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Abstract

The purpose of this theoretical paper is to study the convolution of two functions in

the (max,min)-algebra. More precisely, a formal definition of morphological operators

in (max,min)-algebra is introduced and their relevant properties from an algebraic view-

point are stated and proved. Some previous works in mathematical morphology have

already encountered this type of operators but a systematic study of them has not yet

been undertaken in the morphological literature. It is shown in particular that their fun-

damental property is the equivalence with level set processing using Minkowski addition

and subtraction. Some powerful results from nonlinear analysis can be straightforward

related to the present (max,min)-operators. On the one hand, the theory of viscosity

solutions of the Hamilton-Jacobi equation with Hamiltonians containing u and Du is

summarized, in particular, the corresponding Hopf-Lax-Oleinik formulas are given. On

the other hand, results on quasi-concavity preservation, Lipschitz approximation and

conjugate/tranform related to (max,min)-convolutions are discussed. Links between

(max,min)-convolutions and some previous approaches of unconventional morphology,

in particular fuzzy morphology and viscous morphology, are fully reviewed. In addition,

the interest of (max,min)-convolutions in Boolean random function characterization is

considered. Links of (max,min)-morphology framework to geodesic dilation and erosion

are also provided. We discuss two important conclusions. First, it is proven in the paper

that (max,min)-openings are compatible with Matheron’s axiomatic of Euclidean granu-

lometries for functions with quasiconcave structuring functions. Second, it is also shown

that the adjoint supmin convolution is the operator underlying the extension of Math-

eron’s characterization of Boolean random closed sets to the case of Boolean random upper

semicontinuous function. For all these reasons, we state that (max,min)-convolution pro-

vides the natural framework to generalize some key notions from Matheron’s theory from

sets to functions.

1



Keywords: mathematical morphology; (max,min)-algebra ; level set addition ; ad-

junction ; duality ; Hamilton–Jacobi PDE ; quasiconvexity ; Lipschitz regularization ;

fuzzy morphology ; viscous morphology; random upper semicontinuous functions; Cho-

quet capacity for functions.

Contents

1 Introduction 3

2 Basic notions and notations 5

3 (max,min)-convolutions: definition and properties 9

3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Duality by complement vs. duality by adjunction . . . . . . . . . . . . . . . . 10

3.3 Commutation with level set processing . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Further properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 Openings, closings using (max,min)-convolutions and granulometries . . . . . 19

4 Hopf-Lax-Oleinik formulas for Hamilton-Jacobi equation ut ±H(u,Du) = 0 24

4.1 Morphological PDE for classical dilation and erosion . . . . . . . . . . . . . . 24

4.2 Viscosity solution of Hamilton-Jacobi equation with Hamiltonians containing

u and Du . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Nonlinear analysis using operators (4,5) 29

5.1 Quasi-concavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Lipschitz approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 A transform in (max,min)-convolution . . . . . . . . . . . . . . . . . . . . . . 34

6 Ubiquity of (max,min)-convolutions in mathematical morphology 39

6.1 Distance function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Flat morphological operators using indicator functions . . . . . . . . . . . . . 39

6.3 Links with fuzzy morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.4 Links with viscous morphology . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.5 Links with Boolean random function characterization . . . . . . . . . . . . . . 44

6.6 Links with geodesic dilation and erosion . . . . . . . . . . . . . . . . . . . . . 50

7 Conclusion and Perspectives 52

2



1 Introduction

Pioneered for Boolean random sets [46], extended later to grey-level images [58] and more

generally formulated in the framework of complete lattices [59, 29], mathematical morphology

is a nonlinear image processing methodology useful for efficiently solving many image analysis

tasks [62].

Let E be the Euclidean Rn or discrete space Zn (support space) and let T be a set of grey-

levels (space of values). For theoretical reasons it is assumed that T = R = R∪ {−∞,+∞},
but one often has T = [0,M ]. A grey-level image is represented by a function f : E → T ,

also noted as f ∈ F(E,R), such that f maps each pixel x ∈ E into a grey-level value in T .

Given a grey-level image, the two basic morphological mappings F(E, T )→ F(E, T ) are the

dilation and the erosion given respectively by{
(f ⊕ b)(x) = supy∈E {f(y) + b(x− y)} ,
(f 	 b)(x) = infy∈E {f(y)− b(y − x)} ,

(1)

where b ∈ F(E, T ) is the structuring function which determines the effect of the operator.

The other morphological operators, such as the opening and the closing, are obtained by com-

position of dilation/erosion [58, 29]. The Euclidean framework has been recently generalized

to images supported on Riemannian manifolds [6].

If we compare the mathematical structure of the operators (1) to the classical convolution

of a function f by a kernel k, let say the convolution in the (+,×)-algebra; i.e.,

(f ∗ k)(x) =

∫
E
f(y)k(x− y)dy,

then, we can establish in parallelism of the involved mathematical operations. Thus, operators

(1) are interpreted in nonlinear mathematics as the convolution in (max,+)-algebra (and in its

dual algebra) [27]. More precisely, the study of the operator equivalent to the erosion (1) can

be traced back to the notion of inf-convolution (or infimal convolution) introduced by Moreau

in the 70’s of last century [49], as the fundamental tool in convex analysis. Convolution

in (max,+)-algebra has been also widely studied in the framework of idempotent analysis

developed by Maslov and co-workers [34]. This inherent connection of functional operators (1)

with the supremal and infimal convolution of nonlinear mathematics and convex analysis has

been extremely fruitful to the state-of-the-art on mathematical morphology. Morphological

PDEs [1, 7, 17, 42], the slope transform [22, 41], or more recently to the notion of stochastic

morphology based on Maslov random walks [5], are particularizations of results from nonlinear

mathematics.

Nevertheless, the functional operators (1) do not extend all the fundamental properties

of the dilation and erosion for sets, as formulated in Matheron’s theory. Perhaps the most

disturbing for us are, on the one hand, the lack of commutation with level set processing for

nonflat structuring functions; on the other hand, the limitation of Matheron’s axiomatic of
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granulometry to constant (i.e., flat) functions on a convex domain [35]. In addition, there are

some unconventional morphological frameworks, such as the fuzzy morphology [50, 20, 44, 14]

or the viscous morphology [63, 64, 45] which do not fit in the classical (max,+)-algebra

framework.

Actually, the (max,+) is not the unique possible alternative to see morphological oper-

ators as convolutions. The idea in this paper is to consider the operation of convolution of

two functions in the (max,min)-algebra. This is in fact our main motivation: to formally

introduce the notion of (max,min)-mathematical morphology. As we show in the paper, this

framework is not totally new in morphology since some fuzzy morphological operators are

exactly the same convolutions that we introduce. But some of the key properties are ignored

by in the fuzzy context, and the most important, they are not limited to fuzzy sets. By

the way, even if much less considered than the supremal and infimal convolutions, convolu-

tions in (max,min)-algebra have been the object of various studies in different branches of

nonlinear applied mathematics, from quasi-convex analysis [67, 57, 68, 26, 39, 53] to viscos-

ity solutions of Hamilton-Jacobi equations [11, 12, 2, 65]. Interested reader is also referred

to the book [27] for a systematic comparative study of matrix algebra and calculus in the

three algebras (+,×), (max,+) and (max,min), and to the book [18] for a nonlinear partial

differential equations viewpoint. Results from this literature are extremely useful for us. In-

deed, convolution in (max,min)-algebra is known in convex analysis literature as “sublevel

convolution” or ‘ “level sets sum convolution”. The reason for this name is obvious: the

fundamental property of convolution in (max,min)-algebra is the commutation with level

set processing. In fact, this principle is the inspiration and second motivation of this work:

to show how (max,min)-mathematical morphology can covers some of the unconventional

operators which are formalized by level set processing.

The present work is exclusively a theoretical study and thus the practical interest of the

operators is not illustrated here.

Paper organization. The rest of the paper is organized as follows.

• Section 2 gives an overview to basic notions on classical mathematical morphology and

fixes the notation.

• A formal definition of morphological operators in (max,min)-algebra is introduced in

Section 3. Relevant properties from an algebraic viewpoint are stated and proved.

• Sections 4 and 5 provide an overview of nonlinear analysis in (max,min) mathematics

and can be straightforward related to our (max,min)-convolutions. On the one hand,

the theory of viscosity solutions of the Hamilton-Jacobi equation with Hamiltonians

containing u and Du is summarized, in particular, the corresponding Hopf-Lax-Oleinik

formulas are given in Section 4. Section 5 discusses the results on quasi-concavity

preservation, Lipschitz approximation and conjugate/tranform related to (max,min)-

convolutions.
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• Section 6 reviews the links between (max,min)-convolutions and some previous ap-

proaches of unconventional morphology, in particular fuzzy morphology and viscous

morphology. In addition, the interest of (max,min)-convolutions in Boolean random

function characterization is considered. Links of (max,min) framework to geodesic

dilation and erosion are also provided.

• Section 7 of conclusion and perspectives closes the paper.

2 Basic notions and notations

For more details on this background material, see classical references on set morphology [46],

on flat morphology for functions [58](Chapter XII) and [40] or on complete lattice formulation

of morphological operators [59] [29].

Minkowski addition and subtraction. Given a set X ⊆ E, the complement of X is

Xc = E \X, and the transpose of X (or symmetrical set with respect to the origin O) is X̌ =

{−x : x ∈ X}. For every p ∈ E, the translate of X by p is Xp = {x+ p : x ∈ X}. For any

pair of sets X and Y , their Minkowski addition ⊕ and Minkowski subtraction 	 are defined

as follows:

X ⊕ Y =
⋃
y∈Y

Xy = {x+ y : x ∈ X, y ∈ Y } =
{
p ∈ E : X ∩ Y̌p 6= ∅

}
, (2)

X 	 Y =
⋂
y∈Y

X−y = {p ∈ E : Yp ⊂ X} =
{
x : ∀p ∈ Y̌ , x ∈ Xp

}
. (3)

We remind that the (binary) dilation and erosion of set X by structuring element B, B ⊆ E,

are just defined respectively as

δB(X) = X ⊕B and εB(X) = X 	B.

It should be noted that dilation and erosion are dual by complementation:

X ⊕B =
(
Xc 	 B̌

)c
and X 	B =

(
Xc ⊕ B̌

)c
.

It is sometimes misunderstandood that duality by complement is the right way to construct

erosion from dilation and viceversa. There is however another duality in mathematical mor-

phology which is just indicated for such purpose: the duality by adjunction, which in the

case of binary operators involves

X ⊕B ⊆ Y ⇔ X ⊆ Y 	B.

Composition of dilation and erosion leads to two extremely powerful morphological op-

erators. Namely, the opening and the closing of set X by B, which are defined respectively
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as

X ◦B = (X 	B)⊕B, (4)

X •B = (X ⊕B)	B. (5)

Opening is anti-extensive and closing is extensive. But the most important property of the

opening and closing operators is their idempotence; that is, their stability to iteration.

Erosion, dilation and adjunction in complete lattices. Morphological operators

are formulated in a more abstract framework based on complete lattice theory. We briefly

recall this framework.

Let us consider a nonempty set L endowed with a partial ordering ≤. We say that (L,≤)

is a complete lattice if every subset X ⊂ L has an infimum
∧
X and a supremum

∨
X in L.

The least and the greatest elements of a complete lattice are denoted respectively by ⊥ and

>.

The operators ε : L → L and δ : L → L are called an erosion and a dilation if they

commute respectively with the infimum and the supremum; i.e., ε
(∧

i∈I Xi

)
=
∧
i∈I ε(Xi)

and δ
(∨

i∈Xi

)
=
∨
i∈ δ(Xi), for every collection {Xi : i ∈} ⊂ L. Erosion and dilation are

increasing operators, i.e., ∀X,Y ∈ L, if X ≤ Y then ε(X) ≤ ε(Y ) and δ(X) ≤ δ(Y ). Erosion

and dilation are related by the notion of adjunction:

δ (X) ≤ Y ⇔ X ≤ ε(Y ); ∀X,Y ∈ L. (6)

Adjunction law (6) is of fundamental importance in mathematical morphology since it allows

to define a unique dilation δ associated to a given erosion ε, i.e.,

δ(X) =
∧
{Y ∈ L : X ≤ ε(Y )}; X ∈ L. (7)

Similarly one can define a unique erosion from a given dilation:

ε(Y ) =
∨
{X ∈ L : δ(X) ≤ Y }; Y ∈ L. (8)

Given an adjunction (ε, δ), their composition product operators, γ(X) = δ (ε(X)) and ϕ(Y ) =

ε (δ(Y )) are respectively an opening and a closing, which are the basic morphological filters

having the following properties: idempotency γγ(X) = γ(X), anti-extensivity γ(X) ≤ X

and extensivity X ≤ ϕ(X), and increaseness. Another relevant result is the fact that, given

an erosion ε, the opening and closing by adjunction are exclusively defined in terms of this

erosion as

γ(X) =
∧
{Y ∈ L : ε(X) ≤ ε(Y )} , ∀X ∈ L,

ϕ(X) =
∧
{ε(Y ) : Y ∈ L , X ≤ ε(Y )} , ∀X ∈ L.
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Dilation and erosion for functions and links with level set processing. As

mentioned above, the dilation and erosion of a function f ∈ F(E,R), by a structuring

function b ∈ F(E,R) are defined as

δb(f)(x) = (f ⊕ b)(x) and εb(f)(x) = (f 	 b)(x).

where (f ⊕ b) and (f 	 b) were given in (1).

Dilation and erosion are dual by adjunction, i.e.,

f ⊕ b ≤ g ⇔ f ≤ g 	 b

as well as dual by complement, i.e.,

(f c ⊕ b)c = f 	 b̌ and (f c 	 b)c = f ⊕ b̌,

where the complement function φc of function φ is defined as the negation for real valued

functions and the symmetric with respect to M for function valued in a nonnegative interval

[0,M ], i.e., φc(x) = −φ(x) if φ ∈ F(E,R) or φc(x) = M − φ(x) if φ ∈ F(E, [0,M ]). The

transposed function φ̌ is given by φ̌(x) = φ(−x).

The structuring function is usually a parametric multiscale family bλ(x), where λ > 0 is

the scale parameter such that bλ(x) = λb(x/λ) and which satisfies the semi-group property

(bλ ⊕ bµ)(x) = bλ+µ(x).

The most commonly studied framework for dilation/erosion of functions, which addition-

ally presents better properties of invariance, is based on flat structuring functions, therefore

viewed as structuring elements. More precisely, given the structuring element B ⊆ E, its

associated structuring function is

b(x) =

{
0 if x ∈ B
−∞ if x ∈ Bc

Hence, the flat dilation (f ⊕B) and flat erosion (f 	B) can be computed respectively by the

moving local maxima and minima filters; i.e., (f⊕B)(x) = supy∈B̌ f(x+y) and (f	B)(x) =

infy∈B f(x+ y).

Given an upper semicontinuous (USC) function f ∈ F(E,R), it can be defined by means

of its upper level sets X+
h (f) as follows

f(x) = sup
{
h ∈ R : x ∈ X+

h (f)
}
,

or if f is lower semicontinuous (LSC), using its lower level sets X−h (f), as

f(x) = inf
{
h ∈ R : x ∈ X−h (f)

}
.
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We note that a USC function can be also represented as

f(x) = inf
{
h ∈ R : x /∈ X+

h (f)
}

= inf
{
h ∈ R : x ∈ Y −h (f)

}
,

similarly a LSC function can be represented as

f(x) = sup
{
h ∈ R : x ∈ Y +

h (f)
}
,

where

X+
h (f) = {x ∈ E : f(x) ≥ h} , and Y +

h (f) = {x ∈ E : f(x) > h} ;

X−h (f) = {x ∈ E : f(x) ≤ h} , and Y −h (f) = {x ∈ E : f(x) < h} .

