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Abstract 

An experimental and theoretical analysis of the polymer foaming process using different chemical 

blowing agents (CBA) was performed. A simple experiment was designed to analyze the foaming 

process of polypropylene (PP)/CO2 system under different pressure conditions using several chemical 

foaming agents. The expansion ratio was measured both by direct observation and from optical 

measurements and image analysis, showing a good agreement. A single bubble simulation based on 

relevant Differential Scanning Calorimetry (DSC) and Thermo-Gravimetrical Analysis (TGA) 

experiments, assuming each CBA particles as a nucleation site and accounting for gas diffusion in the 

surrounding polymer matrix has been built. The sensitivity of the model to physical and processing 

parameters has been tested. The calculation results are compared to the experiments and open the 

route to a simplified method for evaluating the efficiency of chemical blowing agents. 

1 - Introduction 

The foaming process to produce microcellular thermoplastics has been widely analysed in the last 

decades. Microcellular plastics are generally formed by cell nucleation and growth of bubbles in the 

polymer matrix. Chemical blowing agents (CBA) or physical blowing agents (PBA) are used to 

introduce the gas that creates the cellular structure.  

A typical polymer foaming process involves several steps: the dissolution under an elevated pressure 

of a gas blowing agent (PBA or CBA) in the molten polymer, the nucleation of a population of gas 

clusters in the supersaturated solution upon the release of pressure to the ambient pressure and 

finally the growth of nucleated bubbles in the polymer to their ultimate equilibrium size. The final 

foam density depends on the original gas loading, the gas fraction which remains dissolved in the 

polymer matrix when it solidifies, the gas losses to the environment, and the depressurization rate. 

The cell size and cell size distribution depend on the kinetics of nucleation, the bubble growth 

process following nucleation and the coalescence during expansion. 

Different steps can be considered when processing such materials. First the polymer/gas solution 

formation, second the microcellular nucleation, and finally the cell growth and the resulting density 

reduction. In the first stage, the polymer/gas solution formation is accomplished by saturating a 

polymer under a high gas pressure, forming a single-phase supersaturated solution governed by the 

gas dissolution in the polymer matrix which is a function of pressure and, at a lesser extent, of 
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temperature. Numerous studies have been carried out analysing the dependence of the solubility of 

gas in several polymers, mainly CO2 in polypropylene [1,2,3]. 

In the second stage, it is necessary to submit the polymer/gas solution to a thermodynamic instability 

to nucleate microcells. This nucleation can be achieved by lowering the solubility of the solution 

through the temperature and the pressure of the system. Usually, a rapid pressure drop produces a 

high nucleation rate in the polymer matrix and in the ideal case this nucleation occurs 

instantaneously.  

In plastic foaming, nucleation refers to the process of generating gas bubbles in a polymer melt 

through a reversible thermodynamic process. Creation of small bubbles always leads to a free energy 

increase and they are in an unstable equilibrium with the environment. In the classical nucleation 

theory, there is a critical nucleus, which defines the minimum radius for a bubble to growth. 

Nucleated bubbles which size is larger than the critical nucleus radius will survive, whereas those 

smaller will collapse. Cell nucleation can occur homogenously or heterogeneously. The 

heterogeneous nucleation is usually 100 to 1000 times more favourable than homogeneous 

nucleation. Several additives or organic charges can be employed as nucleation sites in polymer 

foaming processes [4,5]. 

Once the cells are nucleated, they continue to expand by diffusion of the dissolved gas from the 

polymer matrix into the bubbles. In this stage of the process, a deep knowledge of the physical 

parameters that govern the diffusion properties of gas-polymer systems is necessary [6, 7, 8, 9]. The 

cells grow reducing the polymer density as the gas molecules diffuse into the nucleated cells. The 

rate at which the cells grow is limited by the diffusion rate and the rheology of the polymer/gas 

solution. The cell growth process is controlled also by the time allowed for the cells to grow before 

solidification, the temperature and pressure of the system, the presence of other bubbles, etc… [10]. 

As explained before, there are two main processes to produce microcellular polymeric foams, 

basically depending on the way to introduce the gas into the polymer matrix. In the physical foaming 

agents (PBA) process, the gases are introduced directly into the barrel of an extruder or of the 

plasticating unit of an injection molding machine, in the polymer matrix. This method, (Mucell® 

process), has been extensively analysed by Park and Tomasko [11, 12, 13]. Several types of PBAs such 

as CO2, N2 [14], chlorofluorocarbons or argon have been used with different polymer resins such as 

polypropylene, polyethylene or polystyrene [15]. Although PBAs can be employed both in extrusion 

and injection processes, the foaming injection molding process using CO2 or N2 is commonly used. 

However, PBA foaming needs special equipment such as gas dosage unit and controller, gas injector, 

a specially designed screw and a high-pressure gas source. 

The second group of foaming processes involves the use of chemical blowing agents (CBA) that can 

liberate gases under certain processing conditions either due to chemical reaction or thermal 

decomposition. Most CBAs produce nitrogen (N2) or carbon dioxide (CO2) after decomposition [16,  

17, 18]. CBAs reactions can be endothermic or exothermic. Azodicarbonamide is the most 

representative exothermic CBA, commonly having a high gas yield, with decomposition temperatures 

between 170°C and 200°C [19]. Sodium bicarbonate and zinc bicarbonate are the most common 

endothermic blowing agents [20]. The injection-moulded plastics parts foamed by CBAs have 

reduced density, reduction of sink marks and are easy to process, but the bubbles are larger than 

that obtained with PBA, leading in principle to lower mechanical properties. 
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Both foaming processes present different physical scenarios. In the case of PBA foaming process the 

formation of a single gas-polymer supersaturated phase depends only on the saturation pressure and 

temperature of the system, but as said before, the temperature and pressure evolutions in the barrel 

can be difficult to control, so it is not straight forward to determine the total quantity of gas diluted 

in the polymer just before the nucleation and expansion process. In an ideal scenario, the gas 

dissolution process only occurs in the screw/barrel system, whereas the nucleation and growth 

phenomena take place during or after mould filling. Both processes are completely independent and 

separated. 

