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Abstract. Di�erent imaging modalities produce nowadays images on
smooth surfaces, represented by images painted on meshes or point clouds.
These Riemannian images are often nonsmooth and their regularization
can be needed in many applications. This paper deals with the approxi-
mation of a bounded nonsmooth image painted on a surface by a sequence
of more regular functions, having in particular Lipschitz gradient, and
without any hypothesis of di�erentiability. We adopt here a geometric
framework known as Lasry�Lions regularization. The aim of the present
contribution is to consider the extension of Lasry�Lions regularization
to Riemannian manifolds. We show that the key ingredients for such
regularization are Riemannian morphological operators.

1 Introduction

Mathematical morphology is a nonlinear image processing methodology based on
two basic operators, dilation and erosion, which correspond respectively to the
convolution in the (max,+) algebra and its dual. More precisely, in Euclidean
(translation invariant) mathematical morphology the pair of adjoint and dual
operators, dilation (sup-convolution) (f ⊕ b)(x) and erosion (inf-convolution)
(f 	 b)(x) of an image f : E ⊂ Rn → R = R ∪ {−∞,+∞}, are given by [25,26]:{

δb(f)(x) = (f ⊕ b)(x) = supy∈E {f(y) + b(y − x)} ,
εb(f)(x) = (f 	 b)(x) = infy∈E {f(y)− b(y + x)} ,

where b : Rn → R is the structuring function which determines the e�ect of the
operator. The structuring function plays a similar role to the kernel in classical
convolution �ltering. The structuring function is typically a parametric family
bλ(x), where λ > 0 is the scale parameter. In particular, the canonic structuring
function is the parabolic shape (i.e., square of the Euclidean distance):

bλ(x) = qλ(x) = −
‖x‖2

2λ
.

such that the corresponding dilation and erosion are equivalent to the Lax-
Oleinik operators or viscosity solution of the standard Hamilton-Jacobi PDE:



(a) (b)

Fig. 1. (a) Euclidean real-valued function + smooth surface (as a discrete mesh); (b)
real-valued function on smooth surface.

ut(t, x)∓‖ux(t, x)‖2 = 0, (t, x) ∈ (0,+∞)×E; u(0, x) = f(x), x ∈ E. Theory of
morphological �ltering is based on opening and closing operators, obtained re-
spectively by product composition of erosion-dilation and dilation-erosion. Open-
ing (resp. closing) is increasing, idempotent and anti-extensive (resp. extensive).
Evolved �lters are obtained by composition of openings and closings [25,26].

Morphological operators are classically de�ned for images supported on Eu-
clidean spaces. However, di�erent imaging modalities produce nowadays images
on smooth surfaces represented by meshes or point clouds. Let us consider for in-
stance the image depicted in Fig.1(c), which corresponds to an grey-scale image
painted on a smooth surface. Such support space can be modeled as a Rieman-
nian manifold M. These Riemannian images are often nonsmooth and their
regularization can be needed in di�erent applications. A recent work has intro-
duced mathematical morphology for real valued images whose support space is
a Riemannian manifold [1].

The problem we consider here concerns the approximation of a bounded
nonsmooth image painted on a surface by a sequence of more regular functions,
having in particular Lipschitz gradient, and without any hypothesis of di�er-
entiability. Current state-of-the-art techniques for regularizing such images is
mainly based on heat-kernel and di�usion-like PDE, see for instance [27].

We adopt here a framework known as Lasry�Lions regularization [18,3].
Working on this geometric framework, the aim of the present contribution is
to consider the interest of some recent theoretical results on the extension of
Lasry�Lions regularization to Riemannian manifolds [8,9] in order to obtain
Lipschitz regularized Riemannian images from smooth surfaces. We show that
key ingredients for such regularization are Riemannian morphological operators.

Paper organization. The rest of the paper is organized as follows.

� The recently proposed canonic framework of morphological operators for
images on Riemannian manifolds [1] is reminded in Section 2. It involves the
use of a structuring function based on the scaled square of geodesic distance.



These morphological operators are the basic ingredients for the regularization
discussed in the paper. More general Riemannian morphological operators
are also formulated in [1].

� Section 3 reviewed the main results of Lasry�Lions theory for regularization
in Hilbert spaces. It is discussed also the relationship with the more classical
Moreau�Yosida regularization of convex analysis as well as some extensions
of Lasry�Lions for rather general families of functions.

� We discuss in Section 4 our extension of Lasry�Lions regularization for Rie-
mannian manifolds. In particular, we focus on the case of bounded functions
on bounded domains de�ned on (compact and �nite dimensional) Cartan�
Hadamard manifolds.

� In Section 5 it is illustrated the application of this theory to Lipschitz regu-
larization of images supported on surfaces.

� Some conclusions and perspectives in Section 6 close the paper.

