϕλ(f); and hold the following ordering: for 0 < λ1 ≤ λ2, we have

γλ2(f)(x) ≤ γλ1(f)(x) ≤ f(x) ≤ ϕλ1(f)(x) ≤ ϕλ2(f)(x). Lasry–Lions regularizers are also

increasing and have the same ordering property with respect to λ, i.e.,

• (Increaseness) If f ≤ g then

(fλ)µ ≤ (gλ)µ, and (fλ)µ ≤ (gλ)µ.

• (Ordering) If λ1 ≥ λ2 > µ2 ≥ µ1 > 0 then

(fλ1)µ1 ≤ (fλ2)µ2 ≤ f ≤ (fλ2)µ2 ≤ (fλ1)µ1 .

Thus, the fundamental difference with respect to openings and closing is the lack of idempo-

tency in Lasry–Lions regularizers since the scale parameter of quadratic dilation and erosion

are different, i.e., 0 < µ < λ. We note that the Lipschitz constant of the regularized gradient

Mλ,µ = max(µ−1, (λ− µ)−1) becomes +∞ when λ = µ.

Fig. 3 depicts the behavior of Lasry–Lions regularizers on a 1D function. The case (a)

corresponds to a quadratic opening (λ = µ) which is not smooth. By comparing for instance

9



(a) λ = 1/2, µ = 1/2 (b) λ = 1, µ = 1/2 (c) λ = 1/2, µ = 1/4

(c) λ = 1/4, µ = 1/8 (d) λ = 1/2, µ = 1/4, 2 iter. (e) λ = 1/2, µ = 1/4

(f) λ = 1, µ = 1/2 (g) λ = 1

Figure 3: Lasry-Lions regularization of a 1D signal (original signal in black, operator in λ in

blue and composed operator in µ in red: (a) quadratic opening, (b) to (c) lower regularizer

(fλ)µ, (d) iterated lower regularizer, (e) upper regularizer (fλ)µ. Bottom row, comparison

between Lasry–Lions regularizers (f) and Bernard regularizers (g). Green curves correspond

to the averages.
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the lower regularizer in (c) and the equivalent upper regularizer, we note a strong asymmetric

result of the regularized function. Therefore, the choice of lower (fλ)µ or upper (fλ)µ as

regularizer involves a certain asymmetric behavior. Bernard [8] has recently proposed a more

symmetric pair of regularizers.

Theorem 8 (Bernard, 2010) Let f : Rn → R be a (locally) bounded function. The

Bernard regularizers correspond to the operators

R−λ (f)(x) = (((f 	 qλ)⊕ q2λ)	 qλ) (x), (10)

R+
λ (f)(x) = (((f ⊕ qλ)	 q2λ)⊕ qλ) (x), (11)

and have the following properties:

• Regularization. For each function f and each λ > 0, functions R−λ (f) and R+
λ (f) are

C1,1
b (Rn).

• Approximation. If f is uniformly continuous, then R−λ (f) and R+
λ (f) are C1,1

b (Rn) and

converge uniformly to f as λ→ 0.

Bernard regularizers are again compositions of quadratic erosion and dilation: R−λ (f) =

ελ ◦ δ2λ ◦ ελ(f) and R+
λ (f) = δλ ◦ ε2λ ◦ δλ(f). Then, by the semi-group law of quadratic

dilation and erosion, they can be rewritten as

R−λ (f) = ϕλ ◦ γλ(f),

R+
λ (f) = γλ ◦ ϕλ(f).

In mathematical morphology filtering theory, Bernard regularizers are the well known γ ◦ ϕ
and ϕ◦γ filters obtained just by composition of opening and closing using the same structuring

function. These filters are known to be increasing and idempotent operators. However they

are neither ordered between them nor ordered with respect to initial function.

Fig. 3(d) shows an example of Bernard lower R−λ (f) and upper R+
λ (f) regularizers, which

are compared with the corresponding Lasry–Lions regularizers (fλ)µ and (fλ)µ for the same

λ. In particular, it is also given the average between the lower and upper regularizers. Even

if Bernand regularizers are more symmetric than the original Lasry–Lions regularizers, in

practice, they are not very different. Other more symmetric ones can be formulated inspired

from the evolved morphological filters, see below the alternate and alternate sequential reg-

ularizers that we propose. It is not obvious if the idempotency brings any interest to the

problem regularization/approximation.

3.4 Lasry–Lions regularization: extensions

In the seminal paper [18], it was conjectured that this regularization works in any arbitrary

Banach space (or even in metric spaces) and under other properties of the function f to be

regularized. This has been the motivation to extend Lasry–Lions regularization according to

the following different directions.
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• More general kernels than the quadratic one, including non-concave/non-convex [10].