Considering E ⊂ Rn, the upper level sets X+
t of any F are closed sets in Rn, decreasing, i.e.,

h < k ⇒ X+
k ⊆ X+

h and obey the monotonic continuity X+
k = ∩h<kX+

h . Lower level sets

are closed sets, increasing h < k ⇒ X−h ⊆ X−k and X−k = ∪h<kX−h . Obviously, a continuous

function f can be decomposed/reconstructed using either its (strict) upper level sets or its

(strict) lower level sets. We note that, using duality by complement, one has(
X+
h (f)

)c
= Y −h (f), (9)

and thus the strict lower sets Y −h (f) are open sets. We note also that a sampled function is

trivially both USC and LSC because all its level sets are both closed and open sets.

As mentioned before, flat operators commute with level set processing. Being more pre-

cise, first notice that for any collection of continuous functions φi ∈ F(E,R), i ∈ I, we

have:

X+
h

(∨
i

φi

)
= {x ∈ E : φ1(x) ≥ h or φ2(x) ≥ h or · · · } =

⋃
i

X+
h (φi) , (10)

X+
h

(∧
i

φi

)
= {x ∈ E : φ1(x) ≥ h and φ2(x) ≥ h and · · · } =

⋂
i

X+
h (φi) , (11)

and by (9), their dual expressions by complement:

Y −h

(∨
i

φi

)
= {x ∈ E : φ1(x) < h and φ2(x) < h and · · · } =

⋂
i

Y −h (φi) , (12)

Y −h

(∧
i

φi

)
= {x ∈ E : φ1(x) < h or φ2(x) < h or · · · } =

⋃
i

Y −h (φi) . (13)

The following formulas [39], relating lower level sets and strict lower level sets, are also useful

in the sequel:

X−h (f) =
⋂
k>h

Y −k (f), (14)

Y −h (f) =

∞⋃
j=1

X−h−1/j(f). (15)
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where the family
{
X−h−(1/j)(f)

}
, j ≥ 1, is increasing.

Then, taking for φi in (10) and (11) all the translates of f as x runs over a set B or its

transpose, together with definitions of ⊕ and 	, respectively (2) and (3), we can write:

X+
h (f ⊕B) = {x ∈ E : ∃y ∈ Bx, f(y) ≥ h} = X+

h (f)⊕B,
X+
h (f 	B) =

{
x ∈ E : ∀y ∈ B̌x, f(y) ≥ h

}
= X+

h (f)	B.

This property of commutativity of upper level sets involves that the flat dilation and erosion

of a continuous function f ∈ F(E,R) by structuring element B ⊂ E are obtained as:

δB(f)(x) = sup
{
h ∈ R : x ∈

(
X+
h (f)⊕B

)}
, (16)

εB(f)(x) = sup
{
h ∈ R : x ∈

(
X+
h (f)	B

)}
. (17)

For the opening and closing of a function f by a flat structuring element, denoted γB(f) and

ϕB(f), and defined by

γB(f) = f ◦B = (f 	B)⊕B) ,

ϕB(f) = f •B = (f ⊕B)	B) ,

we also have a natural formulation using upper level sets:

X+
h (f ◦B) = X+

h (f) ◦B,
X+
h (f •B) = X+

h (f) •B.

In the case of unflat dilation and erosion of function f by structuring function b, their

formulation using sets is not very useful since it needs all the upper level sets:

X+
k (f ⊕ b) =

⋃
h

[
X+
h (f)⊕X+

k−h(b)
]
, (18)

X+
k (f 	 b) =

⋂
h

[
X+
h (f)	X+

h−k(b)
]
. (19)

3 (max,min)-convolutions: definition and properties

In this Section we define the alternative convolutions associated to a pair (function f , struc-

turing function b) in the (max,min) mathematical framework. We also study their properties.

3.1 Definition

Definition 1 Given a structuring function b ∈ F(Rn,R), for any function f ∈ F(Rn,R) we

define the supmin convolution f 5 b and the infmax convolution f 4 b of f by b as

(f 5 b)(x) = sup
y∈Rn

{f(y) ∧ b(x− y)} , (20)
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and

(f 4 b)(x) = inf
y∈Rn

{f(y) ∨ bc(y − x)} . (21)

We also define the adjoint infmax f 4∗ b and the adjoint supmin f 5∗ b convolutions as

(f 4∗ b)(x) = inf
y∈Rn

{f(y) ∧∗ b(y − x)} , (22)

and

(f 5∗ b)(x) = sup
y∈Rn

{f(y) ∨∗ bc(x− y)} , (23)

where ∧∗ is the adjoint operator to the minimum ∧ and is given by

f(y) ∧∗ b(y − x) =

{
f(y) if b(y − x) > f(y)

> if b(y − x) ≤ f(y)
(24)

and ∨∗ the adjoint to ∨:

f(y) ∨∗ bc(x− y) =

{
f(y) if bc(x− y) < f(y)

⊥ if bc(x− y) ≥ f(y)
(25)

and where, if we define max g = supx∈Rn g(x) and min g = infx∈Rn g(x), the top and bottom

elements for pair of functions f and b correspond to

> = (max f) ∨ (max b) and ⊥ = (min f) ∧ (min bc).

Definitions remain valid if we replace Rn by a subset E or any subset of discrete space

Zn. Similarly, the extended real line R can be replaced by a bounded, eventually discrete,

set of intensities [0,M ].

Figure 1 illustrates the four (max,min)-convolutions for a given example of one dimen-

sional functions defined in a bounded interval, i.e., f, b ∈ F(R, [0,M ]).

The fact that four convolution operators are naturally defined in (max,min)-algebra is

related to the previous discussion on dualities by complement and by adjunction and is easily

justified by the following property.

3.2 Duality by complement vs. duality by adjunction

It is obvious that the four operators are translation invariant. Furthermore, from a morpho-

logical viewpoint, their most salient properties are summarized in this proposition.

Proposition 2 The supmin convolution 5 and infmax convolution 4 are dual with respect

to the complement. Similarly, the adjoint infmax convolution 4∗ and the adjoint supmin 5∗

convolution are dual with respect to the complement, i.e., for f, b ∈ F(Rn,R) one has

f 4 b =
(
f c 5 b̌

)c
and f 5 b =

(
f c 4 b̌

)c
(26)

f 4∗ b =
(
f c 5∗ b̌

)c
and f 5∗ b =

(
f c 4∗ b̌

)c
(27)
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(a)

(b) (c)

(d) (e)

Figure 1: Illustration of four (max,min)-convolutions for a given example of one dimensional

functions defined in a bounded interval, i.e., f, b ∈ F(R, [0,M ]): (a) original function f(x)

and translated structuring function b at point z0; (b) in red, f(y) ∧ b(z0 − y) for all y ∈ R,

green triangle represents (f 5 b)(x) the value of the supmin convolution at z0; (c) in red,

f(y)∧∗ b(y−z0), green triangle, adjoint infmax at z0: (f4∗ b)(z0); (d) in red, f(y)∨bc(y−z0),

green triangle, infmax at z0: (f 4 b)(z0); (e) in red, f(y)∨∗ bc(z0− y), green triangle, adjoint

supmin at z0: (f 5∗ b)(z0).
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The pair (4∗,5) forms an adjunction. Similarly, the pair (4,5∗) is also an adjunction,

i.e., for f, g, b ∈ F(Rn,R) one has

f 5 b ≤ g ⇐⇒ f ≤ g4∗ b (28)

f 5∗ b ≤ g ⇐⇒ f ≤ g4 b (29)

These relationships are summarized in the following intertwining diagram:

(f 5 b)
adjoint←→ (f 4∗ b)

l dual l dual

(f 4 b)
adjoint←→ (f 5∗ b)

Proof. Let us derive the adjunction relationship (28) of pair (4∗,5). First of all, we need to

obtain the adjoint operation to the min of two values in a general complete lattice L, whose

extreme elements are > and ⊥. More precisely, given any triplet α, t, s ∈ L, as discussed in

Section 2, the adjunction involves

t ∧ α ≤ s ⇔ t ≤ s ∧∗ α,

which gives us the corresponding adjoint ∧∗:

s ∧∗ α = sup {u ∈ L : u ∧ α ≤ s} =

{
s if α > s

> if α ≤ s

Now, for any f, g, b ∈ F(Rn,R)

f 5 b ≤ g ⇔ ∀x ∈ Rn, (f 5 b)(x) ≤ g(x),

⇔ ∀x ∈ Rn, sup
y∈Rn

{f(y) ∧ b(x− y)} ≤ g(x),

⇔ ∀x ∈ Rn, ∀y ∈ Rn, f(y) ∧ b(x− y) ≤ g(x),

⇔ ∀x ∈ Rn, ∀y ∈ Rn, f(y) ≤ g(x) ∧∗ b(x− y),

⇔ ∀y ∈ Rn, f(y) ≤ inf
x∈Rn

{g(x) ∧∗ b(x− y)} = (g4∗ b)(y),

⇔ f ≤ g4∗ b.

The second adjunction can be proved analogously, once the adjoint ∨∗ is obtained. We

have now

t ∨∗ α ≤ s ⇔ t ≤ s ∨ α,

such that

t ∨∗ α = inf {u ∈ L : t ≤ u ∨ α} =

{
t if α < t

⊥ if α ≥ t

12



The duality of 5 and 4 is easily proven(
f c 5 b̌

)c
=

[
sup
y

{
f c(y) ∧ b̌(x− y)

}]c
= inf

y
{[f c(y) ∧ b(y − x)]c}

= inf
y
{f(y) ∨ bc(y − x)} = f 4 b.

Similarly, for the duality between 5∗ and 4∗ it is simply required that[
f c(y) ∧∗ b̌(y − x)

]c
= f(y) ∨∗ bc(x− y).

We find

[
f c(y) ∧∗ b̌(y − x)

]c
=

[{
f c(y) if b(x− y) > f c(y)

> if b(x− y) ≤ f c(y)

]c
=

{
f(y) if bc(x− y) < f(y)

⊥ if bc(x− y) ≥ f(y)

3.3 Commutation with level set processing

We can introduce now the fundamental property of (max,min)-convolutions. We adopt here

the convention

X ⊕ ∅ = ∅ ⊕X = ∅.

Proposition 3 Let f and b in F(Rn,R). Then the four (max,min)-convolutions of f by b

obey the following commutation rules of level sets with respect to Minkowski sum and sub-

straction: for all h ∈ R

X+
h (f 5 b) = X+

h (f)⊕X+
h (b) (30)

Y −h (f 4 b) = Y −h (f)⊕ Y −h (b̌c) (31)

X+
h (f 4∗ b) = X+

h (f)	X+
h (b) (32)

Y −h (f 5∗ b) = Y −h (f)	 Y −h (b̌c) (33)

Proof. Let us consider the expression of the supmin convolution (20)

X+
h (f 5 b)(x) =

x ∈ Rn ;
∨
y∈Rn

f(y) ∧ b(x− y) ≥ h

 .

Identifying with terms in equation (10), we can write

X+
h (f 5 b)(x) = {x ∈ Rn ; ∃y : [f(y) ∧ b(x− y)] ≥ h} .

The expression of X+
h (f5b) as function of the X+

h (f) and X+
h (b) comes from the relationship

(11), which gives{
x ∈ Rn : X+

h (f) ∩X+
h

(
b̌x
)
6= ∅
}

=
{
x ∈ Rn : X+

h (f) ∩ X̌+
h (bx) 6= ∅

}
,

13



finally from Minkowski addition (2), we obtain

X+
h (f 5 b) = X+

h (f)⊕X+
h (b).

Now for the infmax convolution (f 4 b), from expression (13), we have

Y −h (f 4 b)(x) =

x ∈ Rn ;
∧
y∈Rn

f(y) ∨ bc(y − x) < h


=

{
x ∈ Rn ; ∃y :

[
f(y) ∨ b̌c(x− y)

]
< h

}
,

next, using (12), we get{
x ∈ Rn : Y −h (f) ∩ Y −h (bcx) 6= ∅

}
=
{
x ∈ Rn : Y −h (f) ∩ Y̌ −h

(
b̌cx
)
6= ∅
}
,

so

Y −h (f 4 b) = Y −h (f)⊕ Y −h (b̌c).

The expression for the adjoint infmax (f 4∗ b) can be obtained just by adjunction:

sup
{
h ∈ R : x ∈ X+

h (f 5 b)
}
≤ g(x) ⇔ ∪

{
k ≥ h : X+

k (f 5 b)
}
⊆ X+

h (g) ∀h ∈ R,
⇔ X+

k (f 5 b) ⊆ X+
h (g), ∀h ∈ R, ∀k ≥ h,

⇔ X+
k (f)⊕X+

k (b) ⊆ X+
h (g), ∀h ∈ R, ∀k ≥ h,

⇔ X+
k (f) ⊆ X+

h (g)	X+
k (b), ∀h ∈ R, ∀k ≥ h,

⇔ X+
k (f) ⊆ X+

h (g)	X+
k (b), ∀k ∈ R, ∀h ≤ k,

⇔ X+
k (f) ⊆ ∩

{
h ≤ k : X+

h (g)	X+
k (b)

}
, ∀k ∈ R,

⇔ X+
k (f) ⊆ ∩

{
h ≤ k : X+

h (g)
}
	X+

k (b), ∀k ∈ R,
⇔ X+

k (f) ⊆ X+
k (g)	X+

k (b), ∀k ∈ R,
⇔ f(x) ≤ sup

{
k ∈ R : x ∈

(
X+
k (g)	X+

k (b)
)}
,

and consequently, we have

X+
k (g4∗ b) = X+

k (g)	X+
k (b).

By a similar mechanism of adjunction, the expression for the adjoint supmin (f 5∗ b) is

obtained from Y −h (f 4 b) = Y −h (f)⊕ Y −h (b̌c).

By the way, using the equivalence X+
h (f c) = X−−h(f), we formulate the level set represen-

tation for the infmax convolution by duality by complement from the supmin convolution,

we obtain(
f c 5 b̌

)c
=

[
sup{h ∈ R : X+

h (f c)⊕X+
h (b̌)}

]c
= inf{−h ∈ R : X+

h (f c)⊕X+
h (b̌)}

= inf{−h ∈ R : X−−h(f)⊕X+
h (b̌)} = inf{h ∈ R : X−h (f)⊕X+

−h(b̌)}
= inf{h ∈ R : X−h (f)⊕X−h (b̌c)} = (f 4 b) .

14



This expression on strict lower level sets Y −h for (f 4 b) is valid for lower level sets X−h if

(f 4 b) is exact, in the sense that, for each x ∈ dom−(f 4 b), there exists y ∈ Rn such that

(f4 b)(x) = f(y)∨ bc(y−x) (i.e., the minimum is attained for any x in the domain) [57, 39].

In particular, if f and bc are both LSC quasiconvex functions, (f4 b) and (f5∗ b) are exact,

which involves:

X−h (f 4 b) = X−h (f)⊕X−h (b̌c) (34)

X−h (f 5∗ b) = X−h (f)	X−h (b̌c). (35)

We need for the sequel an alternative formulation of the infmax and adjoint supmin

convolution in terms respectively of Minkowski subtraction 	 and addition ⊕ of level sets.