Notation on smooth functions in Hilbert spaces. Let f ∈ BUC(Rn) be
space of bounded uniformly continuous scalar functions in Rn, i.e., assume there
exists m continuous, nondecreasing on [0,+∞[ such that m(0) = 0, m(t+ s) ≤
m(t) +m(s), for t, s ≥ 0 and

|f(x)− f(y)| ≤ m (‖x− y‖) , ∀x, y ∈ Rn

The setting of this paper concerns the approximation of f by a sequence fλ of
functions in C1,1

b (Rn) such that fλ converges uniformly to f in Rn, where

C1,1
b (Rn) =

{
f ∈ C1

b (Rn) : ∇f is Lipschitz on Rn
}
,

with C1
b (Rn) =

{
f ∈ C1(Rn) : f,∇f are bounded on Rn

}
. Therefore, C1,1

b rep-
resents the class of bounded continuously di�erentiable with a Lipschitz contin-
uous gradient function.

2 Riemannian morphological operators

We consider here thatM is a �nite dimensional compact and complete manifold.
Let dM :M×M → R+, (x, y) 7→ dM(x, y) be the geodesic distance onM.

In this framework, canonic morphological operators are de�ned as follows [1].

De�nition 1. Given a Riemannian image f :M→ R, for any λ > 0, we de�ne
for every x ∈M the canonical Riemannian dilation of f of scale parameter λ as

δλ(f)(x) = sup
y∈M

{
f(y)− 1

2λ
dM(x, y)2

}
(1)

and the canonical Riemannian erosion of f of parameter λ as

ελ(f)(x) = inf
y∈M

{
f(y) +

1

2λ
dM(x, y)2

}
(2)



We note that they are just the supremal convolution (f ⊕ qλ) and in�mal
convolution (f 	qλ) of image f by the �quadratic geodesic structuring function�

qλ(x; y) = −
1

2λ
dM(x, y)2. (3)

An obvious property of the canonical Riemannian dilation and erosion is the
duality by the involution f(x) 7→ {f(x) = −f(x), i.e., δλ(f) = {ελ({f). As in
classical Euclidean morphology, the adjunction relationship is fundamental for
the construction of the rest of morphological operators.

Proposition 1. For any two real-valued images de�ned on the same Rieman-
nian manifold M, i.e., f, g : M → R, the pair (ελ, δλ) is called the canonical
Riemannian adjunction

δλ(f)(x) ≤ g(x)⇔ f(x) ≤ ελ(g)(x) (4)

This result implies in particular that the canonical Riemannian dilation com-
mutes with the supremum and the dual erosion with the in�mum, i.e., for a
given collection of images fi ∈ F(M,R), i ∈ I, we have

δλ

(∨
i∈I

fi

)
=
∨
i∈I

δλ(fi); ελ

(∧
i∈I

fi

)
=
∧
i∈I

ελ(fi).

Classical properties of Euclidean dilation and erosion have the equivalent for
Riemannian manifoldM, and they do not dependent on the geometry ofM.

Proposition 2. Let M be a Riemannian manifold, and let f, g ∈ F(M,R)
two real-valued images M. We have the following properties for the canonical
Riemannian operators.

1. (Increaseness) If f(x) ≤ g(x), ∀x ∈ M then δλ(f)(x) ≤ δλ(g)(x) and
ελ(f)(x) ≤ ελ(g)(x), ∀x ∈M and ∀λ > 0.

2. (Extensivity and anti-extensivity) δλ(f)(x) ≥ f(x) and ελ(f)(x) ≤ f(x),
∀x ∈M and ∀λ > 0.

3. (Ordering property) If 0 < λ1 < λ2 then δλ2
(f)(x) ≥ δλ1

(f)(x) and ελ2
(f)(x) ≤

ελ1(f)(x).
4. (Invariance under isometry) If T :M→M is an isometry ofM and if f is

invariant under T , i.e., f(Tz) = f(z) for all z ∈ M, then the Riemannian
dilation and erosion are also invariant under T , i.e., δλ(f)(Tz) = δλ(f)(z)
and ελ(f)(Tz) = ελ(f)(z), ∀z ∈M and ∀λ > 0.

5. (Extrema preservation) We have sup δλ(f) = sup f and inf ελ(f) = inf f ,
moreover if f is lower (resp. upper) semicontinuous then every minimizer
(resp. maximizer) of ελ(f) (resp. δλ(f)) is a minimizer (resp. maximizer)
of f , and conversely.

In addition, using the classical result on adjunctions in complete lattices [26,15],
we state that the composition products of the pair (ελ, δλ) lead to the adjoint
opening and adjoint closing as follows.



De�nition 2. Given an image fM → R, the canonical Riemannian opening
and canonical Riemannian closing of scale parameter λ are respectively given by

γλ(f)(x) = sup
z∈M

inf
y∈M

{
f(y) +

1

2λ
dM(z, y)2 − 1

2λ
dM(z, x)2

}
, (5)

and

ϕλ(f)(x) = inf
z∈M

sup
y∈M

{
f(y)− 1

2λ
dM(z, y)2 +

1

2λ
dM(z, x)2

}
. (6)

Having the canonical Riemannian opening and closing, all the other morpholog-
ical �lters de�ned by composition of them are easily obtained.