• Generalization to semicontinuous, quadratically minorized/majorized functions defined

on Rn, using quadratic (concave and smooth) kernels [3].

• Extended to Banach spaces [28].

• Extension to Banach and metric spaces, with kernels adapted to the properties of the

norm [12].

• Generalization to finite dimensional compact manifolds [8, 9].

Let us focus on and summarize the approach introduced by Attouch and Aze in [3]

to semicontinuous, non necessarily bounded, quadratically minorized/majorized functions

defined on Rn. This theory gives a clear insight of how Lasry–Lions regularization works

and its relationship with Moreau–Yosida regularization. First of all, we need the recall the

definition of weakly-convex/concave functions in Rn.

Definition 9 (Weakly-convex/concave functions in Rn) A function g : Rn → R ∪
{+∞} is said weakly convex, or convex up to square, or paraconvex, if there exists some

constant c ≥ 0 such that g(·) + c
2‖ · ‖

2 is convex, i.e.,

g (tx+ (1− t)y) ≤ tg(x) + (1− t)g(y) + t(1− t) c
2
‖x− y‖2

for all x, y ∈ Rn and all t in [0, 1].

A function f : Rn → R ∪ {−∞} is said weakly concave, or concave up to square, or

paraconcave, if there exists some constant c ≥ 0 such that f(·)− c
2‖ · ‖

2 is concave, i.e.,

f (tx+ (1− t)y) ≥ tf(x) + (1− t)f(y)− t(1− t) c
2
‖x− y‖2

for all x, y ∈ Rn and all t in [0, 1].

This first result gives the link of quadratically minorized/majorized functions and weakly

concave/convex functions using a first quadratic operator.

Proposition 10 (Attouch and Aze, 1993) Let f : E ⊆ Rn → R ∪ {+∞} and g : E ⊆
Rn → R ∪ {−∞}.

• If f(x) ≥ − c
2(1 + ‖x‖2), c ≥ 0 (quadratically minorized), then for any 0 < λ < 1

c the

quadratic erosion (Moreau–Yosida regularization) (f 	 qλ)(x) is a λ−1-weakly concave

function; i.e., f(·)− ‖·‖
2

2λ is concave.

• If g(x) ≤ d
2(1 + ‖x‖2), d ≥ 0 (quadratically majorized), then for any 0 < µ < 1

d

the quadratic dilation (dual Moreau–Yosida regularization) (g ⊕ qλ)(x) is a µ−1-weakly

convex function; i.e., g(·) + ‖·‖2
2µ is convex.
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The second result establishes how weakly convex or concave functions becomes C1,1 by

the second quadratic operator.

Theorem 11 (Attouch and Aze, 1993) Let f be a c-weakly convex function in E ⊆ Rn.

Let us introduce the corresponding convex function φ(·) = f(·) + c
2‖ · ‖

2. Then for any

0 < λ < 1
c we have,

• Quadratic erosion fλ belongs to the class of C1,1(Rn) functions.

• ∀x ∈ E, fλ is λ−1-weakly concave.

• ∀x ∈ E, fλ is
(
(1− λc)−1c

)
-weakly convex.

• Gradient of quadratic erosion Dfλ is max(λ−1, (1− λc)−1c)-Lipschitz continuous.

A dual result is obtained for a c-weakly concave function by considering the quadratic dilation.

Thus, we can draw the following conclusions on the composition of the couple of operators

underlaying Lasry–Lions regularizers.

• Given a quadratically majorized function in Rn of parameter c, the quadratic dilation

with λ < c−1 produces a λ-weakly convex function.

• Then for any µ < λ (strictly smaller than the dilation scale), the corresponding

quadratic erosion produces a function which belongs to the class C1,1(Rn).

• By the way, this function is now both weakly convex and weakly concave.

Quadratically minorized and majorized are rather general conditions. However, images

are typically functions obtained by combination of such functions; i.e., bright (dark) areas or

intensity peaks can be modeled as quadratically minorized (majorized) areas. Nevertheless,

images can be considered in most of situations as bounded functions.

4 Lasry–Lions regularization on Riemannian manifolds

4.1 From Hilbert spaces to Riemannian manifolds

Some recent works provide us the elements for an extension of these regularization tools to

images on Riemannian manifolds. On the one hand, as widely discussed in [5, 6], the results of

Moreau–Yosida regularization can be extended to functions on a Cartan–Hadamard manifold.

On the other hand, Lasry–Lions regularization itself has been recently generalized to finite

dimensional compact manifolds [8, 9], in the framework of recent progresses on sub-solutions

of Hamilton-Jacobi equations [14].