In the case of CBA foaming process, it can be considered in a first approximation that the 

decomposition reaction is complete in the screw-barrel system, and that all the gas is generated, 

diffused and solubilised into the polymer matrix. The solubilisation of the gas into the polymer 

depends of the pressure in the plasticization unit but also of the ratio between the plasticization time 

and the diffusion time. If the decomposition reaction is not completed in the plasticization unit, the 

physical system to analyse becomes more complicated. Part of the gas remains unreacted in the CBA 

particles, and the foaming process begins even when all the gas has not been totally created. 

This paper is focused on CBAs foaming process. The physical evolution of the polymer-gas system 

depends strongly of the temperature, pressure and kinetics of the chemical reactions. A simple 

experiment has been designed to analyse the foaming expansion as a function of time of a 

polypropylene containing three types of CBA, in static conditions (no flow). The expansion ratio has 

been measured by direct observation and from optical measurements and image analysis. A single 

bubble simulation based on DSC and TGA experiments, assuming each CBA particle as a nucleation 

site and accounting for gas diffusion in the surrounding polymer matrix has been built. The sensitivity 

of the model to physical and processing parameters has been tested and the results are compared to 

the experiments. 

            2 – Experimental  

2.1 - Materials 

 

The polypropylene compound was a 12 % mineral filled elastomer modified polypropylene (SUMIKA 

PP) with a melt flow index of 65 g/10 min (ISO R1133), a Newtonian plateau viscosity of 500 Pas at 

210°C, determined from rotational rheological measurements, and a density of 0.91 g/cm3. Three 

different endothermic chemical blowing agents Hydrocerol® (CLARIANT) referred as CBA-818, CBA-

828 and CBA-848 were analysed. These foaming agents are PE-based compounds with reactive 

elements (typically citric acid, sodium bicarbonate or a mix of both components). Table 1 presents 

the different CBA’s employed and the weight concentration (wt. % respect to PE matrix) of reactive 

elements. In the following, CBA refers to the compound and not to the reactive elements only. 

The Hydrocerol® foaming agent has been extensively employed in the last few years [21-25]. These 

chemical agents, with decomposition temperatures between 160 °C and 210 °C, can be added 

directly into the hopper of an injection moulding machine in the form of pellets in proportions from  

1 % to 4 wt. %. 
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CBA Matrix Reactive elements Proportion 
(wt %) 

1 PE Citric acid + sodium bicarbonate 35+35 

2 PE Citric acid 70 

3 PE Sodium bicarbonate 70 

Table 1 – Chemical composition of the CBA particles 

Thermal characterization was carried out to determine the polypropylene fusion temperature 

and the decomposition temperatures of each reaction of the reactive elements included in the CBA 

pellets. Results are presented in figure 1. A heating rate of 6°C/min was chosen to assure the same 

heating rate as in the experimental foaming expansions. 

 

 

 

 

 

 

 

 

 

Figure 1 – DSC curve of the chemical foaming agents and of the polypropylene compound.                        

Constant heating rate of 6°C/min, from ambient temperature to 250°C. 

The peak between 160 °C and 170 °C corresponds to the melting of polypropylene. For the three 

CBAs, the small peak around 90 °C corresponds to the PE melting temperature. For the CBA-818 and 

CBA-848, the peaks between 150 °C and 175 °C correspond to sodium bicarbonate decomposition 

reaction. A peak between 190 °C and 220 °C caused by the decomposition of citric acid is visible for 

CBA-828 and CBA-818. Finally, a small peak about 240 °C takes place in the CBA-818, caused by the 

coupling reaction of the remaining sodium bicarbonate and citric acid. This third reaction is only 

important at higher heating rates (above 20 °C/min). For low heating rates, the importance of this 

reaction is negligible, as it can be seen in figure 1. All the decomposition reactions of the CBAs start 

after the polypropylene fusion, which assures that the gas obtained from the CBA can be diluted in 

the melted matrix. 

TGA measurements were carried out to determine the quantity of gas released by the reactive 

elements in the CBA particles (figure 2). The relative weight loss refers to the original weight of the 

granule containing 30 wt. % of polyethylene and 70 wt. % of reactive elements. This loss is associated 

to the gas escaping the sample, assuming that the pressure conditions do not allow any gas 

dissolution in the polyethylene. 
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Figure 2 – TGA curve of the chemical foaming agents                                                                          

(heating ramp 10 °C/min from ambient temperature to 600 °C) 

The TGA curve of CBA-848 shows that the decomposition reaction of sodium bicarbonate begins at 

150 °C, reaching a weight percentage of created gas around 24 % at the end of the reaction, at about 

210 °C. In the case of CBA-828, the decomposition reaction of citric acid begins at 215 °C and ends 

around 300 °C, with a weight percentage of gas created about 35 %. Finally, the CBA-818 presents a 

first decomposition reaction which begins at 150 °C. The citric acid decomposition reaction is 

probably coupled with the sodium bicarbonate reaction, as it can be observed in the small change in 

the slope about 200 °C. The maximum quantity of gas generated at the end of the decomposition 

reactions is about 28 wt. % at 300 °C. In all the cases, the PE decomposition begins at 450 °C. 