In Fig. 2 are depicted some examples of morphological operators applied on
a real-valued function on a smooth surface. The geodesic distances dS(x, y) are
calculated using the function all_shortest_paths() from the toolbox Mat-
labBGL [19]. This function uses either the Floyd�Warshall algorithm or the
Johnson's algorithm for �nding shortest path in the weighted graph of faces of
the mesh.

3 From Moreau�Yosida regularization to Lasry-Lions

regularization

3.1 Moreau�Yosida regularization

In the �eld of convex analysis [21,23,4,16] and variational analysis [24], Moreau�
Yosida regularization consists in computing a regularized version of a scalar
function de�ned on a vector space (Euclidean or Hilbert space), by means of
a Euclidean erosion using quadratic structuring functions. Its origin goes back
to the work of Yosida [30] on maximal monotone operators. More precisely, we
have the following de�nition.

De�nition 3. Given a lower semicontinuous function f : E → R ∪ {+∞}, the
one-parameter Moreau�Yosida regularization of f , also called Moreau envelope,
is de�ned as

fλ(x) = inf
y∈E

{
f(y) +

1

2λ
‖x− y‖2

}
= (f 	 qλ) (x). (7)

Obviously, the Moreau�Yosida regularizers has all the properties of the quadratic
Euclidean erosion. Associated to the anti-extensivity and ordering with λ, one
has that fλ increases pointwise to f as λ decreases to 0; the convergence is
uniform on bounded sets when f is uniformly continuous on bounded sets In
addition, if λ ∈ (0, L) then fλ is everywhere �nite and Lipschitz continuous on
bounded sets. The following classical result due to Moreau [20] summarizes the
additional properties of the Moreau�Yosida approximation in the convex setting.



(a) f(x) ∈ F(S,R+)

(b) δλ=1(f)(x) (c) δλ=10(f)(x)

(d) ελ=1(f)(x) (e) ελ=10(f)(x)

(f) ϕλ=1(f)(x) (g) ϕλ=10(f)(x)

(h) ϕλ=1(f)(x)− f(x) (i) ϕλ=10(f)(x)− f(x)

Fig. 2. Morphological operators applied on a real-valued function on a smooth surface:
(a) original image f : S → R, (b) and (c) canonic Riemannian dilation δλ(f) with λ = 1
and λ = 10, (d) and (e) canonic Riemannian erosion ελ(f) with λ = 1 and λ = 10 , (f)
and (g) canonic Riemannian closing ϕλ(f) with λ = 1 and λ = 10 , (h) and (i) residues
between the original image f and the closings ϕλ(f).



Theorem 1. Let f : E → R ∪ {+∞} be a convex, lower semicontinuous proper
function. Then, for any λ > 0, the Moreau�Yosida approximate fλ of f is a con-
vex C1,1 function. Moreover, the gradient of fλ converges (in the set convergence
sense [2]) to the subdi�erential of f .

A dual result is naturally obtained for upper semicontinuous concave func-
tions, by replacing the quadratic erosion (f 	 qλ) by a quadratic dilation (f ⊕ qλ).

In general, when f is not convex, fλ is not smooth, even in the one-dimensional
case E = R. This is a strong limitation in order to regularize images which are
rarely convex functions.

3.2 Lasry�Lions regularization: original formulation

As a generalization of the use of Moreau�Yosida approach, Lasry�Lions regu-
larization [18] is a theory of nonsmooth approximation for functions in Hilbert
spaces using combinations of Euclidean dilation and erosion with quadratic struc-
turing functions, which leads to the approximation of bounded lower or upper-
semicontinuous functions with Lipschitz continuous derivatives which approxi-
mate f , without assuming convexity of f . The main results of this approach are
summarized in the following theorem [18].

Theorem 2 (Lasry and Lions, 1986). Let f ∈ BUC(Rn). For all 0 < µ <
λ, let us de�ne the Lasry�Lions regularizers, according to our morphological
framework, based on dilation and erosion by quadratic structuring function:

(fλ)
µ(x) = ((f 	 qλ)⊕ qµ) (x), (8)

(fλ)µ(x) = ((f ⊕ qλ)	 qµ) (x). (9)

Then the functions (fλ)
µ and (fλ)µ belong to C1,1

b (Rn). Lasry�Lions regularizers
converges uniformly to f as λ goes to 0. In addition,

|(fλ)µ(x)− (fλ)
µ(y)| ≤ m(‖x− y‖) ; |(fλ)µ(x)− f(x)| ≤ m(tλ + tµ) +

t2λ
2λ

;

sup
Rn
|(fλ)µ(x)− f(x)| ≤ m(tλ) ; sup

Rn
|(fλ)µ(x)− f(x)| ≤ m(tλ);

|∇(fλ)µ(x)−∇(fλ)µ(y)| ≤Mλ,µ‖x− y‖ ; |∇(fλ)µ(x)−∇(fλ)µ(y)| ≤Mλ,µ‖x− y‖

sup
Rn
|∇(fλ)µ| ≤

tλ
λ

; sup
Rn
|∇(fλ)µ| ≤

tλ
λ
;

where tλ is the maximum positive root of t2λ = 2λm(λ) andMλ,µ = max(µ−1, (λ−
µ)−1).