It is simply based on rewritten the infmax convolution using upper level sets:

(f 4 b)(x) = inf
{
h ∈ R : x ∈ Y −h (f 4 b)

}
= sup

{
h ∈ R : x /∈ Y −h (f 4 b)

}
= sup

{
h ∈ R : x ∈

[
Y −h (f 4 b)

]c}
= sup

{
h ∈ R : x ∈

[
Y −h (f)⊕ Y −h (b̌c)

]c}
= sup

{
h ∈ R : x ∈ X+

h (f)	 Y̌ −h (b̌c)
}

= sup
{
h ∈ R : x ∈

(
X+
h (f)	 Y −h (bc)

)}
. (36)

Analogously, one obtain the following equivalence for the adjoint supmin convolution:

(f 5∗ b)(x) = inf
{
h ∈ R : x ∈

(
Y −h (f)	 Y −h (b̌c)

)}
= sup

{
h ∈ R : x ∈

(
X+
h (f)⊕ Y −h (bc)

)}
. (37)

Therefore, we can write

X+
h (f 4 b) = X+

h (f)	 Y −h (bc), (38)

X+
h (f 5∗ b) = X+

h (f)⊕ Y −h (bc). (39)

As an immediate consequence of Proposition 3, one gets

dom+(f 5 b) = dom+(f)⊕ dom+(b),

dom−(f 4 b) = dom−(f)⊕ dom−(b),

where

dom+(φ) = {x ∈ Rn : φ(x) > −∞} ,
dom−(φ) = {x ∈ Rn : φ(x) < +∞} ,
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stand for the effective domains of φ ∈ F(Rn,R).

Remark. We should clarify that the interest of these expressions of (max,min)-convolu-

tions in terms of Minkowski addition and subtraction is not to suggest an implementation

by level set processing followed by stacking. On the contrary, the idea is to show how some

morphological operators formulated by level set transforms have a straightforward implemen-

tation using (max,min)-convolutions. By the way, the results that we provided are extremely

useful to state other properties.

Bibliographic remark. Classically in convex analysis literature [57], definition of level

set addition of f by g is given by (f 4 g)(x) = infy {f(x− y) ∨ g(y)} and its symmetric

operation as (f 5 g)(x) = supy {f(x− y) ∧ g(y)} such that (f 5 g) = −((−f) 5 (−g)).

This was historically motivated by the fact that the level sum property was pioneered by

Rockafellar [55] as {f 4 g < α} = {f < α} + {g < α}, ∀α ∈ R, where the notation

{h < α} = {x ∈ Rn : h(x) < α} is used for the strict lower level set of h and + refers in this

context to Minkowski addition.

3.4 Further properties

Proposition 4 We have the following properties for the (max,min)-convolutions.

1. (Increaseness) If f(x) ≤ g(x), ∀x ∈ Rn, f, g ∈ F(Rn,R), then (f 5 b)(x) ≤ (g5 b)(x),

(f4b)(x) ≤ (g4b)(x), (f5∗ b)(x) ≤ (g5∗ b)(x) and (f4∗ b)(x) ≤ (g4∗ b)(x), ∀x ∈ Rn

and for any b ∈ F(E,R).

2. (Extreme values preservation) Given any function f ∈ F(Rn,R) and structuring func-

tion b ∈ F(Rn,R), one has

max (f 5 b) = (max f) ∧ (max b) ,

min (f 4 b) = (min f) ∨ (min bc) = (min f) ∨ (max b) ,

max (f 5∗ b) = max f,

min (f 4∗ b) = min f.

3. (Distributivity - Commutation with supremum and infimum) Given a structuring func-

tion b ∈ F(Rn,R) and an arbitrary family {fi}, i ∈ I, fi ∈ F(Rn,R), it follows ∀x ∈ E
that (

sup
i∈I

fi 5 b

)
(x) = sup

i∈I
(fi 5 b) (x) ;

(
inf
i∈I

fi 4 b

)
(x) = inf

i∈I
(fi 4 b) (x);(

sup
i∈I

fi 5∗ b
)

(x) = sup
i∈I

(fi 5∗ b) (x) ;

(
inf
i∈I

fi 4∗ b
)

(x) = inf
i∈I

(fi 4∗ b) (x)
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4. (Associativity - Combination of several structuring functions) Given any function f ∈
F(Rn,R) and any pair of structuring functions b1, b2 ∈ F(Rn,R), one obtains

(f 5 b1)5 b2 = f 5 (b1 5 b2) = f 5 (b2 5 b1) ,

(f 4 b1)4 b2 = f 4 (b1 5 b2) = f 4 (b2 5 b1) ,

(f 4∗ b1)4∗ b2 = f 4∗ (b1 5 b2) = f 4∗ (b2 5 b1) ,

(f 5∗ b1)5∗ b2 = f 5∗ (b1 5 b2) = f 5∗ (b2 5 b1) .

Proof. The increaseness is straightforward since all the operations involved in the (max,min)-

convolutions for a fixed b are increasing.

The proof for the extreme value preservation of supmin convolution is as follows:

max (f 5 b) (x) = sup
x∈Rn

sup
y,z∈Rn

{f(y) ∧ b(z), y + z = x}

= sup
y,z∈Rn

{f(y) ∧ b(z)} =

(
sup
y∈Rn

f(y)

)
∧
(

sup
z∈Rn

b(z)

)
.

Similarly for min (f 4 b). For the adjoint supmin convolution, we have:

max (f 5∗ b) (x) = sup
x∈Rn

sup

y, z ∈ Rn

y + z = x

{
f(y) if bc(z) < f(y)

⊥ if bc(z) ≥ f(y)
=

sup
y,z∈Rn

{
f(y) if bc(z) < f(y)

⊥ if bc(z) ≥ f(y)
=

(
sup

y,z∈Rn,bc(z)<f(y)
f(y)

)
∨

(
sup

y,z∈Rn,bc(z)≥f(y)
⊥

)
= max f.

Analogously for max (f 4∗ b).

We prove the distributivity of supmin convolution and the adjoint supmin convolution.

For the two other operators the procedure is similar. One has for the supmin convolution of

a sup of functions:(
sup
i∈I

fi 5 b

)
(x) = sup

y∈Rn

{
sup
i∈I

fi(y) ∧ b(x− y)

}
= sup

i∈I
sup
y∈Rn

{fi(y) ∧ b(x− y)} = (fi 5 b) (x).

In the case of the adjoint supmin convolution of the sup of function:(
sup
i∈I

fi 5∗ b
)

(x) = sup
y∈Rn

{
supi∈I fi(y) if bc(x− y) < supi∈I fi(y)

⊥ if bc(x− y) ≥ supi∈I fi(y)
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We note the the cases where bc(x − y) ≥ supi∈I fi(y) involves bc(x − y) ≥ fi(y), ∀i ∈ I.

Therefore we can write(
sup
i∈I

fi 5∗ b
)

(x) = sup
i∈I

sup
y∈Rn

{
fi(y) if bc(x− y) < fi(y)

⊥ if bc(x− y) ≥ fi(y)
= sup

i∈I
(fi 5∗ b) (x).

The associativity of structuring functions is easily obtained using the level set expressions

and the following classical results [46]

(X ⊕B1)⊕B2 = X ⊕ (B1 ⊕B2); (X 	B1)	B2 = X 	 (B1 ⊕B2).

Thus, we have:

X+
h ((f 5 b1)5 b2) = X+

h (f 5 b1)⊕X+
h (b2) = X+

h (f)⊕X+
h (b1)⊕X+

h (b2)

= X+
h (f)⊕X+

h (b1 5 b2) .

Y −h ((f 4 b1)4 b2) = Y −h
(
f 4 b̌c1

)
⊕ Y −h

(
b̌c2
)

= Y −h (f)⊕ Y −h
(
b̌c1
)
⊕ Y −h

(
b̌c2
)

= Y −h (f)⊕
(
Y +
−h
(
b̌1
)
⊕ Y +

−
(
b̌2
))

= Y −h (f)⊕ Y̌ +
−h (b1 5 b2)

= Y −h (f)⊕ Y̌ −h ((b1 5 b2)c) .

X+
h ((f 4∗ b1)4∗ b2) = X+

h (f 4∗ b1)	X+
h (b2) =

[
X+
h (f)	X+

h (b1)
]
	X+

h (b2)

= X+
h (f)	

(
X+
h (b1)⊕X+

h (b2)
)

= X+
h (f)	X+

h (b1 5 b2) .

Y −h ((f 5∗ b1)5∗ b2) = Y −h (f 5∗ b1)	 Y −h
(
b̌c2
)

=
[
Y −h (f)	 Y −h

(
b̌c1
)]
	 Y −h

(
b̌c2
)

= Y −h (f)	
(
Y −h

(
b̌c1
)
⊕ Y −h

(
b̌c2
))

= Y −h (f)	
(
Y̌ +
−h (b1)⊕ Y̌ +

−h (b2)
)

= Y −h (f)	 Y̌ +
−h (b1 5 b2) = Y −h (f)	 Y̌ −h ((b1 5 b2)c) .

Canonic structuring function. The conic structuring function plays a role similar to

the multiscale quadratic structuring function [22, 41, 30] in (max,+)-algebra.

Definition 5 The multiscale conic structuring function is defined as the canonic structuring

function in (max,min)-convolutions:

cλ(x) = −‖x‖
λ
. (40)

In order to justify this canonicity, let us consider the upper level sets of cλ(x). First, we

remind that a ball of radius centered at point x is given by the set

Br(x) = {y ∈ Rn : ‖x− y‖ ≤ r} .
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Proposition 6 The canonic structuring function in (max,min)-convolutions satisfies the

semi-group

(cλ 5 cµ) (x) = cλ+µ(x). (41)

In the case of the L∞ metric, a dimension separability is obtained for c∞λ (x) = −‖x‖∞/λ;

i.e., let us denote the coordinates of point as x = (x1, x2, · · · , xn) and by cλ; i(x) = −|xi|/λ
the one dimensional conic structuring function, we have

c∞λ (x) = (cλ; 1 5 cλ; 2 · · · 5 cλ; n) . (42)

Proof. We first note that X+
−h(cλ) = Bλh. Second, we remind the Minkowski addition of

balls: Br1 ⊕Br2 = Br1+r2 . Therefore, one has

X+
−h(cλ 5 cµ) = X+

−h(cλ)⊕X+
−h(cµ) = Bλh ⊕Bµh = B(λ+µ)h.

Dimension separability in L∞ metric is also a consequence of the Minkowski addition of

segments.

As a consequence of the L∞ dimension separability, the classical theory of Minkowski

decomposition of structuring elements [58], e.g., approximate isotropic structuring elements

such as octagons in the square grid or dodecagons in the hexagonal grid using one dimensional

structuring elements, can be extended to the case of functions in (max,min)-convolutions.

Concerning this point, we note that the dimension separability of the Euclidean quadratic

structuring in the (max,+)-convolutions is a richer property leading to efficient decomposi-

tions of separable concave structuring functions [23].

3.5 Openings, closings using (max,min)-convolutions and granulometries

The adjointness of the pairs (4∗,5) and (4,5∗) involves that from an algebraic viewpoint

both the supmin convolution 5 and the adjoint supmin convolution 5∗ are a dilation; both

the infmax convolution 4 and the adjoint infmax convolution 4∗ are an erosion. Therefore,

their composition naturally yields openings and closings. Let us be more precise.

Definition 7 Given any USC function f ∈ F(Rn,R), the (max,min)-opening and (max,min)-

closing of f by the continuous structuring function b ∈ F(Rn,R) are respectively given by

(f♦ b) = ((f 4∗ b)5 b) , (43)

and

(f� b) = ((f 5∗ b)4 b) , (44)
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such that their corresponding level sets representations, based on expressions (30), (32), and

(31), (33), are given by

X+
h (f♦ b) = X+

h (f 4∗ b)⊕X+
h (b) =

[
X+
h (f)	X+

h (b)
]
⊕X+

h (b)

= X+
h (f) ◦X+

h (b) , (45)

Y −h (f� b) = Y −h (f 5∗ b)⊕ Y −h
(
b̌c
)

=
[
Y −h (f)	 Y −h

(
b̌c
)]
⊕ Y −h

(
b̌c
)

= Y −h (f) ◦ Y −h
(
b̌c
)
. (46)

We note that (max,min)-opening is defined from adjunction (4∗,5) whereas (max,min)-

closing from (4,5∗). We can also switch roles and to formulate the so-called second family

of dual (max,min)-opening and closing as

(f♦∗ b) = ((f 4 b)5∗ b) , (47)

(f�∗ b) = ((f 5 b)4∗ b) , (48)

which has the following equivalent interpretation in terms of level sets:

Y −h (f♦∗ b) = Y −h (f) • Y −h
(
b̌c
)
, (49)

X+
h (f�∗ b) = X+

h (f) •X+
h (b) . (50)

Besides the duality by complement, classical properties of opening and closing hold in the

(max,min) framework.

Proposition 8 For any f, b ∈ F(Rn,R), we have,

1. (f♦ b) and (f� b) are dual operators

(f♦ b) =
(
f c� b̌

)c
and (f� b) =

(
f c♦ b̌

)c
(51)

2. (f♦ b) and (f� b) are both increasing operators.

3. (f♦ b) is anti-extensive and (f� b) extensive with the following ordering relationship:

(f♦ b)(x) ≤ f(x) ≤ (f� b)(x), ∀x ∈ Rn; (52)

4. idempotency of both operators: ((f♦ b)♦ b) = (f♦ b) and ((f� b)� b) = (f� b).

Property 1 can be easily proved:

(f c� b) = ((f c 5∗ b)4 b) = ((f 4∗ b̌)c 4 b) =
((
f 4∗ b̌

)
5 b̌
)c

=
(
f♦ b̌

)c
.

The other properties are a consequence of the adjunction [29].
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We note that the second family of (max,min)-opening and closing, (f♦∗ b) and (f�∗ b),
do satisfy the same properties.

Property 4 on idempotency together with the increaseness defines a family of operators

called algebraic openings/closings [59, 29], larger than the one associated to the composition

of a pair of dilation and erosion (structural openings). One of the most classical results in

morphological operators provided us an example of algebraic opening: given a collection of

openings {γi}, increasing, idempotent and anti-extensive operators for all i, their supremum

supi γi is also an opening [46]. A dual result is obtained for the closing by changing the sup to

the inf. The class of openings (resp. closings) is neither closed under infimum (resp. opening)

or a generic composition. There is however a semi-group property leading to a scale-space

framework for opening/closing operators, known as granulometries. The notion of granulom-

etry in Euclidean morphology is summarized in the following result due to Matheron [46] and

Serra [59].

Theorem 9 A parameterized family {γλ}λ>0 of flat openings from F(E, T ) into F(E, T ) is

a granulometry (or size distribution) when

γλ1γλ2 = γλ2γλ1 = γsup(λ1,λ2); λ1, λ2 > 0. (53)

Condition (53) is equivalent to both

γλ1 ≤ γλ2 ; λ1 ≥ λ2 > 0; (54)

Bλ1 ⊆ Bλ2 ; λ1 ≥ λ2 > 0

where Bλ is the invariance domain of the opening at scale λ; i.e., the family of structuring

elements Bs such that B = γλ(B) [59].

By duality, we introduce antisize distributions as the families of closings {ϕλ}λ>0.

Formula (53) shows how translation invariant flat openings are composed and highlights

their semi-group structure. The equivalent condition (54) emphasizes the monotonicity of the

granulometry with respect to λ: the opening becomes more and more active as λ increases.