It is possible to obtain the evolution of the total quantity of moles of created gas from the 

stoichiometry of the decomposition reactions. The sodium bicarbonate decomposition can be 

described as follows (reaction 1): 

                                                          2 NaHCO3 -> Na2CO3 + H2O + CO2                                                            (1) 

The citric acid decomposition is (reactions 2 and 3): 

                                                                 C6H8O7 -> C6H6O6 + H2O                                                                      (2) 

                                                                 C6H6O6 -> C5H6O4 + CO2                                                                       (3)                                                             

Finally, a coupling reaction occurs when the sodium bicarbonate and citric acid react together to 

produce CO2 and H2O (reaction 4): 

                                          C6H8O7 + 3NaHCO3->Na3C6H5O7 + 3H2O + 3CO2                                  (4) 

In CBA-848 and CBA-828 only reactions 1 and 2 occur, respectively. As our experiments were carried 

out at  ́  < 20 °C/min, the coupling reaction (4) for CBA-818 is neglected. According to the 

composition given in Table 1, 1 g of CBA contains 0.7 g of reactive element. The gas escaping the 

sample is composed both of CO2 (molar mass of 48 g) and H20 (molar mass of 18 g). From the 

stoichiometry of the reactions it is then possible to obtain the evolution of the number of moles of 

gas per g of CBA generated during the decomposition reaction (figure 3). It is expected that after 

foaming and cooling of the samples, the H20 remains in the samples as condensed water vapor.  

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600

%
 w

e
ig

h
t 

lo
ss

Temperature (°C)

CBA-1

CBA-2

CBA-3



6 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 – Quantity of gas created during the decomposition of the reactive elements in the 

CBA particles  

 

2.2 – Foaming experiment 

The objective is to analyze the foaming behavior of different CBA/PP samples, obtained by mixing the 

three CBAs with PP granules in the same proportions as in injected samples. These materials are 

foamed in a steel mold and the expansion ratio and cellular structure will be analyzed.  

2.2.1 Sample preparation and characterization 

The challenge is to mix the components without activating the chemical reactions. A solid sample 

was fabricated starting from PP and CBA powders. Powders were mixed at room temperature in a 

fixed proportion of 98 wt. % of polypropylene and 2 wt. % of CBA. Then, cylindrical samples of 9 mm 

height (hi) and 20 mm diameter () were fabricated in a steel mold by compression under a pressure 

of 20 MPa at 60 °C for 30 min. A total number of six samples, three groups of two samples with the 

same CBA, were fabricated, with a volume Vi of 2.83 cm3. The density of all the samples (sample) was 

about 0.87 g/cm3, with a densification value up to 99.9 %, calculated as:                                                                                 

                                                (
       

   
)                                                   (5) 

taking PP = 0.91 gcm-3 as the density of the solid PP. 

 

 

 

 

 

 

 

 

 

Figure 4 – SEM micrograph of the precursor foaming material  
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Figure 4 presents a typical SEM micrograph of the sample surface showing the distribution of the 

foaming agent (white particles) in the polypropylene matrix. The average particle size can be 

calculated by image analysis, using the ImageJ® software. The minimal observable size is 1 µm. After 

binarization of SEM images (figure 5a), the apparent particle radius distribution is obtained and 

represented as a histogram (figure 5b). 

 

 

 

 

 

 

 

  Figure 5 – Calculation of the CBA particle average size 

a) Binarized image   b) Resulting histogram  

The number average radius  and the number average volume  can be obtained assuming a 

spherical geometry of the CBA particles, which is far from reality (equations (6) and (7)): 

                                                                ́  ∑     
 
   

∑   
 
   

                                                                  (6) 

                                                               ́  ∑     
  

   

∑   
 
   

  

 
                                                              (7) 

where N represents the total number of particles (N = 1800).  

The average value of the reactive agent particle radius is  = 4.46 m and the average volume is    

2.8010-9 cm3. This calculation was performed in three different SEM micrographs, with a dispersion 

value of  10 %.  

Assuming each CBA particle contains 70 wt. % of reactive agent and 30 wt. % of low-density PE, and 

using the mix law (with reactive agent  2 g/cm3 and LDPE = 0.9 g/cm3), the density of a CBA particle is 

1.67 gcm-3, which leads to an average mass of a reactive agent particle of 4.7010-9 g. The total mass 

of reactive agents in the sample (mass of 2.5 g) is obtained knowing that each sample contains 2 wt. 

% of CBA, in which the reactive agents represent 70 wt. % (0.035 g). The total number of reactive 

agent particles (Np) in the solid sample is obtained simply by the ratio between the total mass of 

reactive agent in the sample and the average mass of a reactive agent particle: 0.035/4.7010-9 = 7.45 

106. 

Using the same procedure, it is possible to obtain the minimum distance between each particle (l), 

from the previous binarized image (figure 5a). The resulting histogram is presented in figure 6, 

together with the expression to calculate the number average value ́. 
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Figure 6 – Resulting histogram of the calculation of distance between particles 

                                                                ́  ∑     
 
   

∑   
 
   

                                                                  (8) 

The determination of  ́ from equation (8) gives a result of 74 m. Another way for calculating  ́ is to 

assume a uniform distribution of the reactive agent particles in the solid sample using 

crystallographic considerations. Considering for example a primitive cubic (PC) Bravais lattice, the 

number of reactive agent particles in the cubic cell (Np
cell) is 1. The determination of the distance  ́is 

related to the volume of the solid sample Vi, the number of reactive agent particles in each cubic cell 

NP
cell and the total number of reactive agent particles NP through the expression: 

                                                    ́
   

  
                                                                                  (9) 

Similar calculations can be carried out for the body-centered cubic (BCC) and face-centered cubic 

(FCC) bravais lattices, in which the number of reactive particles in each cubic cell, is 2 and 4, 

respectively. Table 2 presents the results of the three calculations, taking Np = 7.45106 and Vi = 2.83 

cm3. 

Bravais lattice NP
cell 

 ̅  (m) 

PC 1 76 

FCC 2 84 

BCC 4 87 

Table 2 – Average distance between CBA particles from crystallographic calculations 

The average initial distance between reactive agent particles is between 76 m and 87 m which is 

similar to the value obtained from the binarized image. This distance  ́ will increase during the 

expansion process. 