If f is uniformly continuous on balls (bounded domains), the regularizers
converge uniformly on balls to f . If f is lower-semicontinuous and bounded
below, the (fλ)

µ ∈ C1,1
b (Rn) for 0 < µ < λ, and (fλ)

µ converges pointwise to
f when λ → 0. Dually, if f is upper-semicontinuous and bounded above, the
(fλ)µ ∈ C1,1

b (Rn) for 0 < µ < λ, and (fλ)µ converges pointwise to f when
λ→ 0.



As a general rule, if f ∈ BUC(Rn) enjoys more regularity or symmetry,
the functions (fλ)

µ and (fλ)µ will also enjoy more regularity and symmetry
preserving. For instance,

� If f is convex (resp. concave) then (fλ)
µ is also convex (resp. (fλ)µ is also

concave).
� If f is invariant to a group of isometries, so are (fλ)

µ and (fλ)µ. This fact
is interesting for critical point theory.

� The set of minima (resp. maxima) of f is preserved by (fλ)
µ (resp. (fλ)µ).

For an analysis on the second-order di�erentiability of approximations fλ and
(fλ)

µ (i.e., existence and expressions of Hessian) see [22].

3.3 Lasry�Lions regularizers from a mathematical morphology
viewpoint

We note that Lasry�Lions regularizers can be seen in a qualitative sense as
quadratic Euclidean pseudo-opening and pseudo-closing. We remind that, given
a function f : E → R, its opening γλ(f) and closing ϕλ(f) by the quadratic
structuring function qλ are given by the composition of the corresponding dila-
tion and erosion, i.e.,

γλ(f)(x) = ((f 	 qλ)⊕ qλ) (x),
ϕλ(f)(x) = ((f ⊕ qλ)	 qλ) (x).

For the case of Riemannian images, those correspond just to canonic Riemannian
opening (5) and closing (6). Openings and closings have the following proper-
ties [25]: they are increasing operators (ordering preserving); idempotent opera-
tors (stable at the iteration) γλ◦γλ(f) = γλ(f), ϕλ◦ϕλ(f) = ϕλ(f); and hold the
following ordering: for 0 < λ1 ≤ λ2, we have γλ2

(f)(x) ≤ γλ1
(f)(x) ≤ f(x) ≤

ϕλ1
(f)(x) ≤ ϕλ2

(f)(x). Lasry�Lions regularizers are also increasing and have
the same ordering property with respect to λ, i.e.,

� (Increaseness) If f ≤ g then

(fλ)
µ ≤ (gλ)

µ, and (fλ)µ ≤ (gλ)µ.

� (Ordering) If λ1 ≥ λ2 > µ2 ≥ µ1 > 0 then

(fλ1
)µ1 ≤ (fλ2

)µ2 ≤ f ≤ (fλ2)µ2
≤ (fλ1)µ1

.

Thus, the fundamental di�erence with respect to openings and closing is the lack
of idempotency in Lasry�Lions regularizers since the scale parameter of quadratic
dilation and erosion are di�erent, i.e., 0 < µ < λ. We note that the Lipschitz
constant of the regularized gradient Mλ,µ = max(µ−1, (λ− µ)−1) becomes +∞
when λ = µ.

Fig. 3 depicts the behavior of Lasry�Lions regularizers on a 1D function.
The case (a) corresponds to a quadratic opening (λ = µ) which is not smooth.



(a) λ = 1/2, µ = 1/2 (b) λ = 1, µ = 1/2 (c) λ = 1/2, µ = 1/4

(c) λ = 1/4, µ = 1/8 (d) λ = 1/2, µ = 1/4, 2 iter. (e) λ = 1/2, µ = 1/4

(f) λ = 1, µ = 1/2 (g) λ = 1

Fig. 3. Lasry-Lions regularization of a 1D signal (original signal in black, operator in
λ in blue and composed operator in µ in red: (a) quadratic opening, (b) to (c) lower
regularizer (fλ)

µ, (d) iterated lower regularizer, (e) upper regularizer (fλ)µ. Bottom
row, comparison between Lasry�Lions regularizers (f) and Bernard regularizers (g).
Green curves correspond to the averages.



By comparing for instance the lower regularizer in (c) and the equivalent up-
per regularizer, we note a strong asymmetric result of the regularized function.
Therefore, the choice of lower (fλ)

µ or upper (fλ)µ as regularizer involves a cer-
tain asymmetric behavior. Bernard [8] has recently proposed a more symmetric
pair of regularizers.