When dealing with Euclidean spaces, [46] introduced the notion of Euclidean granulometry

as the size distribution being translationally invariant and compatible with homothetics, i.e.,

γλ(f(x)) = λγ1(f(λ−1x)), ∀λ > 0, (55)

where f ∈ F(E, T ) is a Euclidean grey-level image. More precisely, a family of mappings γλ
is a Euclidean granulometry if and only if there exists a class B′ such that

γλ(f) =
∨
B∈B′

∨
µ≥λ

γµB(f).
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Then, we note that condition (55) involves that the domain of invariance Bλ is equal to λB,

where B is the class closed under union, translation and homothetics ≥ 1, which is generated

by B′. If we reduce the class B′ to a single element B, the associated size distribution becomes

γλ(f) =
∨
µ≥λ

γµB(f).

The following key result simplifies the situation. The size distribution by a compact struc-

turing element B is equivalent to γλ(f) = γλB(f) if and only if B is convex [46].

The extension of the granulometric theory to non-flat structuring functions in the frame-

work of (max,+)-based morphology was deeply studied in [35]. In particular, it was proven

that one can build grey-level Euclidean granulometries with a multiscale structuring function

bλ, i.e., γλ(f) = ((f 	 bλ)⊕ bλ) if and only if structuring function bλ has a convex compact

domain and is constant there (i.e., flat function). In the terminology of [35], (max,+)-

granulometries are based on the notion of T -openings.

In the case of (max,min)-openings, we can naturally extend Matheron axiomatic of Eu-

clidean granulometries without the flatness limitation. The transposition of general formu-

lation of granulometries given in Theorem 9 involves that, fixing b1, b2 ∈ F(Rn,R), we have

that

(f♦ b1) ≤ (f♦ b2), for every f ∈ F(Rn,R)

if and only if (b1♦ b2) = b1.

We focus on the interesting case of Euclidean granulometries from (max,min)-openings.

Proposition 10 Given a structuring function b1 ∈ F(Rn,R) such that all its upper level sets

X+
h (b1) are convex sets, the family of multi-scale (max,min)-openings {f♦ bλ}λ≥1, where the

structuring function at scale λ is given by

bλ(x) = b1
(
λ−1x

)
,

forms an Euclidean granulometry on any image f ∈ F(Rn,R), i.e.,

(f♦ bλ) = λ ?
((
λ−1 ? f

)
♦ b1

)
, (56)

which involves compatibility with scaling in the spatial domain, in the sense of Matheron’s

axiomatic defined as follows

(λ ? f) (x) = f
(
λ−1x

)
, ∀λ ≥ 1.

In addition, we have the following semi-group properties, ∀λ1, λ2 ≥ 1

bλ1+λ2(x) = (bλ1 5 bλ2)(x), (57)

((f♦ bλ1)♦ bλ2) (x) = ((f♦ bλ2)♦ bλ1) (x) =
(
f♦ bsup(λ1,λ2)

)
(x) (58)
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Proof. We need to prove the expression (56). In terms of levels sets, spatial scaling compat-

ibility involves that we have for every f ∈ F(Rn,R)

X+
h (λ ? f) = λX+

h (f) , ∀h ∈ R.

Therefore, we have X+
h (bλ) = λX+

h (b1). Convexity of upper level sets of b1 involves we have

the homothetic compatibility of semi-group (57):

X+
h (bλ1 5 bλ2) = λ1X

+
h (b1)⊕ λ1X

+
h (b2) = (λ1 + λ2)X+

h (b1) = X+
h (bλ1+λ2).

In addition, one has

X+
h (f) ◦X+

h (bλ) = X+
h (f) ◦ λX+

h (b1).

Therefore, the granulometric semi-group (58) is verified at each upper level set:

(
X+
h (f) ◦X+

h (bλ1)
)
◦X+

h (bλ2) =
(
X+
h (f) ◦X+

h (bλ2)
)
◦X+

h (bλ1) = X+
h (f) ◦X+

h (bsup(λ1,λ2)).

We have already all the elements for (56):

(f♦ bλ)(x) = sup
{
h ∈ R : x ∈ X+

h (f♦ bλ)
}

= sup
{
h ∈ R : x ∈

[
X+
h (f) ◦X+

h (bλ)
]}

= sup
{
h ∈ R : x ∈

[
X+
h (f) ◦ λX+

h (b1)
]}

= sup
{
h ∈ R : x ∈

[
λX+

h

(
λ−1 ? f

)
◦ λX+

h (b1)
]}

= sup
{
h ∈ R : λ−1x ∈

[
X+
h

(
λ−1 ? f

)
◦X+

h (b1)
]}

= sup
{
h ∈ R : λ−1x ∈ X+

h

((
λ−1 ? f

)
♦ b1

)}
=

((
λ−1 ? f

)
♦ b1

) (
λ−1x

)
=

[
λ ?
((
λ−1 ? f

)
♦ b1

)]
(x).

A dual result of anti-granulometry is obtained for (max,min) multiscale closings (f� bλ).

A good candidate of multi-scale isotropic structuring function leading to (max,min) gran-

ulometries is based on the canonic structuring function (41), as bλ(x) = cλ(x) + α, which is

equivalent to

bλ(x) = λ−1c1(x) + α, λ ≥ 1, α > 0.

More generally, we can also consider the family of multi-scale functions

bλ(x) = −‖x‖
P

λP
+ α, λ ≥ 1, α > 0, P > 0.
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4 Hopf-Lax-Oleinik formulas for Hamilton-Jacobi equation ut±
H(u,Du) = 0

Operators formalized in the previous Section are also related to the viscosity solution of a well

known family of nonlinear partial differential equations: the Hamilton-Jacobi equation of the

form ut ±H(u,Du) = 0. Hamilton-Jacobi equations are of great importance in physics and

optimal control [18]. Before developing the connection with the present work, let us review

very briefly the link between another form of Hamilton-Jacobi equation, ut ± H(Du) = 0,

and classical morphological operators viewed as convolutions in (max,+)-algebra.

4.1 Morphological PDE for classical dilation and erosion

Consider the Hamilton-Jacobi equation

ut(x, t)±H (x,Du(x, t)) = 0 in Rn × (0,+∞), (59)

with the initial condition u(x, 0) = f(x) in Rn. Such family of equations usually does not

admit classic (i.e., everywhere differentiable) solutions but can be studied in the framework

of the theory of viscosity solutions [19]. It is well known [10] that if the Hamiltonian has the

properties: (i) H(x, p) = H(p) is convex and (ii) lim|p|→+∞H(p)/|p| = +∞, then the solution

of Cauchy problem (59) is given for + and − respectively by the so-called Hopf-Lax-Oleinik

formulas:

u(x, t) = inf
y∈Rn

[
f(y) + tH∗

(
x− y
t

)]
,

and

u(x, t) = sup
y∈Rn

[
f(y)− tH∗

(
x− y
t

)]
,

where H∗(q) is the Legendre-Fenchel transform of function H(p), i.e.,

H∗(q) = sup
p∈Rn

{〈p, q〉 −H(p)} , q ∈ Rn. (60)

where 〈p, q〉 denotes the dot product of p and q.

PDE (59) plays a central role in continuous morphology [1, 7, 17, 42]. In particular, by

taking H(p) = 1/2‖p‖2, such that H∗(q) = 1/2‖q‖2, a kind of canonic morphological PDE is

formulated {
∂u
∂t = ±1

2‖∇u‖
2, x ∈ E, t > 0

u(x, 0) = f(x), x ∈ E
(61)

such that the corresponding viscosity solutions are given by

u(x, t) = sup
y∈E

{
f(y)− ‖x− y‖

2

2t

}
(for + sign), (62)

u(x, t) = inf
y∈E

{
f(y) +

‖x− y‖2

2t

}
(for − sign), (63)
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which just correspond to a dilation (f ⊕pt)(x) and an erosion (f 	pt)(x) of image f(x) using

the multiscale quadratic (or parabolic) structuring function:

pt(x) = −‖x‖
2

2t
. (64)

By the way, due to its properties of semi-group, dimension separability and invariance to

transform domain [41, 30, 15], the structuring function pt(x) can be considered as the canonic

one in morphology, playing a similar role to the Gaussian kernel in linear filtering.

Other generalized forms of the Hamilton-Jacobi model (59) cover the flat morphology

by disks [42]; i.e., ut = ±‖∇u‖, as well as operators with more general P -power concave

structuring functions, i.e., ut = ±‖∇u‖P . For the application of the latter model to adaptive

morphology see [21].

4.2 Viscosity solution of Hamilton-Jacobi equation with Hamiltonians con-

taining u and Du

We study now the Hopf-Lax-Oleinik type formulas for Hamilton-Jacobi PDE of form ut ±
H(u,Du) = 0 and its links to convolutions in (max,min)-algebra. The theory of this equation

was developed by Barron, Jensen and Liu [11, 12]. Other interesting results can be found in

paper by Alvarez, Barron and Ishii [2] and the excellent survey paper by Van and Son [65].

The most relevant elements for us can be summarized in the following result.

Proposition 11 Let us consider the two following Cauchy problems (first-order Hamilton-

Jacobi PDEs): {
ut +H1(u,Du) = 0, in (x, t) ∈ Rn × (0,∞),

u(x, 0) = f(x), ∀x ∈ Rn,
(65)

and {
ut +H2(u,Du) = 0, in (x, t) ∈ Rn × (0,∞),

u(x, 0) = g(x), ∀x ∈ Rn,
(66)

where the initial conditions are functions f, g : Rn×R, such that f is a LSC proper function,

bounded from below; and g an USC proper function, bounded from above. The Hamiltonians

H1, H2 : R× Rn → Rn are assumed to satisfy the following conditions:

(A1) H1(γ, p) and H2(γ, p) are continuous;

(A2) H1(γ, p) and H2(γ, p) are nondecreasing in γ ∈ R, ∀p ∈ Rn;

(A3) H1(γ, p) is convex and H2(γ, p) is concave in p ∈ Rn, ∀γ ∈ R;

(A4) H1(γ, p) and H2(γ, p) are positively homogeneous of degree 1 in p ∈ Rn, i.e., H1(γ, λp) =

λH1(γ, p), ∀λ ≥ 0.
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The LSC viscosity solution of (65) is given by

u(x, y) = inf
y∈Rn

[
f(y) ∨H]

1

(
x− y
t

)]
, (67)

and the USC viscosity solution of (66) is

u(x, y) = sup
y∈Rn

[
f(y) ∧H2]

(
x− y
t

)]
, (68)

where the conjugate operators H] and H] are defined as

H](q) = inf {γ ∈ R : H(γ, p) ≥ 〈p, q〉,∀p ∈ Rn} , (69)

H](q) = sup {γ ∈ R : H(γ, p) ≤ 〈p, q〉, ∀p ∈ Rn} . (70)

Proof. The proof for Cauchy problem (65) corresponds to the one of Theorem 5.5 in [2].

Problem (66) is symmetrically obtained by considering the relationship [65]:

[−H(−γ,−p)]] (z) = − [H](γ, p)] (z). (71)

The simplest case of admissible (A1)-(A4) convex Hamiltonian corresponds to H(γ, p) =

γ‖p‖ such that, using Cauchy-Schwartz inequality, one gets

H](q) = inf {γ ∈ R : γ‖p‖ ≥ 〈p, q〉} = ‖q‖.

The associated concave Hamiltonian is given by H(γ, p) = −γ‖p‖, whose conjugate is also

H](q) = ‖q‖. Using this case as a starting point, a prototype of PDE in the framework of

operators in (max,min)-algebra can be defined

Definition 12 Given any continous and bounded function f : E → [a, b] ⊂ R, the canonic

(Hamilton-Jacobi) PDE in (max,min)-morphology is defined as{
∂u
∂t = ±u‖∇u‖, x ∈ E, t > 0

u(x, 0) = f(x), x ∈ E
(72)

and its (unique weak) solutions at scale t are given by

u(x, t) = sup
y∈E

{
f(y) ∧ ‖x− y‖

t

}
(for + sign), (73)

u(x, t) = inf
y∈E

{
f(y) ∨ ‖x− y‖

t

}
(for − sign). (74)
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Therefore the viscosity solutions of Cauchy problem (72) are a supmin convolution and an

infmax convolution using the conic structuring function cλ(x) given by (77), where the scale

parameter is here the time; i.e., λ = t. More precisely, we note that these solutions

u(x, t) = (f 5 (−ct))(x) (for + sign),

u(x, t) = (f 4 ct)(x) (for − sign),

are neither dual nor adjoint in the sense of Section 2. Consequently their composition does

not lead to opening or closing since for instance:

((f 5 (−ct))4 ct) 6= ((f 5 (−ct))4∗ (−ct)) .

The model (72) can be generalized to

∂u

∂t
= ±αu‖∇u‖, x ∈ E, t > 0

with initial condition u(x, 0) = f(x) and α > 0, such that we easily see that the corresponding

solutions are

u(x, t) = (f 5 (−cαt))(x) (for + sign),

u(x, t) = (f 4 cαt)(x) (for − sign),

or in other words, multiplying u by α involves a scaling in time by α. This principle can be a

clue to explore the notion of spatially adaptive (max,min)-operators based on using a scale

depending on space x, i.e., a model of the form ut = ±α(x)u‖∇u‖.
Let us mention an alternative natural generalization of the canonic PDE which involves

raising function u to power P , P > 0, given by

∂u

∂t
= ±uP ‖∇u‖, x ∈ E, t > 0

again with initial condition u(x, 0) = f(x). Now the corresponding viscosity solutions are

u(x, t) = sup
y∈E
{f(y) ∧ (−cP ;t(x− y))} (for + sign), (75)

u(x, t) = inf
y∈E
{f(y) ∨ (−cP ;t(x− y))} (for − sign). (76)

where

cP ;t(x) = −‖x‖
1
P

t
1
P

. (77)

We note that cP ;t(x) is a concave function if P ≤ 1 and quasiconcave if P > 1 (see next

Section).
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As a final variation of the model of the canonical PDE (72), we can consider the case

where the Hamiltonians are replaced by either the pair

H1(γ, p) = (α+ γ)‖p‖
H2(γ, p) = −(α+ γ)‖p‖

}
⇔ H]

1(q) = H]2(q) = ‖q‖ − α; (78)

or the pair

H1(γ, p) = (α− γ)‖p‖
H2(γ, p) = −(α− γ)‖p‖

}
⇔ H]

1(q) = H]2(q) = α− ‖q‖; (79)

which involves respectively the structuring functions:

c∨α,t(x) = −
(
‖x‖
t
− α

)
and c∧α,t(x) = −

(
α− ‖x‖

t

)
.

These models are related to the notion of viscous morphology, discussed below.