2.2.2 Foaming experiment under pressure 

Figure 7 presents the scheme of the foaming expansion experiment designed to analyze the behavior 

of the polypropylene/gas systems. The solid sample, with a number of reactive agent particles NP, 

has an initial height hi and an initial volume Vi, and it is placed in a reservoir under an external 

pressure Pext.  The reservoir is made of steel, with a thickness of 5 mm and a height of 200 mm. The 

inner diameter is 20 mm. The external pressure is applied with a weight deposited on a circular steel 
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cap, with a diameter a little bit lower than the inner cylinder diameter. The device is introduced in an 

oven at a temperature T during a time t. A type K thermocouple is introduced in the sample to 

monitor the evolution of the temperature.  Another one is located inside the oven. At the end of the 

heating step, the device is removed from the oven and cooled down at ambient air. When cooling is 

finished the weight is removed. The foamed sample has a final height hf, a final volume Vf, and a 

cellular structure with a cell density Nc and an average cell radius R. The height increase during the 

foaming process is measured optically with a recording camera, with a precision of  0.5 mm. It is 

important to mention that the temperature will vary differently as a function of time at different 

points of the sample, due to heat conduction from the oven. This means also that the foaming 

develops heterogeneously inside the sample, starting in the sample edges and propagating towards 

the core.  

 

Figure 7 – Scheme of the foaming expansion experiment  

Two external pressures were tested to evaluate their influence on the expansion rate, gas diffusion 

and final pore radius: 0.25 MPa (samples 1-1, 2-1 and 3-1) and 0.5 MPa  (samples 1-2, 2-2 and 3-2).  

2.2.3 Results and discussion 

Figure 8 shows the evolution of the temperature with time. The sample and oven temperatures are 

not equal until the last part of the experiment. The average heating ramp of the sample temperature 

is about 6°C/min, considering a total heating time of 32 min from ambient temperature to 210°C. 

 

 

 

 

 

 

 

 

Figure 8 – Evolution of the height of each sample during the expansion process  
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The measurement of the height variation started when the sample temperature reached 180 °C, 

slightly above the melting point of the PP, which is located between 160 °C and 170 °C according to 

DSC data (see figure 1). Figure 9 presents the samples height evolution from the beginning of the 

expansion measurements (about 23 min after starting the experience, see figure 8).  

 

 

 

 

 

 

 

 

 

Figure 9 – Evolution of the height of each sample during the expansion process  

All samples show a remarkable volume expansion due to the gas creation and the foaming process. 

The expansion process takes about 4 minutes for CBA-818 and CBA-848, and 6 minutes for CBA-828, 

leading to expansion ratios around 200 % with  Pext = 0.25 MPa and 140 % with Pext = 0.5 MPa. After 

that time, the sample height reduces because of cooling and thermal shrinkage.The samples foamed 

with the CBA-828 showed a higher expansion than samples foamed with the other two CBAs. This 

may be explained by the larger number of moles of gas generated by the chemical reactions, as 

shown on figure 3. At the end of the process, shrinkage is clearly seen, especially in samples foamed 

with CBA-828. No shrinkage was observed in the lateral direction. For CBA-828 at 0.25 MPa, height 

reduces from 22.1 mm at 200 s to 20.1 mm at 260 s, which corresponds to a volume reduction of 10 

%. For the same CBA at 0.5 MPa, the height reduction begins at 170 s with a maximum value of 14.8 

mm and a final value of 13.3 mm at the end of the experience, with a similar volume reduction value.  

The final volume Vf and the expansion ratio after cooling are presented in table 3, as well as the 

density , calculated from the ratio between the mass and the volume of the expanded sample. 

                                         

 

 

 

 

 

 

 

 

Table 3 – Final volume, expansion ratio and final density of foamed samples 

Sample CBA Vf 
(cm3) 

Expansion ratio  
(g/cm3) 

1-1 1 5.62 1.94 0.47 

1-2 1 3.98 1.38 0.65 

2-1 2 6.31 2.18 0.41 

2-2 2 4.17 1.44 0.63 

3-1 3 5.84 2.02 0.45 

3-2 3 3.92 1.36 0.66 
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It is important to estimate the volume of gas retained in the sample to analyze possible gas diffusion 

outside the polymer. Assuming that the decomposition reaction is complete, the theoretical total 

volume of gas Vgas
generated can be calculated from perfect gas equation. 

                                                             
         

 
 ( )         

    
                                                                  (9)  

Pext is the external pressure (MPa), T is the foaming temperature, which is taken as a constant value 

of 210 °C (483 K) in a first approximation, and  is the gas constant (8.31 Jmol-1K-1). The value of 

n(t)total corresponds to the total number of moles of gas created in the solid sample for the different 

CBAs at the end of the reaction.  

According to figure 3, the total number of moles of gas created per gram of CBA are 0.0092 mol/g in 

the case of the CBA-828 and CBA-848, and 0.0135 mol/g in the case of the CBA-818. The total 

number of moles of gas generated in the sample n(t)total can be calculated by multiplying the previous 

values and the mass of CBA particles in each sample, in our case 2 wt. % of 2.5 g, and assuming that 

only the 70 % of each CBA particle contains reactive elements. 

The volume of gas generated for each CBA at each external pressure, deduced from equation (9), is 

shown on table 4. This volume corresponds to the gas volume generated at the end of the expansion, 

before any cooling and thermal shrinkage of the polymer.  

 

 

 

 

 

 

Table 4 – Theoretical total gas volume generated during the expansion processes for each 

sample, assuming that the decomposition reaction is complete 

The fraction of gas in the foamed polymer can be also determined from image analysis. Several 

optical micrographs of the fracture surface of the expanded samples are presented in figure 10. The 

structure is homogenous throughout the whole sample volume, which indicates that the thermal 

gradients do not influence the final foamed structure, even when the heating ramp may be locally 

different in the sample.  