The convexity being a crucial notion of this theory, it is replaced in Riemannian manifolds

by the notion of geodesic convexity. We remind that a subset C of a Riemannian manifold
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M is said to be a geodesically convex set if, given any two points in C, there is a minimizing

geodesic contained within C that joins those two points. Now, let C be a geodesically

convex subset of M. A function f : C → R is said to be a geodesically convex function

if the composition f ◦ γ : [0, T ] → R is a convex function in the usual sense for every unit

speed geodesic arc γ : [0, T ] → M contained within C. The notions of weakly convex

and weakly convex function (named also semi-convex and semi-concave function), which are

intimately related to C1,1
b functions, are also generalized to the case of manifolds, see for

instance [14]. Finally, the notions of quadratically geodesically minorized f(x) ≥ − c
2(1 +

d(x, x0)
2) and majorized g(x) ≤ c′

2 (1 + d(x, x0)
2) assumptions appears also naturally in the

Riemannian framework, where d(·, ·) is the geodesic distance of the manifold. The extension

of the definition of Lipschitz gradient to Riemannian manifolds is not obvious since the

gradient at two different points belong to different fibres. Thus a possible definition involves

a notion of local (pointwise) Lipschitz constant using the metric of the tangent space. Then

the corresponding global Lipschitz constant is given by the supremum of local Lipschitz

constants for all points [14].

In order to transpose Lasry–Lions regularization to the case of a Riemannian manifold

M, it seems intuitive that the canonic Riemannian structuring function −dM(x,y)2

2λ should

be a concave and smooth function: in order to obtain a weakly convex (concave) function

from a geodesically quadratic majorized (minorized) function, the square of geodesic distance

function should be a convex function. In addition, the smoothness of the gradient is obtained

locally and therefore the corresponding function will be locally C1,1
b .

4.2 Lasry–Lions regularization on Cartan–Hadamard manifolds

More precisely, let us focus on the case where M is a finite dimensional Cartan–Hadamard

manifold (thus also geodesically complete): every two points can be connected by a mini-

mizing geodesic and the curvature is bounded in bounded sets. We remind that a Cartan–

Hadamard manifold is a simply connected Riemannian manifoldM with sectional curvature

K ≤ 0 [17]. Let A be a closed convex subset of M. Then the distance function to A,

x 7→ dM(x,A), where dM(x,A) = inf {dM(x, y) : y ∈ A} is C1 smooth onM\A and, more-

over, the square of the distance function x 7→ dM(x,A)2 is C1 smooth and convex on all of

M [6].

An assumption of non-positive curvature of M is a sufficient condition in order that dM
be uniformly locally convex around the diagonal M×M. Consequently, if M is a Cartan–

Hadamard manifold, the structuring function x 7→ q(x, y), ∀y ∈ M, is always a concave

function; or equivalently, −q(x, y) is a convex function.

We can now formulate the result which extends the theory discussed in previous section

for Hilbert spaces to Cartan–Hadamard manifolds.

Theorem 12 Let M be a finite-dimensional Cartan–Hadamard manifold. Let Ω ⊂ M be

a bounded set of M. Given a function f : Ω → R, for all 0 < µ < λ, let us define the
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Riemannian Lasry–Lions regularizers:

Γ−λ,µ(f)(x) = (fλ)µ(x) = sup
z∈M

inf
y∈M

{
f(y) +

1

2λ
dM(z, y)2 − 1

2µ
dM(z, x)2

}
Γ+
λ,µ(f)(x) = (fλ)µ(x) = inf

z∈M
sup
y∈M

{
f(y)− 1

2λ
dM(z, y)2 +

1

2µ
dM(z, x)2

}
We have (fλ)µ ≤ f and (fλ)µ ≥ f .

• Let f be a bounded uniformly continuous function in Ω. Then, for all 0 < µ < λ, the

functions (fλ)µ and (fλ)µ are locally of class C1,1
b (Ω) and converge uniformly to f on

Ω.

• Assume that there exists c, c′ > 0, such that we have the following growing conditions

for bounded semicontinuous functions:

f(x) ≥ − c
2

(1 + d(x, x0)
2), g(x) ≤ c′

2
(1 + d(x, x0)

2), x0 ∈M.

Then, for all 0 < µ < λ < Λ, the function(fλ)µ and for all 0 < µ < λ < Λ the function

(gλ)µ are locally C1,1
b (Ω) and they converge point-wise respectively to f and g.

• In addition, if f is a geodesically convex function (resp. concave) the (fλ)µ is also

convex (resp. (fλ)µ is concave).