Another interesting example is the following convex case: H(γ, p) = eγ‖p‖ which satisfies

all (A1)-(A4). One computes the conjugate H](q) as follows: the inequality H(γ, p) =

eγ‖p‖ ≥ 〈p, q〉, ∀p ∈ Rn, holds if and only if eγ ≥ ‖q‖, or γ ≥ log ‖q‖. Thus H](q) = log ‖q‖.
For the corresponding concave H(γ, p) = −e−γ‖p‖, using relationship (71), we have that

H](q) = − log ‖q‖.
Finally, let us bring here the case of a convex-concave Hamiltonian which leads to a

curious pair of composed operators. Consider a Cauchy problem of the form{
ut +H(u,Du), in (x, t) ∈ Rn × (0,∞),

u(x, 0) = u0(x), ∀x ∈ Rn,

where the Hamiltonian is given by H(γ, p) = H1(γ, p)+ H2(γ, p), such that H1 and H2 hold

assumptions (A1)-(A4). In particular H1(γ, ·) is convex and H2(γ, ·) is concave. As shown

in [65], the expected subsolution and supersolution are given by

u−(x, t) = sup
z∈Rn

inf
y∈Rn

{
u0 (x− t(y + z)) ∨H]

1 (y) ∧H2] (z)
}
, (80)

u+(x, t) = inf
z∈Rn

sup
y∈Rn

{
u0 (x− t(y + z)) ∧H2] (y) ∨H]

1 (z)
}
. (81)

In addition, if u0 is a bounded and uniformly continuous function, this problem admits a

unique viscosity solution u(x, t) such that u− ≤ u ≤ u+.

As example of application, we can consider the following Cauchy problem introduced

in [65]: {
∂u
∂t = −‖∇u‖ sinhu, x ∈ E, t > 0

u(x, 0) = f(x), x ∈ E
(82)

where sinh a is the hyperbolic sin function; i.e., sinh a = 1/2 (ea − e−a), ∀a ∈ R. The Hamil-

tonian H(γ, p) = ‖p‖ sinh γ can be written as H(γ, p) = H1(γ, p)+ H2(γ, p) = 1/2eγ‖p‖
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−1/2e−γ‖p‖, meeting the assumption of sum of convex and concave functions. As we have

shown above: H]
1(q) = log (2‖q‖) and H2](q) = − log (2‖q‖). Hence the subsolution and

supersolution are derived from (80) and (81); i.e.,

u−(x, t) = sup
z∈Rn

inf
y∈Rn

{f (x− t(y + x)) ∨ log (2‖y‖) ∧ − log (2‖z‖)} , (83)

u+(x, t) = inf
z∈Rn

sup
y∈Rn

{f (x− t(y + x)) ∧ − log (2‖y‖) ∨ log (2‖z‖)} . (84)

Using our notation, we have

u−(x, t) = ((f 4 lt)5 lt) (x),

u+(x, t) = ((f 5 lt)4 lt) (x),

with lt(x) = − log
(
2‖x‖t−1

)
. We can expect that, even if the solution of (82) is neither an

opening nor a closing, it will produce a rather symmetric regularization of a bounded real

valued function f . That corresponds to a kind of self-dual filtering with respect to 0.

5 Nonlinear analysis using operators (4,5)

Besides their relationships with first-order Hamilton-Jacobi PDE, (max,min)-convolutions

are powerful tools for other areas of nonlinear mathematics.

5.1 Quasi-concavity

Minkowski addition and subtraction behave particularly well for convex sets [46]. If X is

convex, X 	 B is convex for any B. If X and B are convex, X ⊕ B is convex. The interest

of (max,+)-convolutions (i.e., classical dilation (f ⊕ b) and erosion (f 	 b) of functions) in

convex analysis is known from the origin of this area of mathematics [49, 55]. Convolutions

in (max,min)-algebra play a similar, but less known, role in the case of a more general class

of functions: the quasiconvex functions.

Let us start by a recall on quasiconvexity/quasiconcavity [9]. A function f ∈ F(C,R)

defined on a convex set C ⊂ Rn, C ∈ C, is said to be quasiconvex if, for every x, y ∈ Rn and

λ ∈ (0, 1), one has

f (λx+ (1− λ)y) ≤ f(x) ∨ f(y). (85)

On the contrary, f ∈ F(C,R) is said to be quasiconcave if

f (λx+ (1− λ)y) ≥ f(x) ∧ f(y). (86)

Note that f is quasiconvex if and only if −f (or M − f in the case of functions bounded

in [0, 1]) is quasiconcave. Roughly speaking, we can said that any “unimodal function” is

quasiconcave.
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An alternative way of defining quasiconvexity and quasiconvexity involves level sets. A

function f ∈ F(C,R) is quasiconvex if every lower level set of f is convex, i.e., X−h (f) ∈ C. A

function f ∈ F(C,R) is quasiconcave if every upper level set of f is convex X+
h (f) ∈ C. Using

formulas (14) and (15), we note that the definition of quasiconvexity is valid by replacing the

convexity of lower level set by the convexity of strict lower level set.

The notion of quasiconcavity is weaker than the notion of concavity, in the sense that

every concave function is quasiconcave. Similarly, every convex function is quasiconvex.

Note also that a concave function can be a quasiconvex function, e.g., x 7→ log(x) is

concave, and it is quasiconvex.

We can now introduce the following immediate result.

Proposition 13 Let b : C → R be a quasiconcave function defined on a convex set C ⊂ Rn,

C ∈ C.

• If g ∈ F(C,R) is a quasiconvex function, then the infmax convolution (g4 b) is quasi-

convex.

• If f ∈ F(C,R) is a quasiconcave function, then the supmin convolution (f 5 b) is

quasiconcave.

Proof. The proof is straightforward from the formulation of supmin and infsup convolu-

tions in terms of respectively Minkowski sum of upper level sets and lower level sets; i.e.,

expressions (30) and (31), together with the property of convexity preservation of Minkowski

addition X ⊕B if both X and B are convex.

In addition, if we observe the expressions (32) and (33) of the adjoint operators, which

involve Minkowski substraction, we have a straightforward more general result:

• If g ∈ F(C,R) is a quasiconvex function, then the adjoint infmax convolution (g4∗ b)
is quasiconvex for any structuring function b ∈ F(C,R).

• If f ∈ F(C,R) is a quasiconcave function, then the adjoint supmin convolution (f5∗ b)
is quasiconcave for any structuring function b ∈ F(C,R).

As a consequence, for the product operators, openings and closings, we also have nice prop-

erties of quasiconcavity/convexity preservation.

Proposition 14 Let b : C → R be a quasiconcave function defined on a convex set C ⊂ Rn,

C ∈ C.

• If g ∈ F(C,R) is a quasiconcave function, then the (max,min)-opening (g♦ b) is quasi-

concave.

• If f ∈ F(C,R) is a quasiconvex function, then the (max,min)-closing (f� b) is quasi-

convex.
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Proof. In both cases the result is trivial from the expressions of (max,min)-opening and

closing in terms of level sets. For instance, one has for the closing:

(f� b) = ((f 5∗ b)4 b) ,

So, if b is quasiconcave then b̌c is quasiconvex, then as f is quasiconvex, the operator (f5∗ b)
is quasiconvex, so ((f 5∗ b)4 b) too.

The study of connectedness of level sets under (max,min)-convolutions is also straight-

forward from the properties of connectedness of Minkowski addition; i.e., if X and B are

connected, X ⊕ B is connected [46]. The following assertions hold [39]: (i) if f and b have

connected strict lower (resp. strict upper) sets then so does (f 4 b) (resp. (f 5 b)); (ii)

if f and b have connected lower (resp. upper) sets then so does (f 4 b) (resp. (f 5 b)).

Other issues related to connectedness, as the existence of nonlocal minima of (f 4 b)(x) or

nonlocal maxima of (f5b)(x) as well as some properties on continuity of level set maps from

(max,min)-convolutions have been also studied in [39].

5.2 Lipschitz approximation

In many mathematical areas, from nonlinear analysis to optimization theory, it is important

to construct Lipschitz approximation of a given function. We need first to recall the notion

of Lipschitzian function. A function φ : Rn → R is said to be Lipschitz with constant L ∈ R+

if

|φ(x)− φ(y)| ≤ L‖x− y‖, ∀x, y ∈ Rn.

In this respect, (max,min)-convolutions has a fruitful role to play [57].

Proposition 15 Let the structuring function b : Rn → R be majorized from above and L-

Lipschitz.

• If f : Rn → R ∪ {−∞} is a proper function, then the supmin convolution (f 5 b) is

L-Lipschitz.

• If g : Rn → R ∪ {+∞} is a proper function, then the infmax convolution (g 4 b) is

L-Lipschitz.

Proof. We provide the proof for the supmin convolution; the case of infmax is obtained

similarly. First, the operator can be written in the form

(f 5 b)(x) = sup
{
φy(x) : y ∈ dom− f

}
,

where

φy(x) = f(y) ∨ b(x− y).
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Obviously, since b(x) is L-Lipschitz, for each y ∈ dom− f , the function φy : Rn → R is also

L-Lipschitz. Indeed, for all x and z in Rn, we can write

|φy(x)− φy(z)| = |f(y) ∨ b(x− y)− f(y) ∨ b(z − y)|
≤ |b(x− y)− b(z − y)|
≤ L‖x− z‖.

This is equivalent to say that

φy(z)− L‖x− z‖ ≤ φy(x) ≤ φy(z) + L‖x− z‖,

and then, taking the supremum with respect to y ∈ dom− f , one gets

(f 5 b)(z)− L‖x− z‖ ≤ (f 5 b)(x) ≤ (f 5 b)(z) + L‖x− z‖

which is equivalent

|(f 5 b)(x)− (f 5 b)(z)| ≤ L‖x− z‖.

Roughly speaking, this basic result asserts that the supmin and infmax convolutions of f

and g by b inherits the Lipschitzian property of b, no matter how bad the functions f and g

are.

A well-known case of Lipschitzian function is the conic structuring function:

cλ(x) = −λ−1‖x‖, λ > 0,

which is just a λ−1-Lipschitz function. By using our canonic multiscale structuring function

cλ relevant properties of regularization are obtained.

Proposition 16 Let f be a nonpositive proper function and g be a nonnegative proper func-

tion.

• (Lipschitzian approximation) The supmin convolution f [λ](x) = (f 5 cλ)(x) and the

infmax convolution g[λ](x) = (g4 cλ)(x) are λ−1-Lipschitz.

• (Convergence to envelopes) The lower envelope of the family
{
f [λ] : λ > 0

}
converges

monotonically downwards to the upper-semicontinuous hull cl+ f of f , i.e.,

(cl+ f)(x) = inf
λ>0

f [λ](x), ∀x ∈ Rn.

The upper envelope of the family
{
g[λ] : λ > 0

}
converges monotonically upwards to

the lower-semicontinuous hull cl− g of g, i.e.,

(cl− g)(x) = sup
λ>0

g[λ](x), ∀x ∈ Rn.
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• (Local extrema preservation) For f(x0) ∈]−∞, 0[, one has the equivalence

f [λ](x0) = f(x0) ⇐⇒ x0 maximizes f over
◦
Bλf(x0)(x0)

For g(x0) ∈]0,+∞, [, one has the equivalence

g[λ](x0) = g(x0) ⇐⇒ x0 minimizes g over
◦
Bλg(x0)(x0)

where
◦
Br(x) is the open ball centered at x and radius r > 0.

Proof. Lipschitzian approximation is a particular case of previous proposition. The proof

of convergence of infmax convolution corresponds to that of Proposition 3.2 in [57]. For the

supmin convolution the same result is obtained by duality.

Let us show how local minima preservation holds, which is based on the proof of Proposi-

tion 3.3 in [57]. On the one hand, recall that one has always the inequality g[λ](x0) ≤ g(x0).

On the other hand,

g(x0) ≤ g(y) ∨ λ−1‖x0 − y‖, ∀y ∈ Rn,

which is equivalent to

g(x0) ≤ g(y) whenever λ−1‖x0 − y‖ < g(x0).

Therefore, g[λ](x0) = g(x0) if and only if g(y) ≥ g(x0) for all y ∈
◦
Bλg(x0)(x0).

The local maxima preservation is obtained analogously, since we have

f(x0) ≥ f(y) ∧ λ−1‖x0 − y‖, ∀y ∈ Rn, ⇒ f(x0) ≥ f(y) whenever λ−1‖x0 − y‖ < f(x0)

which together with inequality f [λ](x0) ≥ f(x0), involves that f [λ](x0) = f(x0) if and only if

f(y) ≤ f(x0) for all y ∈
◦
Bλf(x0)(x0).

Regularization effects of supmin and infmax convolutions by the conic structuring func-

tions can be generalized to more general one-parameter kernels. For instance, for (g 4 kλ),

a kernel kλ : R+ → R of type kλ
(
λ−1‖x‖

)
such that k(·) is nondecreasing, k(0) ≤ max g and

min g < max k; e.g., kλ(x) = log(λ−1‖x‖). See main generalized results in [53].

Bibliographic remark. The use of standard dilation and erosion for convex functions,

i.e., (max,+)-convolutions, for regularization is well known. In particular, the Moreau–

Yosida transform of a convex function g, which consists in an erosion (infimal convolution)

of g with a parabolic structuring function, produces a Lipschitz continuously differentiable

approximation of the function. Note that for the case of a quasiconvex function it works only

in the 1-dimensional case.

If we replace the convexity of g by either a condition of boundness on bounded sets or a

quadratic minorization property, one can obtain approximation and regularization of these
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arbitrary functions g in Hilbert spaces by the Lasry–Lions method [36, 8], which consists in

a quadratic erosion followed by a quadratic dilation. This technique can be also applied to

functions on a Riemannian manifold of nonpositive curvature [6].

The generalization of the (max,min)-regularization considered here to a counterpart of

the Lasry–Lions framework as well as the extension to curved spaces will be the object of

ongoing research.

5.3 A transform in (max,min)-convolution

The Fourier transform of the classical convolution in (+,×) algebra of two functions is the

product of their corresponding transforms. Similarly, in the context of convex analysis, the

Legendre–Fenchel transform of the (max,+) inf-convolution coincides with the sum of the

corresponding Legendre–Fenchel transforms.

We recall the Legendre–Fenchel transform of a function φ : E → R∪{+∞} is the function

φ∗ : E∗ → R ∪ {−∞} given by

φ∗(w) = sup
x∈E
{〈w, x〉 − φ(x)} , ∀w ∈ E∗, (87)

where E and its Fenchel conjugate space E∗ are subsets of Rn. In that what follows, the

symbol Λ stands for the 2D simplex

Λ =
{

(λ1, λ2) ∈ R2 : λ1 + λ2 = 1, λ1 ≥ 0, λ2 ≥ 0
}
.

We need to introduce also the notion of right multiplication of φ∗ by a finite scalar λ ≥ 0 as

follows

(φ∗λ) (w) =

{
λφ∗

(
λ−1w

)
if λ > 0

supx∈dom− φ〈w, x〉 if λ = 0

Using these ingredients, relationship between Legendre–Fenchel transform and (max,min)-

convolutions was considered in [57]. We consider in particular the case for the infmax con-

volution. Let f : E → R ∪ {+∞} be a proper convex function and b : E → R ∪ {−∞} be a

proper concave function. The Legendre–Fenchel transform of (f4b) is given by

(f 4 b)∗ (w) = inf
(λ1,λ2)∈Λ

(
f∗λ1 + (b̌c)∗λ2

)
(w), ∀w ∈ E∗. (88)

Even if the formula (88) seems compact, it presents from our viewpoint a limited interest

since, on the one hand, it is related to a representation of the infmax convolution as

(f 4 b)(x) = inf
(u,v)∈M

sup
(λ1,λ2)∈Λ

{
λ1f(u) + λ2b̌

c(v)
}
,

where

M =
{

(u, v) ∈ dom− f × dom− b̌c : u+ v = x
}
.
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On the other hand, it is limited to convex functions.