 

 

 

 

Sample CBA Pext  
(MPa) 

n(t)total 

(mol) 
Vgas

generated 

(cm3) 

1-1 1  
0.25 

3.2210-4 5.17 

2-1 2 4.7210-4 7.58 

3-1 3 3.2210-4 5.17 

1-2 1  
0.5 

3.2210-4 2.58 

2-2 2 4.7210-4 3.79 

3-2 3 3.2210-4 2.58 
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                 Figure 10 – Optical micrographs of the expanded samples 

a) Sample 1-1      b)  Sample 1-2   c)   Sample 2-1 

                                d)  Sample 2-2    e)   Sample 3-1    f)   Sample 3-2 

For a given CBA, increasing the pressure leads to a decrease of the bubble size, except for CBA-828, 

in which the bubble size remains almost the same. Figure 10 shows that CBA-828, containing citric 

acid as reactive element, induces a finer bubble size and higher expansion rate than the other CBAs. 

The addition of sodium bicarbonate (CBA-818) or CBA based only on sodium bicarbonate (CBA 848), 

do not add any remarkable improvement concerning the foaming behavior, in terms of reducing 

bubble size, as compared to CBA-828. 

Using the ImageJ® software previously presented, it is possible to quantify the average bubble radius 

Rbubble, the average distance between bubbles, (namely lbubble), and the total volume of gas in each 

sample Vgas.  As an example, figure 11 presents the histogram of both bubble radius, assuming that 

each bubble can be considered as a sphere (figure 11a), and the distance between bubbles (figure 

11b). This parameter is calculated for each bubble, taking the minimum distance between the edge 

of this bubble and the surroundings ones. Results presented have been calculated from test 1-1, but 

similar calculations have been performed for the other samples. 
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Figure 11 – Resulting histograms of the SEM micrograph presented in figure 10a 

a ) Bubble radius   b)  Distance between bubbles 

The average results are obtained from 10 micrographs of each sample with a maximum error of  5 

%.The software accounts for the number of bubble in each image and the average radius. The total 

cell number Nc in the sample was calculated using equation (10) [26], which accounts for the 3D 

extrapolation starting from a 2D image: 

                                                                       
 (  

  
  
)

   
                                                                      (10)  

F represents the foam density, and P the solid polymer density (0.91 g/cm3). Vf represents the final 

volume of the sample after shrinkage. The experimental gas volume can be also easily calculated 

from expansion measurements, following the next equation: 

                                                                     
                                                                               (11) 

Both results (indirect method Vgas
indirect, from ImageJ® analysis and direct method Vgas

direct, from 

expansion measurements), together with the morphological determinations, are presented in table 

5. They are in the same range, and the slight differences between both measurements can be due to 

specific errors associated to the software employed to analyze the optical micrographs. The last 

column of table 5, Vgas
remaining, represents the total theoretical volume of gas generated. It is assumed 

than after cooling and shrinkage H2O condensates into liquid water, so it is necessary to extract the 

volume of water vapor generated from the total volume of gas generated calculated in table 4. From 

the chemical reactions (1) (2) and (3) both citric acid and sodium bicarbonate decompose in one 

mole of H2O and one mole of CO2. The ratio between the molar masses of both components is 

18/(18+48) = 0.27, indicating that the 27 % of the gas generated transforms into liquid water by 

condensation.  

The proportion between the measured gas volume and the theoretical gas volume varies between   

50 % and 75%. 
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Test CBA Bubble 
count 

Rbubble 

 (m) 

Vbubble 
(mm3) 

Lbubble 

(m) 

F 

(g/cm3) 

Nc  
(cm-3) 

Vgas
indirect 

 (cm3) 
Vgas

direct 

 (cm3) 
Vgas

remaining 

(cm3) 

1-1 1 64 360 0.195 50 0.47 1.43104 2.89 2.73 3.77 

1-2 1 108 170 0.021 42 0.65 8.97104 1.19 1.09 1.88 

2-1 2 241 120 0.007 25 0.41 4.30105 3.11 3.42 5.53 

2-2 2 292 85 0.003 23 0.63 7.58105 1.35 1.28 2.76 

3-1 3 79 350 0.180 56 0.45 1.65104 2.90 2.95 3.77 

3-2 3 121 190 0.029 38 0.66 6.24104 1.19 1.03 1.88 

Table 5 – Gas volume and morphological parameters in the expanded samples  

The order of magnitude of the thermal volume variation between 210 °C and room temperature for 

the polypropylene is around 20 %. This cannot explain the measured difference. An incomplete 

chemical reaction is unlikely according to the DSC and TGA measurements. It could be speculated 

that a part of the gas generated has not been nucleated and does not produce any expansion. It 

could remain dissolved in the polymer matrix or have diffused outside the sample during the 

expansion process. To test these hypotheses, the foamed samples were re-heated up to 210°C to 

analyze a possible second expansion produced by the remaining dissolved gas, with negative results. 

This indicates that the gas has probably diffused out of the samples. The gas diffusion outside the 

sample has been observed in HR-SEM micrographs, which shows the presence of micro channels in 

the sample surface (figure 12). 

 

 

 

 

 

 

 

Figure 12 – Micro channel in the surface of the foamed sample 

Another interesting parameter that can be analyzed from the foaming experiment is the coalescence. 

It is possible to define the ratio k between the final number of cells Nc and the initial number of 

reactive agent particles NP. It lies between 0.2 % and 12 %, indicating that coalescence is a very 

important phenomenon that will be discussed lately. 