Theorem 3 (Bernard, 2010). Let f : Rn → R be a (locally) bounded function.
The Bernard regularizers correspond to the operators

R−λ (f)(x) = (((f 	 qλ)⊕ q2λ)	 qλ) (x), (10)

R+
λ (f)(x) = (((f ⊕ qλ)	 q2λ)⊕ qλ) (x), (11)

and have the following properties:

� Regularization. For each function f and each λ > 0, functions R−λ (f) and

R+
λ (f) are C

1,1
b (Rn).

� Approximation. If f is uniformly continuous, then R−λ (f) and R+
λ (f) are

C1,1
b (Rn) and converge uniformly to f as λ→ 0.

Bernard regularizers are again compositions of quadratic erosion and dilation:
R−λ (f) = ελ ◦ δ2λ ◦ ελ(f) and R+

λ (f) = δλ ◦ ε2λ ◦ δλ(f). Then, by the semi-group
law of quadratic dilation and erosion, they can be rewritten as

R−λ (f) = ϕλ ◦ γλ(f),
R+
λ (f) = γλ ◦ ϕλ(f).

In mathematical morphology �ltering theory, Bernard regularizers are the well
known γ ◦ϕ and ϕ◦γ �lters obtained just by composition of opening and closing
using the same structuring function. These �lters are known to be increasing
and idempotent operators. However they are neither ordered between them nor
ordered with respect to initial function.

Fig. 3(d) shows an example of Bernard lower R−λ (f) and upper R+
λ (f) reg-

ularizers, which are compared with the corresponding Lasry�Lions regularizers
(fλ)

µ and (fλ)µ for the same λ. In particular, it is also given the average be-
tween the lower and upper regularizers. Even if Bernand regularizers are more
symmetric than the original Lasry�Lions regularizers, in practice, they are not
very di�erent. Other more symmetric ones can be formulated inspired from the
evolved morphological �lters, see below the alternate and alternate sequential
regularizers that we propose. It is not obvious if the idempotency brings any
interest to the problem regularization/approximation.

3.4 Lasry�Lions regularization: extensions

In the seminal paper [18], it was conjectured that this regularization works in any
arbitrary Banach space (or even in metric spaces) and under other properties
of the function f to be regularized. This has been the motivation to extend
Lasry�Lions regularization according to the following di�erent directions.



� More general kernels than the quadratic one, including non-concave/non-
convex [10].

� Generalization to semicontinuous, quadratically minorized/majorized func-
tions de�ned on Rn, using quadratic (concave and smooth) kernels [3].

� Extended to Banach spaces [28].
� Extension to Banach and metric spaces, with kernels adapted to the prop-

erties of the norm [12].
� Generalization to �nite dimensional compact manifolds [8,9].

Let us focus on and summarize the approach introduced by Attouch and Aze
in [3] to semicontinuous, non necessarily bounded, quadratically minorized/majo-
rized functions de�ned on Rn. This theory gives a clear insight of how Lasry�
Lions regularization works and its relationship with Moreau�Yosida regulariza-
tion. First of all, we need the recall the de�nition of weakly-convex/concave
functions in Rn.

De�nition 4 (Weakly-convex/concave functions in Rn). A function g :
Rn → R ∪ {+∞} is said weakly convex, or convex up to square, or paraconvex,
if there exists some constant c ≥ 0 such that g(·) + c

2‖ · ‖
2 is convex, i.e.,

g (tx+ (1− t)y) ≤ tg(x) + (1− t)g(y) + t(1− t) c
2
‖x− y‖2

for all x, y ∈ Rn and all t in [0, 1].
A function f : Rn → R ∪ {−∞} is said weakly concave, or concave up to

square, or paraconcave, if there exists some constant c ≥ 0 such that f(·)− c
2‖·‖

2

is concave, i.e.,

f (tx+ (1− t)y) ≥ tf(x) + (1− t)f(y)− t(1− t) c
2
‖x− y‖2

for all x, y ∈ Rn and all t in [0, 1].

This �rst result gives the link of quadratically minorized/majorized functions
and weakly concave/convex functions using a �rst quadratic operator.

Proposition 3 (Attouch and Aze, 1993). Let f : E ⊆ Rn → R∪{+∞} and
g : E ⊆ Rn → R ∪ {−∞}.

� If f(x) ≥ − c
2 (1 + ‖x‖

2), c ≥ 0 (quadratically minorized), then for any 0 <
λ < 1

c the quadratic erosion (Moreau�Yosida regularization) (f 	 qλ)(x) is a
λ−1-weakly concave function; i.e., f(·)− ‖·‖

2

2λ is concave.

� If g(x) ≤ d
2 (1+‖x‖

2), d ≥ 0 (quadratically majorized), then for any 0 < µ <
1
d the quadratic dilation (dual Moreau�Yosida regularization) (g ⊕ qλ)(x) is
a µ−1-weakly convex function; i.e., g(·) + ‖·‖

2

2µ is convex.

The second result establishes how weakly convex or concave functions be-
comes C1,1 by the second quadratic operator.