Research on another transform intrinsically adapted to (max,min)-convolutions have been

conducted in two independent approaches. Gondran in [26] introduced the so-called infmax-

affine transform; Volle in [68], inspired from the results on Hamilton-Jacobi PDE developed

by Barron and co-workers [11, 12] (see previous Section), introduced quasiconvex conjugate

transform. We adopt here the framework developed by Volle and consequently proof of all

results are given in [68]. We have nevertheless adapted the notation and terminology to our

context.

Support function. The notion of support function plays a central role in the transform

domain considered here. We recall that the support function of a nonempty set X ⊂ Rn is

defined by

i∗X(y) = sup
x∈X
〈x, y〉, ∀y ∈ Rn, (89)

with the convention sup ∅ = −∞. We note that the support function of X is just the

Legendre–Fenchel transform of the indicator function iX of X:

iX(x) =

{
0 if x ∈ X

+∞ if x ∈ Xc

As examples, we can mention: i) the support function of a singleton X = {x} is i∗X(λy) =

〈x, y〉; ii) the support function of the Euclidean unit ball X = B1 is i∗X(λy) = ‖x‖.
The support function is positively homogenous, i.e., i∗X(λy) = λi∗X(y) λ > 0, ∀y ∈ Rn and

subadditive, i.e., i∗X(y + z) ≤ i∗X(y) + i∗X(z), ∀y, z ∈ Rn. It follows that i∗X is a LSC convex

function.

The support functions of a scaled or translated set are closely related to the original set

X: i) iλX(x) = λiX(x), λ > 0, y ∈ Rn; ii) iX+w(x) = iX(x) + 〈x,w〉, y, w ∈ Rn. The latter

generalizes to one of the fundamental properties of the support function: the additivity with

respect to the Minkowski addition, i.e., for all y ∈ Rn one has

i∗X⊕B(y) = i∗X(y) +· i
∗
B(y), (90)

where (+∞) +· (−∞) = (−∞) +· (+∞) = −∞.

α and β-conjugates. The motivation of the conjugate domain in (max,min) algebra is

founded on the representation of infmax convolution as the Minkowski addition of lower level

sets. In fact, the corresponding representation is just based on the support function of each

lower level set.

Definition 17 To each extended real-valued function f : Rn → R, let us associate the α-

conjugate function fα : Rn × R→ R defined by

fα(y, h) = sup
f(x)<h

〈x, y〉 = i∗
Y −h (f)

. (91)
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For any y ∈ Rn, fα(y, ·) is LSC and nondecreasing. Moreover, for any family (fi)i∈I , fi ∈
F(Rn,R), one has (

inf
i∈I

fi

)α
= sup

i∈I
fαi .

This α-conjugation is closely related to the infsup convolution [68](Theorem 3.1):

Proposition 18 Given any pair of functions f, b ∈ F(Rn,R), one always has(
f 4 b̌c

)α
= fα +· b

α. (92)

This result is an easy consequence of relation (31) and the property (90):

(f 4 b)α (y, h) = i∗
Y −h (f4b)(y) = i∗

Y −h (f)⊕Y −h (b̌c)
= i∗

Y −h (f)
(y) +· i

∗
Y −h (b̌c)(y)

= fα(y, h) +·
(
b̌c
)α

(y, h).

Let us define now a kind of dual (pseudo-inverse) transform.

Definition 19 The β-conjugate of any function φ : Rn × R→ R is the extended real-valued

function φβ : Rn → R defined as

φβ(x) = sup
y∈Rn

sup {h ∈ R : 〈x, y〉 > φ(y, h)} . (93)

We also have the property (
inf
i∈I

φi

)β
= sup

i∈I
φβi .

for any family (φi)i∈I , φi ∈ F(Rn × R,R).

The α and β conjugates are related by the following Galois correspondence

fα ≤ φ⇔ f ≥ φβ. (94)

for any pair of functions f ∈ F(Rn,R) and φ ∈ F(Rn × R,R).

We consider the composite operators, called the biconjugates

f ∈ F(Rn,R) 7→ fαβ = (fα)β ∈ F(Rn,R),

φ ∈ F(Rn × R,R) 7→ φβα =
(
φβ
)α
∈ F(Rn × R,R).

The biconjugates are

• increasing: f ≤ g ⇒ fαβ ≤ gαβ; φ ≤ ψ ⇒ φβα ≤ ψβα;

• antiextensive: fαβ ≤ f ; φβα ≤ φ;

• idempotent:
(
fαβ

)αβ
= fαβ;

(
φβα

)βα
= φβα.

36



The biconjugate of f ∈ F(Rn,R), resp. φ, is nothing but the greatest regular minorant

of f , resp. φ ∈ F(Rn × R,R):

fαβ = sup
{
g ∈ F(Rn,R) : gαβ = g and g ≤ f

}
,

φβα = sup
{
ψ ∈ F(Rn,R) : ψβα = ψ and ψ ≤ φ

}
.

All the above properties are mere consequences of the theory of Galois correspondences.

We can introduce now one of the important results which describes the classes of regular

functions in such conjugate domains [68](Theorem 3.4).

Proposition 20 Let f : Rn → R be an extended real-valued function. Then

f = fαβ

if and only if f is a LSC quasiconvex function.

From the previous results, we observe that for any pair of functions f, b ∈ F(Rn,R),

(fα +· b
α)β is just the LSC quasiconvex hull of the infmax convolution f 4 b̌c. In the case

when f and b are quasiconvex, f 4 b̌c is quasiconvex too so that (fα +· b
α)β is then the LSC

hull of f4 b̌c. In order to have the explicit equivalence f4 b̌c = (fα +· b
α)β, f and b should be

quasiconvex, compact and satisfy some other minor technical constraints, see [68](Theorem

4.2).

Applications. Let us come back to the first-order Hamilton-Jacobi PDE discussed in

Proposition 11. We remind that the LSC viscosity solution with convex Hamiltonian H(γ, p),

p ∈ Rn, γ ∈ R, involves the conjugate Hamiltonian (69), given by

H](q) = inf {γ ∈ R : H(γ, p) ≥ 〈p, q〉, ∀p ∈ Rn} .

As H(·, p) is nondecreasing, we note that the function H](q) above is just the β-conjugate of

Hamiltonian H(γ, p), namely:

H](q) = (H(p, γ))β (q) = sup
p∈Rn

sup {γ ∈ R : H(p, γ) < 〈p, q〉} .

As we have discussed in Section 4, for the case H(p, γ) = γ‖p‖, we have Hβ(q) = ‖p‖.
Therefore, α and β conjugates can be applied to solve some Hamilton-Jacobi PDEs.

We conclude this part by describing the conjugates of an important class of quasiconvex

functions, namely the radial quasiconvex functions, which generalizes the previous case. Let

us consider that we work in a general Banach space E equipped with a norm ‖ · ‖ and denote

by ‖ · ‖∗ the dual norm:

‖ · ‖∗(y) = max
‖x‖=1

〈x, y〉,
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for any y in the topological dual F of E. We remind that if p, q ∈ [1,+∞] satisfy 1/p+1/q = 1,

then the Lp and Lq norms are dual to each other. In particular, the Euclidean norm is self-

dual (p = q = 2). To any nondecreasing extended real-valued function a : [0,+∞[→ R is

associated the quasiconvex function f = a◦‖·‖, where ◦ denotes the composition of functions.

Setting

ã(r) =

{
a(0) for r ∈]−∞, 0[

a(r) for r ∈ [0,+∞[

we get a nondecreasing function ã : R→ R such that ã(0) = inf ã. We will use also the notion

of LSC quasi-inverse of a given by

ae(s) = sup {r ∈ R : a(r) < s} = inf {r ∈ R : a(r) ≥ s} .

The α-conjugate of a radial quasiconvex function can be written as the product of

a nondecreasing function by the dual norm. More precisely, we have the following re-

sult [68](Propositions 4.10 and 4.11):

Proposition 21 Let a and ã as above. Then, one has

(a ◦ ‖ · ‖)α (y, h) = ãe(h)‖y‖∗, ∀y ∈ F, h ∈ R.

Let φ : F × R→ R by defined by φ(y, h) = b(h)‖y‖∗ with b : R→ R nondecreasing, then

φβ(x) = be (‖x‖) , ∀x ∈ E.

Finally, we have the following result on biconjugates [68](Corollaries 4.12 and 4.13):

Proposition 22 Let f = a ◦ ‖ · ‖ with function a : [0,+∞[→ R non decreasing. Then fαβ =

ā ◦ ‖ · ‖, where ā is the LSC hull of a. Let φ : F ×R→ R, φ(y, h) = b(h)‖y‖∗ with b : R→ R
nondecreasing, the φβα = b̄(h)‖y‖∗.

Let us conclude by saying that the theory of α, β-conjugates and in particular, the

considered case of radial quasiconvex functions, will be applied in the future to identify the

interesting cases of structuring functions and their composition rules in the framework of

(max,min)-convolutions.

Bibliographic remark. In the state-of-the-art of mathematical morphology, the no-

tion of Legendre–Fenchel transform was rediscovered and generalized to any function, either

convex or non convex: it is named the slope transform [22, 41].

Support function defined on convex sets in the plane was used by Schmitt [61] to formulate

Minkowski addition of sets represented by its boundary.
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6 Ubiquity of (max,min)-convolutions in mathematical mor-

phology

Our aim in this Section is to review some previous approaches of “unconventional” dilation

and erosion (in the sense that they cannot be related to (max,+)-convolutions paradigm)

which fit naturally in a formulation as (max,min)-convolutions.

The two first cases are conventional and rather trivial, however, we consider that links to

the other frameworks deserves some discussion.

6.1 Distance function

The distance function is a powerful tool in image processing. It is based on endowing space

E with a particular norm ‖ · ‖. Then for any nonempty subset X ⊂ E, the distance function

of set X, dX : E → R+, is defined as

dX(x) = inf
y∈Xc

‖x− y‖, x ∈ E.

The distance function is just a particular case of the infmax convolution. Indeed, if one

introduces the zero indicator function OX of set X:

OX(x) =

{
0 if x ∈ X
−∞ if x ∈ Xc

then, using the unit conic structuring function c1(x) = −‖x‖, one can write:

dX(x) = (−OXc4 c1) (x). (95)

The proof is straightforward:

(−OXc4 c1) (x) = inf
y∈E
{−OXc(y) ∨ ‖x− y‖} =

{
infy∈E ‖x− y‖ if y ∈ Xc

+∞ if y ∈ X
= inf

y∈Xc
‖x− y‖.

By changing the norm in the conic unit structuring function, other distance functions can

be obtained. Nevertheless, this infmax convolution is not the most efficient way to compute

the distance function.

6.2 Flat morphological operators using indicator functions

The binary case of morphological operators is solved by simply using the standard indicator

function 1X of a set X ⊂ E:

1X(x) =

{
1 if x ∈ X
0 if x ∈ Xc
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Then, given a set X and a structuring element B, we have

(1X 5 1B) = 1X⊕B, (96)

(1X 4∗ 1B) = 1X	B. (97)

This equivalence can be proven, without using upper level set representation, as follows:

(1X 5 1B) (x) = 1 ⇔ ∃y ∈ E , (1X(y) ∧ 1B(x− y)) = 1,

⇔ 1X(y) = 1 and 1B(x− y) = 1,

⇔ y ∈ X and x− y ∈ B,
⇔ x ∈ X ⊕B.

Proof of the second equality can be carried out analogously.

More generally, the case of flat dilation and erosion for functions is also easily obtained

by using the infinity indicator function ∞X of set X:

∞X(x) =

{
+∞ if x ∈ X
−∞ if x ∈ Xc

In the case of nonnegative bounded functions, +∞ is replaced by M and −∞ by 0. Then,

for any function f in F(E,R) or in F(E, [0,M ]), we have:

(f 5∞B) = (f ⊕B) , (98)

(f 4∗∞B) = (f 	B) . (99)

The proof is trivial using the representation of the supmin and adjoint infmax convolutions

in terms of upper level sets and taking into account that X+
h (∞B) = B, ∀h; i.e.,

X+
h (f 5∞B) = X+

h (f)⊕X+
h (∞B) = X+

h (f)⊕B,
X+
h (f 4∗∞B) = X+

h (f)	X+
h (∞B) = X+

h (f)	B.

In addition, we also have that

(f 4∞B) = inf
y∈E
{f(y) ∨ (−∞̌B)} = (f 	B) , (100)

⇒ (f 4∗∞B) = (f 4∞B) ,

(f 5∗∞B) = sup
y∈E
{f(y) ∨∗ (−∞B)} = (f ⊕B) , (101)

⇒ (f 5∗∞B) = (f 5∞B) .

and therefore for this case of flat structuring elements, which correspond to cylinders as

equivalent structuring functions, the dual and adjoint operators play the same role.
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6.3 Links with fuzzy morphology

The state-of-the-art on morphological operators based on fuzzy logic is very extensive. We

refer to papers by Nachtegael and Kerre [50] and by Bloch [14] which present an excellent

survey of the existing literature on fuzzy morphology. The latter brightly discusses the role

of duality with respect to complement vs. adjunction in fuzzy approaches. Results on fuzzy

morphology discussed here are mainly based on Deng and Heijmans [20]. A complementary

deeper insight from the algebraic viewpoint, in particular for representation theorems, can

be found in a paper by Maragos [44].

In fuzzy logic, the two basic (Boolean) logic operators, the conjunction C(s, t) = s∧ t and

the implication I(s, t) = s⇒ t (= ¬s∨t), are extended from the Boolean domain {0, 1}×{0, 1}
to the rectangle [0, 1]× [0, 1]. A fuzzy conjunction is a mapping from [0, 1]× [0, 1] into [0, 1]

which is increasing in both arguments and satisfies C(0, 0) = C(1, 0) = C(0, 1) = 0 and

C(1, 1) = 1. A fuzzy implication is decreasing in the first argument, increasing in the second

one and satisfies I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0.

Given a fuzzy set µ, the dilation and erosion by a fuzzy structuring element ν are then

defined as [20]:

δν,C(µ)(x) = sup
y
{C (ν(x− y), µ(y))} , (102)

εν,C(µ)(x) = inf
y
{I (ν(y − x), µ(y))} . (103)

As shown in [20], (I, C) is an adjunction if and only if (εν,C , δν,C) is an adjunction. Therefore,

fuzzy opening and closing derived from the composition of these operators have all required

properties, whatever the choice of the adjunction (I, C). Note however that some properties

such as the iteration; i.e.,

δν2,C (δν1,C(µ)) = δδν1,C(ν2),C(µ); εν2,C (εν1,C(µ)) = εδν1,C(ν2),C(µ);

require C to be associative and commutative.

Two particular cases of conjunction and adjoint implication widely used in fuzzy logic are

the Gödel-Brower:

CGB(a, t) = min(a, t) (104)

IGB(a, t) =

{
s, s < a

1, s ≥ a
(105)

and the Kleen-Dienes:

CKD(a, t) =

{
0, t ≤ 1− a
t, t > 1− a

(106)

IKD(a, s) = max(1− a, s) (107)

41



It is consequently straightforward to see that the four operators that we have defined

in Section 2 are just fuzzy dilations and erosions when they are applied to fuzzy sets (i.e.,

functions valued in [0, 1]):

δν,CGB (µ)(x) = (µ5 ν) (x)
adjoint←→ εν,CGB (µ)(x) = (µ4∗ ν) (x),

l dual l dual

εν,CKD(µ)(x) = (µ4 ν) (x)
adjoint←→ δν,CKD(µ)(x) = (µ5∗ ν) (x).