3 – Theoretical approach 

Many studies have been devoted to the development of numerical models for the bubble nucleation 

and growth in polymeric foaming process. In the classical work presented by Amon and Denson [27] 

a complete mathematical analysis of a bubble growth in a Newtonian matrix is presented. Bikard et 

al [28] and Bruchon [29] solved the same problem with a 3D finite element method which allows 

accounting for the simultaneous growing of multiple bubbles. Koopmans et al [30] introduced a 

1 m
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viscoelastic multimode Maxwell behavior for the polymer matrix in a “bubble influence volume” 

surrounding the growing bubble. They also account for non-isothermal phenomena occurring at die 

exit in an extrusion process. Otsuki and Kanai [31] introduced a more realistic Phan-Tien Tanner 

viscoelastic constitutive equation which limits the dramatic increase of the elongational viscosity in 

the Maxwell model. Shafi et al [32, 33] and Joshi et al [34] developed a homogeneous nucleation 

model that they coupled to the Newtonian Amon and Denson bubble growing model. Taki [35,36] 

compared these calculation results to experiments performed under several pressure release rates. 

Feng and Bertelo [37] investigated bubble nucleation in a viscoelastic polymer melt (Oldroyd B 

constitutive equation) containing nucleating agents. 

All these works assume that the polymer is saturated with gas and that this gas diffuses from the 

matrix to the bubble. In our case, the diffusion process is in the opposite direction from the bubble, 

which is nucleated around the CBA particle, towards the polymer matrix. Recently Emami et al [38] 

analyzed the bubble nucleation in non-pressurized foaming CBA systems starting from solid 

materials, composed of PP and CBA powders as in our experiments. It was observed that the 

nucleation process proceeded in two distinct stages, namely primary and secondary nucleation. 

Primary nucleation occurred in the interstitial regions of the sintered plastic powder and the 

agglomerated blowing agent particles acted as nucleation sites, and secondary nucleation occurs in 

the polymer melt. The visual observations indicated that most of the first generation of bubbles 

endured the entire foaming process, whereas most of the bubbles generated during secondary 

nucleation disappeared over time. These results support the previous assumption which considers 

each reactive agent particle as a nucleation site, with no further nucleation phenomenon.  

 

In the following, a kinetic model for a single bubble expansion in a Newtonian fluid coupled with the 

gas diffusion in the surrounding polymer matrix is proposed. The nucleation phenomenon will be 

simplified, assuming that each reactive agent particle can be considered as a nucleation site. The 

model has been applied to the experimental conditions presented in the previous section. The 

sensitivity of the model to several unknown parameters has been tested. Comparison between 

calculation and experiments will be discussed. 

 

3.1 – Single bubble growth model 

A schematic of the bubble growth model is shown in figure 13. A reactive agent particle creates 

n(t)created moles of gas by the chemical decomposition reaction deduced from the TGA curve. The 

bubble growth is governed by the competition between the gas which remains within the bubble and 

induces the growing mechanism (number of moles n(t)) and the moles of gas n(t)diffused which diffuses 

in the surrounding polymer matrix at the external pressure Pext. The gas concentration C(r,t) 

propagates concentrically in the surrounding polymer melt. The average concentration of gas at the 

bubble surface, C(r,t)r=R, is related to the gas pressure inside the bubble Pgas through the solubility 

factor K.  
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Figure 13 – Single bubble growth model 

 

The following assumptions are made: 

1 – The bubble is spherically symmetric when it nucleates and remains so for the entire period of 

growth. 

2 – The polymer matrix is Newtonian.  

3 – The growth process is considered isothermal. Latent heat of reaction is neglected. 

4 – Inertia effects are neglected and the fluid is assumed to be incompressible, which is reasonable in 

the pressure range studied.  

5 – The gas released by the chemical reactions follows the ideal gas law. 

6– The matrix is considered as an infinite medium and one single bubble is considered. This condition 

will be commented later, in terms of the gas diffusion distances, bubble radius and sample 

dimensions. 

The first step consists in the determination of the number of moles of created gas n(t)created. Three 

different CBA kinetics are shown in figure 3. Considering the experimental foaming results, two 

different CBAs, CBA-818 and CBA-848, present similar results in terms of expansion rate and 

morphology. This indicates that the coupling reaction between citric acid and sodium bicarbonate 

has not occurred at the foaming temperature of the experience (210 °C), as indicated in the DSC 

curves figure 2. For this reason, two different numerical calculations results will be presented, first 

for the PP + CBA-828 samples (2-1 and 2-2) with the decomposition of citric acid, and then for the PP 

+ CBA-848 samples (3-1 and 3-2) with the sodium bicarbonate decomposition reaction. 

Figure 14 presents the theoretical fitting of the experimental TGA data extrapolated to one single 

particle of reactive agent for both decomposition reactions, at a temperature of 210 °C. The low 

heating rate (about 6 °C/min according to the temperature measurements during the foaming 

experiment), permits, as a first approximation, the extrapolation of the non-isothermal results 

derived from the TGA to isothermal kinetics at 210 °C. The total reaction time was about 100 s, much 

lower than the foaming time employed during the expansion experiment, which assures that the 

chemical reactions are complete. Different kinetic models can be found in the literature, such as the  

 

Pgas

n(t)

R(t)

C

R(t+t)
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Kamal and Sourour model [39]. In our case, the best fitting correlation was found using Boltzmann’s 

exponential functions: 

                                                                                                                                                                               (12) 

 

Fitting parameters, as well as the quality of the correlation are presented in table 6. 

 

 

 

 

 

 

 

Figure 14 – Theoretical fitting of the number of moles created during the CBA decomposition 

a) CBA-828    b)  CBA-848 

 

CBA A1 (mol) A2 (mol) t0 (s)  (s) R2 

2 4.1710-13 2.9510-14 63.12 8.59 0.9991 

3 3.9210-13 2.1810-14 57.87 9.20 0.9994 

 

Table 6 – Fitting parameters of the number of moles of gas created during the decomposition 

reaction of the CBAs. 