Theorem 4 (Attouch and Aze, 1993). Let f be a c-weakly convex function in
E ⊆ Rn. Let us introduce the corresponding convex function φ(·) = f(·)+ c

2‖ ·‖
2.

Then for any 0 < λ < 1
c we have,

� Quadratic erosion fλ belongs to the class of C1,1(Rn) functions.
� ∀x ∈ E, fλ is λ−1-weakly concave.
� ∀x ∈ E, fλ is

(
(1− λc)−1c

)
-weakly convex.

� Gradient of quadratic erosion Dfλ is max(λ−1, (1 − λc)−1c)-Lipschitz con-
tinuous.

A dual result is obtained for a c-weakly concave function by considering the
quadratic dilation.

Thus, we can draw the following conclusions on the composition of the couple
of operators underlaying Lasry�Lions regularizers.

� Given a quadratically majorized function in Rn of parameter c, the quadratic
dilation with λ < c−1 produces a λ-weakly convex function.

� Then for any µ < λ (strictly smaller than the dilation scale), the corre-
sponding quadratic erosion produces a function which belongs to the class
C1,1(Rn).

� By the way, this function is now both weakly convex and weakly concave.

Quadratically minorized and majorized are rather general conditions. How-
ever, images are typically functions obtained by combination of such functions;
i.e., bright (dark) areas or intensity peaks can be modeled as quadratically mi-
norized (majorized) areas. Nevertheless, images can be considered in most of
situations as bounded functions.

4 Lasry�Lions regularization on Riemannian manifolds

4.1 From Hilbert spaces to Riemannian manifolds

Some recent works provide us the elements for an extension of these regular-
ization tools to images on Riemannian manifolds. On the one hand, as widely
discussed in [5,6], the results of Moreau�Yosida regularization can be extended
to functions on a Cartan�Hadamard manifold. On the other hand, Lasry�Lions
regularization itself has been recently generalized to �nite dimensional com-
pact manifolds [8,9], in the framework of recent progresses on sub-solutions of
Hamilton-Jacobi equations [14].

The convexity being a crucial notion of this theory, it is replaced in Rieman-
nian manifolds by the notion of geodesic convexity. We remind that a subset C
of a Riemannian manifoldM is said to be a geodesically convex set if, given any
two points in C, there is a minimizing geodesic contained within C that joins
those two points. Now, let C be a geodesically convex subset ofM. A function
f : C → R is said to be a geodesically convex function if the composition f ◦ γ :
[0, T ]→ R is a convex function in the usual sense for every unit speed geodesic



arc γ : [0, T ]→M contained within C. The notions of weakly convex and weakly
convex function (named also semi-convex and semi-concave function), which are
intimately related to C1,1

b functions, are also generalized to the case of manifolds,
see for instance [14]. Finally, the notions of quadratically geodesically minorized

f(x) ≥ − c
2 (1 + d(x, x0)

2) and majorized g(x) ≤ c′

2 (1 + d(x, x0)
2) assumptions

appears also naturally in the Riemannian framework, where d(·, ·) is the geodesic
distance of the manifold. The extension of the de�nition of Lipschitz gradient to
Riemannian manifolds is not obvious since the gradient at two di�erent points
belong to di�erent �bres. Thus a possible de�nition involves a notion of local
(pointwise) Lipschitz constant using the metric of the tangent space. Then the
corresponding global Lipschitz constant is given by the supremum of local Lip-
schitz constants for all points [14].

In order to transpe Lasry�Lions regularization to the case of a Riemannian
manifoldM, it seems intuitive that the canonic Riemannian structuring function

−dM(x,y)2

2λ should be a concave and smooth function: in order to obtain a weakly
convex (concave) function from a geodesically quadratic majorized (minorized)
function, the square of geodesic distance function should be a convex function.
In addition, the smoothness of the gradient is obtained locally and therefore the
corresponding function will be locally C1,1

b .

4.2 Lasry�Lions regularization on Cartan�Hadamard manifolds

More precisely, let us focus on the case whereM is a �nite dimensional compact
Cartan�Hadamard manifold (thus also geodesically complete): every two points
can be connected by a minimizing geodesic and the curvature is bounded in
bounded sets. We remind that a Cartan�Hadamard manifold is a simply con-
nected Riemannian manifoldM with sectional curvature K ≤ 0 [17]. Let A be
a closed convex subset of M. Then the distance function to A, x 7→ dM(x,A),
where dM(x,A) = inf {dM(x, y) : y ∈ A} is C1 smooth onM\A and, moreover,
the square of the distance function x 7→ dM(x,A)2 is C1 smooth and convex on
all of M [6].

An assumption of non-positive curvature of M is a su�cient condition in
order that dM be uniformly locally convex around the diagonalM×M. Con-
sequently, ifM is a Cartan�Hadamard manifold, the structuring function x 7→
q(x, y), ∀y ∈ M, is always a concave function; or equivalently, −q(x, y) is a
convex function.