Let us conclude clarifying that fuzzy logic is much more general than the pairs of conjunc-

tion/adjuntion considered here and consequently one cannot simply reduce fuzzy morphology

to (max,min)-convolutions.

6.4 Links with viscous morphology

Theory and practice of morphological (flat) viscous operators was introduced by Vachier

and Meyer [63, 64]. The PDE formulation of these operators was done by Maragos and

Vachier [45]. The seminal idea was inspired from a physical model of image flooding by a

viscous fluid [47].

As we have discussed at the beginning of the paper, a fundamental property of flat

operators applied to numerical functions is the fact that they can be computed by applying

the corresponding set operator to the upper level sets, followed by stacking the processed

upper level sets. In other terms, the same set operator, that depends on a structuring

element, acts equally for all upper level sets X+
h (f): that can be interpreted as a similar

behavior on all the structures whatever their intensity h. The idea of viscous operators is to

apply a different scale (i.e., size) of structuring element at each upper level set. This principle

can be seen now as an operator which locally adapts its activity with respect to the intensity.

Let us formalize their definition according to [45]. For the sake of simplicity, let us consider

a nonnegative bounded function f : E → [0,M ]. Viscous operators have been formulated

as isotropic transforms, that is based on the use of balls Bλ as structuring elements. In this

framework, the (isotropic) intensity-adaptive dilation and erosion of function f are defined

as

δλ(h)(f) = sup
{
h ∈ [0,M ] : x ∈

(
X+
h (f)⊕Bλ(h)

)}
,

ελ(h)(f) = inf
{
h ∈ [0,M ] : x ∈

(
X+
h (f)	Bλ(h)

)}
,

where λ(h) : [0,M ] → [0,M ] is the scaling function with respect to intensity h. Two types

of viscosity (linear) functions have been proposed:

λ∧(h) = λ0
M − h
M

(negative slope),

λ∨(h) = λ0
h

M
(positive slope).
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Note that, using λ∧(h), points of lowest intensity, λ∧(0) = λ0, are strongly dilated (resp.

eroded) while points of highest intensity, λ∧(M) = 0, are left unchanged. Opposite effect are

obtained for λ∨(h). In the sequel, one set λ0 = M ; i.e., λ∧(h) = M − h and λ∨(h) = h, such

that λ∧ and λ∨ are dual functions.

Using intensity-adaptive operators and the two viscosity functions, two pairs of viscous

dilation and erosion are defined for a given function f :

δvisc
∧ (f) = δλ∧(h)(f) = sup

{
h ∈ [0,M ] : x ∈

(
X+
h (f)⊕BM−h

)}
, (108)

εvisc
∧ (f) = ελ∧(h)(f) = sup

{
h ∈ [0,M ] : x ∈

(
X+
h (f)	BM−h

)}
, (109)

and

δvisc
∨ (f) = δλ∨(h)(f) = sup

{
h ∈ [0,M ] : x ∈

(
X+
h (f)⊕Bh

)}
, (110)

εvisc
∨ (f) = ελ∨(h)(f) = sup

{
h ∈ [0,M ] : x ∈

(
X+
h (f)	Bh

)}
, (111)

such that
(
εvisc
∧ , δvisc

∧
)

and
(
εvisc
∨ , δvisc

∨
)

form two adjunctions. The pairs
(
εvisc
∨ , δvisc

∧
)

and(
εvisc
∧ , δvisc

∨
)

are dual by complement. Consequently, their compositions produce two viscous

openings and two closings: γvisc
∧ (f) = δvisc

∧
(
εvisc
∧ (f)

)
, γvisc
∨ (f) = δvisc

∨
(
εvisc
∨ (f)

)
, ϕvisc
∧ (f) =

εvisc
∧
(
δvisc
∧ (f)

)
and ϕvisc

∨ (f) = εvisc
∨
(
δvisc
∨ (f)

)
.

If we introduce the following structuring function:

v(x) =

{
M − ‖x‖ if ‖x‖ ≤M
0 if ‖x‖ > M

such that its complement structuring function is vc(x) = ‖x‖ if ‖x‖ ≤M and M if ‖x‖ > M ,

the previous viscous dilations and erosions (108)-(111) can be rewritten using the (max,min)-

convolution (respectively expressions (30), (32), (38), (39)):

δvisc
∧ (f) = sup

{
h ∈ [0,M ] : x ∈

(
X+
h (f)⊕X+

h (v)
)}

= (f 5 v) ,

εvisc
∧ (f) = sup

{
h ∈ [0,M ] : x ∈

(
X+
h (f)	X+

h (v)
)}

= (f 4∗ v) ,

δvisc
∨ (f) = sup

{
h ∈ [0,M ] : x ∈

(
X+
h (f)⊕ Y −h (vc)

)}
= (f 5∗ v) ,

εvisc
∨ (f) = sup

{
h ∈ [0,M ] : x ∈

(
X+
h (f)	 Y −h (vc)

)}
= (f 4 v) .

The link between the corresponding viscous opening and closing and our (max,min)-opening

and closing is trivial. In fact, using the results from Proposition 3, adjointness of two pairs of

operators is obvious. Concerning the duality by complement, for instance, between δvisc
∧ (f)

and εvisc
∨ (f), we have, on the one hand,(

δvisc
∧ (f c)

)c
=

[
sup

{
h ∈ [0,M ] : x ∈

(
X+
h (f c)⊕X+

h (v)
)}]c

= inf
{

(M − h) ∈ [0,M ] : x ∈
(
X+
h (f c)⊕X+

h (v)
)}

= inf
{

(M − h) ∈ [0,M ] : x ∈
(
X+
h (M − f)⊕X+

h (v)
)}

= inf
{
h ∈ [0,M ] : x ∈

(
X+
M−h(M − f)⊕X+

M−h(v)
)}

= inf
{
h ∈ [0,M ] : x ∈

(
X−h (f)⊕X−h (vc)

)}
.
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On the other hand, we have

εvisc
∨ (f) = sup

{
h ∈ [0,M ] : x ∈

(
X+
h (f)	 Y −h (vc)

)}
= inf

{
h ∈ [0,M ] : x /∈

(
X−h (f)	 Y −h (vc)

)}
= inf

{
h ∈ [0,M ] : x ∈

(
Y −h (f)⊕ Y −h (vc)

)}
.

Therefore, being precise, we have duality only when εvisc
∨ (f) is exact, see (34). The

difficulty to prove the duality by complement of viscous operators without the equivalence

(36) was pointed out by Meyer [48].

In addition to the operator framework, a PDE formulation of viscous dilation and erosion

was introduced in [45]. The two corresponding continuous models are:{
∂u
∂t = ±(max f − u)‖∇u‖, x ∈ E, t > 0

u(x, 0) = f(x), x ∈ E
(112)

and {
∂u
∂t = ±(u−min f)‖∇u‖, x ∈ E, t > 0

u(x, 0) = f(x), x ∈ E
(113)

This couple of PDEs are particular cases of the Hamilton-Jacobi models discussed in Section

4. More precisely, it corresponds to the case of the Hamiltonians given in expressions (78)

and (79). We can therefore conclude that the solution u(x, t) for + sign of model (112) is

equivalent to viscous dilation δvisc
∧ (f), but for − sign it is not exactly equivalent to the viscous

erosion εvisc
∧ (f). In our terminology, the latter is a case of adjoint infmax convolution while

the solution for − sign is an infmax convolution with the complemented structuring function.

Similarly, solution u(x, t) of model (113) is equivalent to viscous erosion εvisc
∨ (f) for − sign

and once again, for + sign a supmin convolution is obtained.

As a conclusion of this part on viscous operators, let us clarify that when using our

formulation of such operators it becomes evident that viscous openings and closings do not

require any implementation using upper level set decompositions and then stacking. They

can be implemented straightforward as (max,min)-convolutions, which notably reduces the

computation load.

6.5 Links with Boolean random function characterization

There is a theory of random set modelling intimately related to morphological image process-

ing. This theory was introduced by Matheron [46] and yields a sound family of probabilistic

models for microstructures (dealing with variability, heterogeneity, multi-scaling, etc.). It

has been widely used for modeling and predicting the average macroscopic response of ran-

dom media from their microstructure. Morphological operators are used to test and to select

appropriate models (i.e., estimate their parameters) from images and to simulate new im-

ages following the model. The set theory was later generalized to random functions. Our

44



aim here is just to point out how (max,min)-convolutions are related to random function

characterization in the framework of this theory.

Boolean random set characterization. First of all, we briefly recall the framework

for Boolean random sets. Let us assume that we work in the Euclidean space Rn. A Boolean

Random Closed Set (or Boolean RACS) X ⊂ Rn of parameters (θ,A′) is obtained as fol-

lows [46]. Consider, on the one hand, a realization of a Poisson point process of intensity

θ ≥ 0; i.e., the Poisson points xi are the germs. It means that the number of points in a

borel set B, denoted N(B), follows a Poisson distribution of parameter θµn(B) (i.e., mean

proportional to the Lebesgue measure of B):

P {N(B) = k} = e−θµn(B) (θµn(B))k

k!
.

Consider, on the other hand, a family of compact closed random sets A′ i.i.d. located at the

origin; i.e., A′ is the primary grain. Then, implant at each germ a realization of the primary

grain and take the union for all the points; i.e.,

X =
⋃
xi

A′xi

Any shape can be used for A′: convex or non convex, connected or not connected.

Given a RACS X, let us introduce the Choquet capacity TX(K), defined on the compact

sets K ∈ K as the probability that the compact K hits the set X, i.e.,

TX(K) = P {K ∩X 6= ∅} = 1− P {K ⊂ Xc} = 1−QX(K)

The functional T has the following properties: (i) T is bounded with 0 ≤ T ≤ 1 and T (∅) = 0;

(ii) T is increasing in the sense T (K) ≤ T (K∪K ′), K,K ′ ∈ K; (iii) T is upper-semicontinuous.

In fact, T acts as a distribution function of a random variable. If X is a stationary RACS,

then its Choquet capacity is shift invariant, i.e., TX(Kh) = TX(K). There is a fundamental

result, named the Choquet-Matheron-Kendall theorem, saying that a RACS is characterized

(described completely) by the probabilities QX(K) as K spans the class of the compact sets

K. From a practical viewpoint, it is important to note that the experimental estimation of

TX(K) and QX(K) from images is done using realizations of K and morphological transforms;

e.g., dilation or erosion:

TX(Kx) = P {Kx ∩X 6= ∅} = P
{
x ∈ X ⊕ Ǩ

}
;

QX(Kx) = P {Kx ⊂ Xc} = P {x ∈ Xc 	K} .

These expressions can be simplified in the case of a Boolean RACS. Let X be a Boolean

RACS of Poisson density θ and primary grain A′. The Choquet capacity of X for any K ∈ K
is given by [46]:

TX(K) = 1−QX(K) = 1− e−θE{µn(A′⊕Ǩ)}.
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Thus the number of primary grains hit by K follows a Poisson distribution with average

θE
{
µn
(
A′ ⊕ Ǩ

)}
. Now taking different K, such as a singleton K = {x}, a couple of points

K = {x, x+ d}, etc. the moments of Q(K) are obtained. The empirical values are used to fit

the parameters of the model. In addition, if the primary grain is a convex set, using Steiner

formula, the expressions of E
{
µn
(
A′ ⊕ λǨ

)}
are polynomials in λ. These computations are

used to test the validity of the Boolean model assumption.

Choquet capacity of random functions. The Boolean random functions are a gener-

alization of the Boolean RACS. The basic idea of Boolean random functions was introduced

by Jeulin [31] for modeling rough surfaces; this model has been extensively studied and gen-

eralized by Serra [60] and by Préteux and Schmitt [54]. We follow here the results formulated

by Jeulin [32]; for a more recent development, see [33].

The functional framework involves to generalize the RACS X by means of an upper

semicontinuous function Z(x) and the compact test set K by a lower semicontinuous test

function τ(x). Then, as for the case of random sets, the basic mathematical tool to deal with

random functions is the Choquet capacity.

Let Z(x) : Rn → R ∪ {−∞} be an USC random function, almost surely bounded and

with compact (closed) upper level sets. The test function τ(x) : K → R ∪ {+∞} is defined

on a compact support K ∈ K and it is a LSC. The Choquet capacity TZ(τ) defined over the

set of test functions is now given by

TZ(τ) = P {x ∈ DZ(τ)} = 1−QZ(τ) = 1− P {x ∈ [DZ(τ)]c} ,

where DZ(τ) is the set

DZ(τ) = {∃y ∈ Rn : Z(y) ≥ τ(x− y)} .

such that the complementary of the event DZ(τ) is given by the following random set

[DZ(τ)]c = {x : Z(x+ y) < τ(y), ∀y ∈ K} .

By convention it is considered that τ(x) = +∞ for x /∈ K. Thus the functional TZ(τ) gives

the probability that the deterministic function τ “hits” the hypograph of the random function

Z, which is a closed set. We should notice that by the lower semicontinuity of τ , its epigraph

is a closed set.

For the points x which satisfy Z(x + y) < τ(y), it holds: Y −h (τ) ⊂
[
X+
h (Zx)

]c
, ∀h ∈ R.

Thus one gets

[DZ(τ)]c =
{
x : ∀h ∈ R, x ∈

[
X+
h (Zx)

]c 	 Y −h (τ)
}

=
⋂
h∈R

Y −h (Zx)	 Y −h (τ). (114)
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The dual by complement is given by

DZ(τ) =
⋃
h∈R

X+
h (Zx)⊕ Y̌ −h (τ). (115)

As for the case of random sets, we are only interested in stationary functions; i.e., TZ(τ) is

invariant to translation of τ .

In order to relate these functionals with (max,min)-convolutions, we only need to remind

from (37) that

(f 5∗ b)(x) = sup
{
h ∈ R : X+

h (f)⊕ Y −h (bc)
}
.

Thus we can now write the Choquet capacity TZ(τ) using the adjoint supmin convolution:

TZ(τ) = P

{
x ∈

⋃
h∈R

X+
h (Z)⊕ X̌−h (τ)

}
= P

{
x ∈

⋃
h∈R

X+
h (Z 5∗ τ̌ c)

}
. (116)

In addition, if we assume that the random function Z is a nonnegative function, and we

denote by [Z]+ the support set of Z(x) > 0, then we can write

TZ(τ) = P
{
x ∈ [Z 5∗ τ̌ c]+

}
. (117)

It is not surprising to discover that the dilation of X by K in the RACS Choquet capacity

is generalized to the adjoint supmin of Z by the τ in the functional Choquet capacity: we

only need to note how the adjoint supmin is defined. The complement of τ is due to the

definition of 5∗ as the adjoint of 4.

Boolean random functions. The particular case of the Boolean random functions

naturally involves the construction of a random function over a Poisson point process. We

focus on the case of the so-called Boolean islands [60]. Namely, three steps are needed.

1. A Poisson point process in Rn of intensity θ.

2. At each point of the process xi, we set up a nonnegative random function fi(x), called

the primary random function, drawn independently from a distribution f ′; i.e., fi ∼ f ′.

3. The Boolean random function Z(x) is obtained as

Z(x) =
∨
xi

fi(x− xi). (118)

Obviously, the set X+
h (Z) is a Boolean random set with primary grain A′ ∼ X+

h (f ′).

In addition, in the case of the Boolean random function, one has:

DZ(τ) =
⋃
xi

[Dfi(τ)]xi ⇒ [Z 5∗ τ̌ c]+ =

[∨
xi

fi(x− xi)5∗ τ̌ c
]

+

,
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such that DZ(τ) is a Boolean RACS with the primary grain Df ′(τ) = [f ′ 5∗ τ̌ c]+. This

property is very useful in practice for the identification of a model of Boolean random function

using tools for Boolean RACS models. The expression of the Choquet capacity for a Boolean

random function has also a nice expression.