Proof. The result considered here is a particular case of those given by Bernard [8] (Theorem

4) for the case of functions on finite dimensional compact manifolds. The proofs in [8, 9] are

based on partition of unity. That involves the use of local charts in the partition, such that

the regularizers do not have an explicit expression as the one provided here. In other terms,

in [8] (Theorem 4) the regularizer is obtained as the sum of a regularization on the local chart

of partition of the function.

If we consider the following result on localization of Riemannian canonic quadratic erosion

from [6] (Proposition 2.1):

Proposition 13 (Azagra and Ferrera, 2006) Let M be a Riemannian manifold, and let

f :M→ R a function satisfying that f(x) ≥ − c
2(1 + d(x, x0)

2) (quadratically minorized) for

some c > 0, x0 ∈M. Then, for all λ ∈ (0, 1
2c) and for all ρ > ρ, we have that

ελ(f)(x) = inf
y∈Bρ(x)

{
f(y) +

1

2λ
dM(x, y)2

}
, (12)

where

ρ = ρ(x, λ, c) =

√
λ

2f(x) + c(2d(x, x0)2 + 1)

1− 2λc
,

and where the geodesic ball of center x and radius ρ is defined by Bρ(x) = {y : dM(x, y) ≤ ρ}.
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(a) λ = 1, µ = 1/2 (b) λ = 1

Figure 4: Comparison between alternate Lasry–Lions regularizers (a) and classical alternate

morphological filters (b).

Then it becomes clear that Riemannian canonic quadratic erosion and dilation can be

computed locally on bounded sets and that the property of local C1,1
b of our explicit Rieman-

nian Lasry–Lions regularizers is equivalent to that of [8] (Theorem 4) by using in particular

the exponential chart.

The result on convergence of Lasry–Lions operators is obtained by the convergence of

Moreau–Yosida regularizer shown in [6] (Proposition 2.3).

Finally, the result of convexity is a consequence of the one obtained in [6] (Corollary 4.4)

for the Moreau–Yosida regularization in Cartan–Hadamard manifolds.

4.3 Composed regularizers

By composition of the lower Γ−λ,µ(f) = (fλ)µ(x) and upper Γ+
λ,µ(f) = (fλ)µ(x) regularizers,

it is possible to formulate other evolved Riemannian morphological regularizers inspired on

classical morphological filters [25, 26] and which preserves the properties of approximation

and regularization, but producing more symmetric filtering effects.

• Alternate regularizers (0 < µ < λ < Λ):

f 7→ Γ−λ,µΓ+
λ,µΓ−λ,µ(f),

f 7→ Γ+
λ,µΓ−λ,µΓ+

λ,µ(f).
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• Alternate sequential regularizers (0 < µ1 < λ1 < µ2 < λ2 < · · · < µn < λn < Λ):

f 7→ Γ+
λn,µn

Γ−λn,µn · · ·Γ
+
λ2,µ2

Γ−λ2,µ2Γ+
λ1,µ1

Γ−λ1,µ1(f),

f 7→ Γ−λn,µnΓ+
λn,µn

· · ·Γ−λ2,µ2Γ+
λ2,µ2

Γ−λ1,µ1Γ+
λ1,µ1

(f).

In addition, we can also consider the average between Γ−λ,µ(f) and Γ+
λ,µ(f), or the average

between the alternate ones, as appropriate regularized version of f . Fig.4 gives an example

of alternate Lasry–Lions regularizers on the 1D signal and they are compared to the classical

alternate morphological filters (composition of openings and closings).

5 Application to Lipschitz Regularization of Images supported

on Surfaces

In order to illustrate the relevance of Lasry–Lions approach for Lipschitz regularization of

images supported on surfaces, we consider two examples given in Fig. 5 and Fig. 6. In both

cases, the original face image f : S → R has been corrupted, f̃ = f + noise and the aim is

to restore as well as possible f from a regularization of f̃ . We note the image is bounded in

[0,M ] and support S is also a bounded set.

The case considered in Fig. 5 corresponds to suppress some parts of the image. The effect

is simulated by a Poisson noise which is then thresholded. Then, the corresponding parts

are set to the maximum value M . In this case, it is obvious that the upper regularizer Γ+
λ,µ

is without interest. On the contrary, the lower regularizer Γ−λ,µ produces a nice restoration.

Again, as expected the alternate regularizer starting form Γ−λ,µ yields much better results

than the one starting from Γ+
λ,µ.