 

The ordinary differential equation for the bubble radius growth as a function of time writes [35]:      

 

                                                                                                            (13) 

 

R is the bubble radius,  is the polymer viscosity and   is the surface tension. As explained before, 

the gas temperature Tg is assumed to be constant (210°C) during the expansion process. 

The variation of the number of moles of gas n(t) inside the bubble is derived from equation 14:  

 

(14) 
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The number of moles of gas which diffuse outside the bubble in the surrounding polymer matrix is 

obtained from the mass transfer of CBA at the gas-polymer interface and it can be expressed as 

follows: 

 

     (15) 

 

 

D is the diffusion coefficient, and C is the gas concentration of the diffused gas. The concentration 

profile is given by a diffusion equation around the bubble which writes: 

 

(16) 

 

u is the velocity field related to the bubble expansion, in spherical coordinates. The ratio between the 

convection term and the diffusion term is a Peclet number given by (see Joshi et al [34]): 

 

(17) 

 

The diffusion coefficient value can be taken from the literature [35], with a typical value, for PP and 

PE / CO2 systems, of D = 10-8 m2/s. The calculation without diffusion will show that the bubble radius 

goes from 5.10-6 to 2.10-4 m and the growth speed of the bubble radius is around 10-6 m/s. Therefore, 

convection can be neglected. 

The numerical implementation requires defining boundary and initial conditions. Three physical 

parameters must be defined at time t=0. First, the average size of the reactive agent particles can be 

considered as the initial bubble radius R0, as a first approximation. This assumption is only an 

approximation, and the sensitivity of the calculations when changing the initial radius will be 

analyzed. The initial number of moles of gas n0 can be directly calculated from the gas perfect law 

using the initial radius R0 =  ́= 4.46 m, at the two different external pressures 0.25 MPa and 0.5 

MPa. The boundary condition for the gas concentration at the bubble surface C(R,t) is described by 

Henry’s law: 

       

 (18) 

 

 

3.2 – Numerical implementation 

The numerical implementation of the previous equations is carried out by means of an incremental 

time marching approach during the decomposition reaction time (about 100 s, see figure 14). This 

approximation implies that the expansion process is limited to the decomposition reaction time, and 

that no further expansion occurs later. The variation of the number of moles of gas created is 

obtained by differentiating equation 12: 
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(19) 

  

250 iterations were employed to solve the equations. We adjust the time step t in order to obtain 

an incremental radius variation less than 1%: 

 

3.3 – Results and discussion 

Table 7 presents the physical parameters and the initial conditions employed in the foaming 

simulation. 

Parameter CBA 2 CBA 3 Units 

Initial number of moles n0 (3.56 or 7.13) 10-14 (3.56 or 7.13) 10-14  mol  

Initial radius R0 4.4610-6 4.4610-6 m 

Viscosity  500 500 Pas 

Surface tension * 0.020 0.020 Jm-2 

Diffusion coefficient D* 
810-9 810-9 m2s-1 

Gas constant  8.314 8.314 m3PaK-1mol-1 

Gas temperature Tg  483 483 K 

External pressure Pext (2.5 or 5)105 (2.5 or 5)105 Pa 

Solubility parameter K* 1.1510-4 1.1510-4 molm-3Pa-1 

Table 7 - Physical parameters and initial conditions employed for the foaming simulation 

*Values taken from literature [35] 

Figure 15 presents the gas diffusion profiles outside the bubble for five different reaction times and 

both CBAs and an external pressure of 0.25 MPa. Results for the diffusion profiles taking an external 

pressure of 0.5 MPa were almost equivalent, which indicates that the slight variation in the external 

pressure does not affect significantly the gas diffusion.    

 

 

 

 

 

 

 

Figure 15 – Gas diffusion profiles obtained from the diffusion equation  

a) CBA-828  b) CBA-848 
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The quantity of gas which diffuses outside the bubble increases as the reaction develops. For 

reaction times close to 40 s, the gas diffusion penetration thickness is around 150 m for the CBA-

828, and 300 m for the CBA-848, whereas for reaction times of 2 s, these distances are only 50 m 

and 80 m, respectively. The gas concentration at the gas-polymer interphase decreases strongly 

with time, even when the quantity of gas generated inside the bubble n(t) increases according to the 

TGA kinetics. The reason for this decrease is related to the dependence of C(R,t) with bubble radius 

in a proportion CR-3 (see equation 18). At high reaction times, the gas concentration at the 

interphase is negligible. The initial concentration values C(R,t) are higher for the CBA-828 due to the 

higher quantity of moles of gas generated by the citric acid decomposition. 

Figure 16 compares the number of moles of gas created by the decomposition reaction, diffused and 

retained in the bubble during the expansion process for an external pressure of 0.5 MPa. 

  

 

 

 

 

 

 

Figure 16 – Evolution of the number of moles of gas during the foaming expansion of a single bubble  

a) CBA 828   b)  CBA 848 

These results show that, in the foaming conditions of figure 16, the diffusion process becomes 

noticeable from 20 s for both CBAs. From that time, the quantity of diffused gas increases, reaching a 

final value about 1.3510-12 moles for the CBA-828 and a value about 710-13 for the CBA-848.  It can 

be seen also that at the end of the chemical reaction of CBA-828, the quantity of gas diffused is 

higher than the gas inside the bubble*. On the other hand, the number of moles of gas created by 

the decomposition reaction reaches a value between 410-12 moles and 2.710-12 moles, for the CBA-

828 and CBA-848, respectively. These differences between both CBAs can be related to the kinetics 

of the decomposition reactions, which shows that the quantity of gas created by the CBA-848 is 

slightly higher than the quantity created by the CBA-828. 

At the end of the reactions, the ratios between diffused and created gas are about 33 % and 28 % for 

CBA-828 and CBA-848 respectively. These values are in reasonable agreement with the experimental 

values found previously in table 5 (between 25% and 50% of diffused gas).  