We can now formulate the result which extends the theory discussed in pre-
vious section for Hilbert spaces to Cartan�Hadamard manifolds.

Theorem 5. Let M be a �nite-dimensional compact Cartan�Hadamard mani-
fold. Let Ω ⊂ M be a bounded set of M. Given a function f : Ω → R, for all
0 < µ < λ, let us de�ne the Riemannian Lasry�Lions regularizers:

Γ−λ,µ(f)(x) = (fλ)
µ(x) = sup

z∈M
inf
y∈M

{
f(y) +

1

2λ
dM(z, y)2 − 1

2µ
dM(z, x)2

}
Γ+
λ,µ(f)(x) = (fλ)µ(x) = inf

z∈M
sup
y∈M

{
f(y)− 1

2λ
dM(z, y)2 +

1

2µ
dM(z, x)2

}



We have (fλ)
µ ≤ f and (fλ)µ ≥ f .

� Let f be a bounded uniformly continuous function in Ω. Then, for all 0 < µ <
λ, the functions (fλ)

µ and (fλ)µ are locally of class C1,1
b (Ω) and converge

uniformly to f on Ω.
� Assume that there exists c, c′ > 0, such that we have the following growing

conditions for bounded semicontinuous functions:

f(x) ≥ − c
2
(1 + d(x, x0)

2), g(x) ≤ c′

2
(1 + d(x, x0)

2), x0 ∈M.

Then, for all 0 < µ < λ < Λ, the function(fλ)
µ and for all 0 < µ < λ < Λ the

function (gλ)µ are locally C1,1
b (Ω) and they converge point-wise respectively

to f and g.
� In addition, if f is a geodesically convex function (resp. concave) the (fλ)

µ

is also convex (resp. (fλ)µ is concave).

Proof. The result considered here is a particular case of those given by Bernard [8]
(Theorem 4) for the case of functions on �nite dimensional compact manifolds.
The proofs in [8,9] are based on partition of unity. That involves the use of local
charts in the partition, such that the regularizers do not have an explicit expres-
sion as the one provided here. In other terms, in [8] (Theorem 4) the regularizer
is obtained as the sum of a regularization on the local chart of partition of the
function.

If we consider the following result on localization of Riemannian canonic
quadratic erosion from [6] (Proposition 2.1):

Proposition 4 (Azagra and Ferrera, 2006). LetM be a Riemannian man-
ifold, and let f : M → R a function satisfying that f(x) ≥ − c

2 (1 + d(x, x0)
2)

(quadratically minorized) for some c > 0, x0 ∈M. Then, for all λ ∈ (0, 1
2c ) and

for all ρ > ρ, we have that

ελ(f)(x) = inf
y∈Bρ(x)

{
f(y) +

1

2λ
dM(x, y)2

}
, (12)

where

ρ = ρ(x, λ, c) =

√
λ
2f(x) + c(2d(x, x0)2 + 1)

1− 2λc
,

and where the geodesic ball of center x and radius ρ is de�ned by Bρ(x) = {y :
dM(x, y) ≤ ρ}.

Then it becomes clear that Riemannian canonic quadratic erosion and dila-
tion can be computed locally on bounded sets and that the property of local
C1,1
b of our explicit Riemannian Lasry�Lions regularizers is equivalent to that

of [8] (Theorem 4) by using in particular the exponential chart.
The result on convergence of Lasry�Lions operators is obtained by the con-

vergence of Moreau�Yosida regularizer shown in [6] (Proposition 2.3).
Finally, the result of convexity is a consequence of the one obtained in [6]

(Corollary 4.4) for the Moreau�Yosida regularization in Cartan�Hadamard man-
ifolds.



(a) λ = 1, µ = 1/2 (b) λ = 1

Fig. 4. Comparison between alternate Lasry�Lions regularizers (a) and classical alter-
nate morphological �lters (b).

4.3 Composed regularizers

By composition of the lower Γ−λ,µ(f) = (fλ)
µ(x) and upper Γ+

λ,µ(f) = (fλ)µ(x)
regularizers, it is possible to formulate other evolved Riemannian morphological
regularizers inspired on classical morphological �lters [25,26] and which pre-
serves the properties of approximation and regularization, but producing more
symmetric �ltering e�ects.

� Alternate regularizers (0 < µ < λ < Λ):

f 7→ Γ−λ,µΓ
+
λ,µΓ

−
λ,µ(f),

f 7→ Γ+
λ,µΓ

−
λ,µΓ

+
λ,µ(f).

� Alternate sequential regularizers (0 < µ1 < λ1 < µ2 < λ2 < · · · < µn <
λn < Λ):

f 7→ Γ+
λn,µn

Γ−λn,µn · · ·Γ
+
λ2,µ2

Γ−λ2,µ2
Γ+
λ1,µ1

Γ−λ1,µ1
(f),

f 7→ Γ−λn,µnΓ
+
λn,µn

· · ·Γ−λ2,µ2
Γ+
λ2,µ2

Γ−λ1,µ1
Γ+
λ1,µ1

(f).