Fig. 6 involves another problem where the image has been corrupted with a non-gaussian

noise. By the nature of the noise, the average upper and lower regularizers performs now

better than Γ+
λ,µ or Γ−λ,µ separately. A similar behavior is observed for the averaged alternate

regularizers. Obviously, by changing the values of λ and µ the Lipschitz regularization effect

can be tuned; but from the experiments we have observed stable effect and a nice preservation

of the contours of the main image structures.

6 Conclusions and perspectives

The goal of this study was to bring a powerful approximation/regularization theory well-

known in convex analysis to the morphological image processing domain. In particular we

discussed its interest for filtering images painted on curved supports, such as meshes.

We have shown the remarkable regularization properties using two basic morphological

operators: dilation and erosion with quadratic structuring functions. Namely, the regularity
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(a) f ∈ F(S,R+) (b) f̃ = f + PoissonNoise (c) Γ+
λ,µ(f̃)(x)

(d) Γ−
λ,µ(f̃)(x) (e) Γ+

λ,µΓ−
λ,µΓ+

λ,µ(f̃)(x) (f) Γ−
λ,µΓ+

λ,µΓ−
λ,µ(f̃)(x)

Figure 5: Restoring image missing parts: Original image (a) has been corrupted with Poisson

noise in (b). From (c) to (f), filtered image by composition of different Lasry-Lions regularizers

(for all the cases λ = 1/2; µ = 1/4).

properties of this structuring function are transferred to the image approximations, without

computing (discrete) derivatives. In addition, no new maxima/minima are created in the

regularized image. In the context of morphological image processing, the latter property

makes the regularized images as an appropriate preprocessing for watershed segmentation as

well as markers for levelings.

Using canonic Riemannian dilation and erosion, we have considered the theory of gener-

alization from the Euclidean framework to the case of bounded images on Cartan–Hadamard

manifolds (nonpositive sectional curvature). However, in practice we observe that it works

for bounded images on bounded surfaces of positive and negative curvature. As discussed

in [8] and [9], more general versions of Lasry–Lions regularization can be obtained in compact

manifolds. In particular the case of compact nonnegative curvature manifolds is relevant for

optimal transport problems [29]. Nevertheless, some recent parallel work [7] has provided a

complete analysis of the generalization of Lasry–Lions regularization for bounded functions

in manifolds of bounded sectional curvature. This study provides also a precise estimate of

the Lipschitz constants.

Therefore, Lasry–Lions regularization is also appropriate for CAT (0) spaces [11]. In

ongoing research, we will consider in particular the case of regularization of functions on

trees (dendrograms), as an example of CAT (0) space. More generally, we will study the
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(a) f ∈ F(S,R+) (b) f̃ = f + ExtremeNoise (c) Γ+
λ,µ(f)(x)

(d) 1/2
(

Γ+
λ,µ(f̃)(x) (e) Γ+

λ,µΓ−
λ,µΓ+

λ,µ(f̃)(x) (f) 1/2
(

Γ+
λ,µΓ−

λ,µΓ+
λ,µ(f̃)(x)

+Γ−
λ,µ(f̃)(x)

)
+ Γ+

λ,µΓ−
λ,µΓ+

λ,µ(f̃)(x)
)

Figure 6: Restoring image acquisition noise: Original image (a) has been corrupted with non-

Gaussian noise in (b). From (c) to (f), filtered image by composition of different Lasry-Lions

regularizers (for all the cases λ = 1/2; µ = 1/4).

extension to other metric spaces appearing in non-Euclidean image processing as well as the

case of weighed graph regularization.
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[5] D. Azagra, J. Ferrera, F. López-Mesas. Nonsmooth analysis and Hamilton-Jacobi equa-

tions on Riemannian manifolds. J. Funct. Anal., 220(2): 304–361, 2005.

19



[6] D. Azagra, J. Ferrera. Inf-Convolution and Regularization of Convex Functions on Rie-

mannian Manifols of Nonpositive Curvature. Rev. Mat. Complut. 19(2): 323–345, 2006.

[7] D. Azagra, J. Ferrera. Regularization by sup-inf convolutions on Riemannian manifolds:

an extension of Lasry-Lions theorem to manifolds of bounded curvature. arXiv preprint

arXiv:1401.5053, 2014.

[8] P. Bernard. Lasry-Lions regularization and a lemma of Ilmanen, Rend. Semin. Mat.

Univ. Padova, 124: 221–229, 2010.

[9] P. Bernard, M. Zavidovique. Regularization of Subsolutions in Discrete Weak KAM

Theory. Canadian Journal of Mathematics, 65: 740–756, 2013.

[10] M. Bougeard, J.-P. Penot, A. Pommellet. Towards Minimal Assumptions for the Infimal

Convolution Regularization. Journal of Approximation Theory, 64: 245–270, 1991.
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