Figure 17 presents the predicted radius evolution for both CBA-828 and CBA-848. Two different 

situations are presented. In the first case, diffusion is not considered, and the number of moles of gas 

n(t) are taken directly from the TGA measurements. In the second case, the gas diffusion process is 

considered, and n(t) is obtained from the data of figure 16.  
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Figure 17 – Numerical prediction of the single bubble growth during the expansion process  

a) CBA 828      b)  CBA 848 

The final bubble radius depends strongly on the external pressure and is obviously limited by the gas 

diffusion. For the CBA-828 (figure 17a), when the external pressure is 0.25 MPa, the bubble radius 

reaches 530 m when gas diffusion is neglected, and about 130 m when the diffusion process is 

considered. When the external pressure is increased up to 0.5 MPa, these values are 330 m and 90 

m respectively. The theoretical values obtained (considering the diffusion process), are in 

qualitative agreement with the foaming experiments values (120 m and 85 m respectively, see 

table 5). A similar analysis can be performed for the CBA-848 (figure 17b). In this case, the theoretical 

values obtained considering the diffusion process are about 300 m and 180 m, for both external 

pressures of 0.25 MPa and 0.5 MPa. These results are also in qualitative agreement with the foaming 

experiments (350 m and 190 m respectively, see table 5).  

Using the expansion R(t) value makes possible to compute the velocity value u at the bubble/polymer 

interface. The evolution of u for the CBA-828, considering only the results including the diffusion 

term, are presented in figure 18 (the results for the CBA-848 are similar). As it can be seen in figure 

18, u values are around 10-6 m/s which justifies neglecting the convection term in the diffusion 

equation (16) . 

 

 

 

 

 

 

 

Figure 18 – Bubble growth speed (u) during the expansion process (CBA-828) 
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The sensitivity of the model to control parameters, especially the initial radius R0, and physical 

parameters (the diffusion coefficient D and the viscosity ) on the bubble growth rate has been 

investigated (figure 19). The results are shown for CBA-848 for an external pressure of 0.25 MPa.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 – Influence of several parameters in the single bubble growth (Test 3-1)  

a ) Initial radius R0     b) Diffusion coefficient D    c)  Viscosity 

In figure 19a, three different values of the initial radius R0 were chosen (5 nm, 5 m and 100 m). 

The lowest value corresponds to the typical critical radius value that can be found in the literature for 

homogeneous nucleation [4]. The final predicted bubble radius is only slightly influenced by the 

initial radius value (between 290 m and 320 m) but differences are obviously very important at 

intermediate time steps (till 30 s).  

Varying the diffusion coefficient from 10-8 m2/s to 10-11 m2/s leads to a final bubble radius around 100 

m and 600 m, respectively (figure 19b). Typical diffusivity values for a gas-polymer system place in 

the rage between 10-8-10-10 m2/s. The chosen diffusivity value was taken directly from the literature 

[35], and corresponds to the diffusivity value of CO2 into a PP matrix at 483 K. A more detailed 

analysis should include the diffusion process of water vapor into a PP matrix. It is possible to assume 

a value of the diffusion coefficient of water vapor slightly higher than the value for CO2 due to the 

lower molar mass. However, the range of diffusion coefficients analyzed in figure 19b is expected to 

cover both CO2 and water vapor diffusion process.  
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It can be observed that increasing viscosity  from 200 Pas to 1000 Pas induces a decrease of the 

final bubble radius from 600 m to less than 100 m (figure 19c). The viscosity was determined 

experimentally from shear rheological measurements and presents a Newtonian plateau around 500 

Pa.s at the strain rates encountered during the foaming process. During the foaming process, the 

flow around a single bubble is purely elongational, which means that the chosen viscosity value 

determined by shear measurements may be significantly underestimated. This justifies testing higher 

viscosity values in the single bubble growth model, as seen in figure 19c. 

The influence of the initial number of moles n0 and the influence of the initial radius R0 are correlated 

from the gas perfect law (n0R0
3). 

Finally, as the number of bubbles is less important than the number of CBA particles and as the final 

radius of the bubbles is more important than the mean initial distance between the particles, it is 

clear that bubble coalescence appears quite early in the process. Due to the important CBA particle 

size distribution (figure 5), one can believe that the biggest initial particles will induce the biggest 

bubbles in the first stage of their development (see figure 19a), which will coalesce with the small 

surrounding bubbles initiated by the smallest initial particles. Considering, for example, one bubble 

with a diameter of 100 m surrounded by eight bubbles with a diameter of 25 m (see figure 19a at 

t=5s), the final diameter of the central bubble will be only 108 m after coalescence. As a 

consequence, if 88 % of the bubbles disappear during the foaming process, (which corresponds to 

the scenario of one bubble surrounded by eight smaller bubbles), the final bubble diameter will be 

only enhanced by 8 %. This may explain the good agreement between the calculation result which 

does not account for coalescence and the experimental observation where coalescence takes place. 

4 – Conclusion 

A simple polymer expansion experiment has been designed to test the foaming behavior of different 

chemical blowing agents (CBA), submitted to different pressure conditions. The bubble size and 

bubble size distribution depend on the blowing agent and on the applied pressure and careful bubble 

size measurements obtained by Image Analysis correlate well with the global macroscopic expansion 

of the foamed sample. 

A single bubble expansion model assuming nucleation on each CBA particle, accounting for the 

different chemical reactions and for the gas diffusion from the bubble to the surrounding polymer 

matrix agrees fairly well with the experimental results, despite the strong hypothesis.  This allows us 

to build a simple method to estimate the capability of a CBA to develop a foamed structure and the 

resulting mechanical properties. 

Further studies analyzing injection molding experiments with the same CBAs are in progress. 
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