Proposition 23 Given a Boolean random function of parameters (θ, f ′), its Choquet capacity

is given by [32]:

1− TZ(τ) = QZ(τ) = exp
(
−θE

{
µn

([
f ′ 5∗ τ̌ c

]
+

)})
,

and therefore, the logarithm of the characteristic functional is given by

logQZ(τ) = −θE
{
µn

([
f ′ 5∗ τ̌ c

]
+

)}
. (119)

Proof. This proof is inspired from the one of the Boolean model provided in [38]. Let

us denote by X(B) the union of the primary grains implanted in a bounded domain B.

The number of primary grains follows a Poisson distribution of parameter θµd(B). Take an

uniform point x ∈ B and implant a primary function at x, denoted f ′x. It is “disjoint” with

τ with probability

P
{
x /∈ Df ′(τ)

}
= 1−

E
{
µd
(
Df ′(τ) ∩B

)}
µd(B)

.

When the number of points equals i, the i primary functions has been independently and

uniformly implanted. Consequently,

QBZ (τ) =
+∞∑
i=0

e−θµd(B) (θµd(B))i

i!

(
1−

E
{
µd
(
Df ′(τ) ∩B

)}
µd(B)

.

)i
This sum is equal to

QBZ (τ) = e−θE{µd(Df ′ (τ)∩B)}

The results should be extended to complete domain of definition of Z. Let us consider an

increasing sequence Bn of bounded domains in Rd. The events “K∩X(Bn) = ∅” of probability

QnZ(K) are an increasing sequence of intersection “K ∩X = ∅”. By the axiom of continuity

we have

QZ(K) = lim
n→+∞

QnZ(K) = lim
n→+∞

e−θE{µd(Df ′ (τ)∩Bn)} = e−θE{µd(Df ′ (τ))}.

Finally, from (117), one have

Df ′(τ) =
[
f ′ 5∗ τ̌ c

]
+
.

From the expression (119), different particular cases τ can be used to obtain for instance

the spatial law of the Boolean random function, its bivariate distribution, etc. [32].
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A particular case corresponds to the case of a test function of type inverted cylinder of

height k ∈ R and base K:

τ(x) = {K; k} =

{
k if x ∈ K

+∞ if x /∈ K

such that one has

[DZ(τ)]c =

x :
∨
y∈K

Z(x+ y) < k

 .

This expression can be rewritten in morphological terms as∨
y∈K

Z(y) < k ⇔ Kx ⊂ Y −k (Z) ⇔ x ∈
(
Y −k (Z)	K

)
,

and the complementary event∨
y∈K

Z(y) ≥ k ⇔ x ∈
[
Y −k (Z)	K

]c
= X+

k (Z)⊕ Ǩ = DZ(τ).

For this type of test function {K; k}, we have in the Boolean case

P

{∨
x∈K

Z(x) < k

}
= exp

(
−θE

{
µn
(
X+
k (f ′)⊕ Ǩ

)})
It gives the probability distribution of the Boolean random function Z(x) after a change of

support by supremum over the compact set K.

We believe that the interest of the expression (119) of QZ(τ), based on a (max,min)-

convolution, opens avenues regarding a more widely use of Boolean random functions. In

particular, we can see how the role of convexity of the primary grain A′ in the Boolean model is

replaced here by the convexity of the upper level sets of the primary function f ′, which involves

that the most interesting case corresponds to quasiconcave primary functions f ′. Other issues,

as the interest of the complement of the conic structuring function ccα,λ(x) = λ−1‖x‖+ α as

privileged test function, as well as the simulation of Boolean random function using the

Hamilton-Jacobi PDEs discussed above, will be considered in ongoing research.

Bibliographic remark. In the initial theory of Boolean random functions, it was clas-

sically considered as involving the Minkowski addition of the subgraph of function Z(x) by

compact test sets K, where K is seen as a subset of Rn×R [60, 54], which is not equivalent to

the use of structuring functions. The formulation based on test functions and level-set rep-

resentation of the Choquet capacity introduced by Jeulin [32] has allowed us to link Boolean

random function characterization with adjoint supmin convolution.

We believe that most results proved by Goutsias [28] for the discrete framework of RACS

can be now extended to discrete random function.
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Let us note that if we consider the case of Boolean functions defined in the unit interval

[0, 1], the immediate consequence is the fact that the underlaying framework can be seen as

the appropriate one to model Boolean fuzzy sets. Remember that the key ingredient is the

implication of the Gödel–Brower Logic. Up to the best of our knowledge, no previous work

has ever studied the interest of fuzzy morphological operators to model Boolean fuzzy sets.

This point seems now natural and deserves a deeper effort of research.

Concerning just the theory of random fuzzy closed sets, some efforts have been paid

recently in order to generalize Matheron’s results for RACS to fuzzy sets. In particular, there

are already some relevant results including Choquet theorem for random USC functions

based on Lawson topology in the continuous lattice theory, that includes also some tentative

of generalization of Matheron’s hit-or-miss topology. However many topological questions,

including measurability considerations, are still open [51, 69]. In this context, we think that

the Lawson topology of continuous lattices is also relevant for the study of the topological

properties of (max,min)-convolutions.

6.6 Links with geodesic dilation and erosion

In Section 2, on the background on classical morphological operators, we did not consider

the notion of geodesic dilation and erosion [37, 66]. Geodesic operators are extremely useful

transforms for solving many image processing tasks [66, 62].

The philosophy of these operators is rather different of the classical convolution-like dila-

tion and erosion, since the role of the structuring element/function is replaced by an external

function called the reference (or geodesic mask). More precisely, the elementary geodesic

dilation δ1−geo
X (Y ) of a set Y included in the geodesic mask X, X,Y ⊂ Rn, is defined as

δ1−geo
X (Y ) = (Y ⊕B) ∩X, (120)

where B is the unit Euclidean ball. The elementary geodesic erosion ε1−geo
X (Y ) is defined by

set complementation:

ε1−geo
X (Y ) = X \ δ1−geo

X (X \ Y ) = ((Y ∪Xc)	B) ∩X. (121)

We note that geodesic dilation and erosion for sets are dual both by complement and by

adjunction. Larger operations are obtained by iteration and keeping X fixed. Thus, the

geodesic dilation of size n of Y corresponds to the space swept by the geodesic balls BX(x, n)

of size n whose center y is included in Y ; the geodesic erosion of size n corresponds to the

centers of the geodesic balls of size n of X included in Y [37], i.e.,

δn−geoX (Y ) = {x ∈ X : BX(x, n) ∩ Y 6= ∅} =
⋃
y∈Y

BX(y, n),

εn−geoX (Y ) = {x ∈ X : BX(x, n) ⊂ Y } .
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Extension from the set operators to the geodesic operators for functions is based on a level

set based transposition of set geodesic dilation, which leads to the geodesic dilation δ1−geo
g (f)

of a function f in the geodesic space of g (or under g, since it is assumed that f ≤ g):

δ1−geo
g (f) = (f ⊕B) ∧ g, f ≤ g. (122)

The geometric interpretation is similar to the one for the set case, by considering the notion

of sweeping geodesic cylinders. Then, the geodesic erosion is classically defined using the

duality by complement from (122) to obtain [66]:

ε1−geo
g (f) = (f 	B) ∨ g, f ≥ g. (123)

In fact, it is easy to see that the functional geodesic erosion (123) is not the operator obtained

by the level set extension of the set geodesic erosion (121). That involves in fact that ε1−geo
g (f)

and δ1−geo
g (f) do not form an adjunction. It is very surprising for us that the study of the

geodesic adjunction has been the object of depth research only in a relatively recent and

illuminating study by Beucher [13].

Starting from the dual by complement operators (122) and (122), computation of the

corresponding adjoint operators is provided in detail in [13]. The four elementary geodesic

operators are given by

g ≤ f, ε1−geo
g (f) = (f 	B) ∨ g adjoint←→ δ

1−geo
g (f) = [(f ∧m)⊕B] ∨ g

with m = {x : f > g}
l dual l dual

g ≥ f, δ1−geo
g (f) = (f ⊕B) ∧ g adjoint←→ ε1−geo

g (f) = [(f ∨m)	B] ∧ g
with m = {x : f = g}

In order to relate geodesic operators to (max,min) algebra, we can rewrite the geodesic

dilation δ1−geo
g (f) using the distributivity:

δ1−geo
g (f)(x) = (f ⊕B) (x)∧g(x) = g(x)∧ sup

z∈B(x)
f(x− z) = sup

z∈B(x)
{g(x) ∧ f(x− z)} . (124)

We can also find an alternative expression for its adjoint geodesic erosion δ1−geo
g (f), with

f ≤ g:

ε1−geo
g (f)(x) = [(f ∨m)	B] (x) ∧ g(x) = inf

z∈B(x)
{g(x) ∧ (f(x− z) ∨m(x− z))} .

First, we note that using the mask function given by m(x) = > if f(x) = g(x) and m(x) = ⊥
if f(x) < g(x), one has (f ∨m)(x) = > if f(x) = g(x) and (f ∨m)(x) = f(x) if f(x) < g(x).

Second, we introduce the operator ∧∗−geo as

g(x)∧∗−geof(x−z) = g(x)∧(f(x− z) ∨m(x− z)) =

{
g(x) if f(x− z) = g(x− z)

f(x− z) ∧ g(x) if f(x− z) < g(x− z)
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Thus, we finally obtain

ε1−geo
g (f)(x) = inf

z∈B(x)

{
g(x) ∧∗−geo f(x− z)

}
. (125)

The operator ∧∗−geo can be seen as the “geodesic counterpart” of the adjoint operator to

the minimum (24). Going further with the parallelism, we believe that, even if the geodesic

dilation and its adjoint geodesic erosion are not convolution-like operators, it is seems clear

from expressions (124) and (125) that these two operators are structurally similar respec-

tively to the supmin convolution(20) and the adjoint infmax convolution (22). An equivalent

interpretation is straightforward obtained for the geodesic erosion ε1−geo
g (f) and its adjoint

geodesic dilation δ
1−geo
g (f).

Thus, we would like to conclude by stating that geodesic dilation and erosion are naturally

defined as operators in (max,min)-algebra. We plan to fully exploit this new viewpoint in

future research, including links of geodesic operators with nonlinear analysis and Hamilton-

Jacobi PDEs.

7 Conclusion and Perspectives

Operators and filters underlying a formulation as (max,min)-convolutions are common in the

state-of-the-art of mathematical morphology. However, their study per se has been neglected.

From this epistemological viewpoint, we can conclude that the role of (max,min)-convolutions

has been somewhat overshadowed by a multiplicity of viewpoints (fuzzy, viscous, “hitting of

functions” in Choquet capacity, etc.)

In order to address this theoretical lack, we have developed in our paper a rigorous

formulation and characterization of the four convolution-like operators in (max,min)-algebra.

Just concerning the need of specifically four morphological operators in such algebra, we

point out that this is clearly justified by the fact that one deals with two dualities, by comple-

ment and by adjunction. This principle is not exclusive from mathematical morphology, in

optimization theory involving minimum or maximum operations, it is also a natural principle

well formalized [24].

We have proven that (max,min)-openings are compatible with Matheron’s axiomatic of

Euclidean granulometries for functions with quasiconcave structuring functions. This was

not the case for (max,+)-openings. We have also shown that the adjoint supmin convolution

is the operator underlying the extension of Matheron’s characterization of Boolean random

closed sets to the case of Boolean random upper semicontinuous function.

For all these reasons, we strongly think that (max,min)-convolution provides the natural

framework to generalize some key notions of Matheron’s theory from sets to functions.

All the theoretical results provided in the paper are formulated in a continuous setting.

Although it may seem that the transition from the continuous to the discrete case is straight-
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forward (this is usually the case in the theory of mathematical morphology), this transition

is often challenging with a certain number of notions, such as convexity. We plan to revisit

all our results in a fully discrete framework.

All the algebraic results (and most of nonlinear analysis ones) on (max,min)-convolutions

considered here are valid for functions supported in a general Banach space, consequently

more general that the Euclidean space Rn. In this generalization context, we plan to consider

in particular the case of (max,min)-morphology for real-valued images on Riemannian mani-

folds. It will be a parallel study the our recent work on the extension of (max,+)-morphology

to Riemannian images [6].

A final remark concerning the generalization of the morphological convolutions proposed

here. If we compare for instance the classical erosion and the infmax erosion:

(f 	 b)(x) = inf
y

{
f(y) + b̌c(x− y)

}
,

(f 4 b)(x) = inf
y

{
f(y) ∨ b̌c(x− y)

}
,

they can be considered as a particular case of the following transformation:

(f(Z)p b)(x) = inf
y

{
Np

(
f(y), b̌c(x− y)

)}
, (126)

where Np(r, s) is a monotone norm, for instance the Lp Minkowski norm; i.e., for p ≥ 1

Np = (|r|p + |s|p)
1
p ,

such that (f 	 b) = (f(Z)1 b) and (f 4 b) = (f(Z)∞ b). Besides these limit cases, the study

of the properties of the operator (126) and its dual and adjoint counterparts is potentially

relevant in mathematical morphology theory. Some results already obtained in the domain

of convex analysis, see [67], can be a good starting point.

In previous work, we have considered a nonlinearization of continuous diffusion [3] and bi-

lateral discrete filtering [4] in order to produce families of processed images from (Gaussian)

convolution in (+,×)-algebra to (parabolic) morphological operators in (max,+)-algebra.

The development of a computational framework which unifies the three algebras, from (Gaus-

sian) convolution in (+,×)-algebra to (conic) morphological operators in (max,min)-algebra

would be very powerful for the efficient implementation of generic convolution in specific

hardware/software architectures.

Concerning the Hamilton-Jacobi PDEs associated to supmin and infmax convolutions,

we have not discussed their numerical solution. Numerical algorithms for Hamilton-Jacobi

PDE are relatively well known, in particular the Osher and Sethian algorithm [52] or the less

diffusive Rouy and Tourin schema [56]. Alternative schemas can be also found in [43, 16, 21].
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Nevertheless, ongoing research on the behavior of such numerical approaches is needed to

state the accuracy, convergence, etc. for different structuring functions, i.e., different Hamil-

tonians. As usual, the interest of PDE approaches is to provide infinitesimal computation

with a geometrically better approximation of the Euclidean distance. In addition, in the

case of (max,min)-convolutions framework, it is easy to implement many different filtering

effects only by changing the Hamiltonian. On the contrary, we should notice that the PDE

approach is not appropriate for implementing advanced operators; i.e., alternate sequential

filters obtained by the composition of openings and closings at various scales.

We sincerely hope that results reviewed in Sections 4 and 5 will help a general reader

to appreciate the fact that applied mathematics underlying morphological operators are well

founded and pertinent from nonlinear analysis. Theoretical roots of mathematical morphol-

ogy are nowadays formulated in the framework of algebra (more specifically, using complete

lattice theory): we expect that the results provided in the paper justify a complementary

coherent theoretical viewpoint of morphological operators from nonlinear analysis.
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[53] J.-P. Penot, C. Zălinescu. Approximation of Functions and Sets. In (M. Lassonde, Ed.)

Approximation, Optimization and Mathematical Economics, 255–274, Physica-Verlag

Heidelberg, 2001.
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