In addition, we can also consider the average between Γ−λ,µ(f) and Γ
+
λ,µ(f), or

the average between the alternate ones, as appropriate regularized version of f .
Fig.4 gives an example of alternate Lasry�Lions regularizers on the 1D signal and
they are compared to the classical alternate morphological �lters (composition
of openings and closings).



(a) f ∈ F(S,R+) (b) f̃ = f + PoissonNoise (c) Γ+
λ,µ(f̃)(x)

(d) Γ−
λ,µ(f̃)(x) (e) Γ+

λ,µΓ
−
λ,µΓ

+
λ,µ(f̃)(x) (f) Γ−

λ,µΓ
+
λ,µΓ

−
λ,µ(f̃)(x)

Fig. 5. Restoring image missing parts: Original image (a) has been corrupted with
Poisson noise in (b). From (c) to (f), �ltered image by composition of di�erent Lasry-
Lions regularizers (for all the cases λ = 1/2; µ = 1/4).

5 Application to Lipschitz Regularization of Images

supported on Surfaces

In order to illustrate the relevance of Lasry�Lions approach for Lipschitz regu-
larization of images supported on surfaces, we consider two examples given in
Fig. 5 and Fig. 6. In both cases, the original face image f : S → R has been
corrupted, f̃ = f + noise and the aim is to restore as well as possible f from a
regularization of f̃ . We note the image is bounded in [0,M ] and support S is
also a bounded set.

The case considered in Fig. 5 corresponds to suppress some parts of the
image. The e�ect is simulated by a Poisson noise which is then thresholded.
Then, the corresponding parts are set to the maximum value M . In this case, it
is obvious that the upper regularizer Γ+

λ,µ is without interest. On the contrary,

the lower regularizer Γ−λ,µ produces a nice restoration. Again, as expected the

alternate regularizer starting form Γ−λ,µ yields much better results than the one

starting from Γ+
λ,µ.

Fig. 6 involves another problem where the image has been corrupted with
a non-gaussian noise. By the nature of the noise, the average upper and lower
regularizers performs now better than Γ+

λ,µ or Γ
−
λ,µ separately. A similar behavior

is observed for the averaged alternate regularizers. Obviously, by changing the
values of λ and µ the Lipschitz regularization e�ect can be tuned; but from
the experiments we have observed stable e�ect and a nice preservation of the
contours of the main image structures.



(a) f ∈ F(S,R+) (b) f̃ = f + ExtremeNoise (c) Γ+
λ,µ(f)(x)

(d) 1/2
(
Γ+
λ,µ(f̃)(x) (e) Γ+

λ,µΓ
−
λ,µΓ

+
λ,µ(f̃)(x) (f) 1/2

(
Γ+
λ,µΓ

−
λ,µΓ

+
λ,µ(f̃)(x)

+Γ−
λ,µ(f̃)(x)

)
+ Γ+

λ,µΓ
−
λ,µΓ

+
λ,µ(f̃)(x)

)

Fig. 6. Restoring image acquisition noise: Original image (a) has been corrupted with
non-Gaussian noise in (b). From (c) to (f), �ltered image by composition of di�erent
Lasry-Lions regularizers (for all the cases λ = 1/2; µ = 1/4).

6 Conclusions and perspectives

The goal of this study was to bring a powerful approximation/regularization
theory well-known in convex analysis to the morphological image processing
domain. In particular we discussed its interest for �ltering images painted on
curved supports, such as meshes.

We have shown the remarkable regularization properties using two basic mor-
phological operators: dilation and erosion with quadratic structuring functions.
Namely, the regularity properties of this structuring function are transferred
to the image approximations, without computing (discrete) derivatives. In ad-
dition, no new maxima/minima are created in the regularized image. In the
context of morphological image processing, the latter property makes the reg-
ularized images as an appropriate preprocessing for watershed segmentation as
well as markers for levelings.

Using canonic Riemannian dilation and erosion, we have considered the the-
ory of generalization from the Euclidean framework to the case of bounded im-
ages on Cartan�Hadamard manifolds (nonpositive sectional curvature). How-
ever, in practice we observe that it works for bounded images on bounded sur-
faces of positive and negative curvature. As discussed in [8] and [9], more general
versions of Lasry�Lions regularization can be obtained in compact manifolds. In
particular the case of compact nonnegative curvature manifolds is relevant for
optimal transport problems [29]. Nevertheless, some recent parallel work [7] has



provided a complete analysis of the generalization of Lasry�Lions regularization
for bounded functions in manifolds of bounded sectional curvature. This study
provides also a precise estimate of the Lipschitz constants.

Therefore, Lasry�Lions regularization is also appropriate for CAT (0) spaces
[11]. In ongoing research, we will consider in particular the case of regularization
of functions on trees (dendrograms), as an example of CAT (0) space. More
generally, we will study the extension to other metric spaces appearing in non-
Euclidean image processing as well as the case of weighed graph regularization.
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