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SUMMARY

Understanding cells as integrated systems requires that we systematically decipher how single 

genes affect multiple biological processes and how processes are functionally linked. Here, we 

used multi-process phenotypic profiling, combining high-resolution 3D confocal microscopy and 

multi-parametric image analysis, to simultaneously survey the fission yeast genome with respect 

to three key cellular processes: cell shape, microtubule organisation and cell cycle progression. 

We identify, validate and functionally annotate 262 genes controlling specific aspects of those 

processes. Of these 62% had not been linked to these processes before and 35% are implicated in 

multiple processes. Importantly, we identify a conserved role for DNA-damage responses in 

controlling microtubule stability. In addition, we investigate how the processes are functionally 

linked. We show unexpectedly that disruption of cell cycle progression does not necessarily 
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impact on cell size control and that distinct aspects of cell shape regulate microtubules and vice-

versa, identifying important systems-level links across these processes.

INTRODUCTION

In many ways the genomes of most organisms remain black boxes, with the function of the 

majority of genes and gene products still unknown. This is the case foremost in humans, 

where a decade after publication of the human genome sequence we still have no direct 

experimental evidence of the function of over half of all the proteins it encodes 

(www.ebi.ac.uk/QuickGO/GAnnotation). Yet this is just the tip of the iceberg, as many 

genes and proteins play roles in multiple biological processes, themselves functionally 

linked, with most of those multiple roles and links awaiting discovery.

Fission yeast (Schizosaccharomyces pombe) is excellently placed for that discovery, with a 

genome of ~4900 protein coding genes (26.1% essential) of which 40% currently have a 

function only inferred from homology and a further 20% are completely uncharacterised 

(Aslett and Wood, 2006; Wood et al., 2002). Over the last four decades, classical genetic 

screening using S. pombe has allowed the discovery of numerous molecules and pathways 

controlling many essential eukaryotic processes thanks to the genetic tractability, simple 

morphology and uniform growth and division pattern of S. pombe cells (Forsburg, 2003). 

Recently a genome-wide library of knockout (KO) haploid strains - where each of 3004 non-

essential genes across the S. pombe genome was systematically deleted - became 

commercially available (Kim et al., 2010), opening the possibility to potentiate that 

discovery power using ultrasensitive image-based phenotypic screening strategies (Chia et 

al., 2012; Collinet et al., 2010; Cotta-Ramusino et al., 2011; Laufer et al., 2013; Mercer et 

al., 2012; Neumann et al., 2010; Rohn et al., 2011; Simpson et al., 2012; Yin et al., 2013).

Here, we used fission yeast to carry out a 3D image-based genomic screen monitoring cell 

shape, microtubule organisation and cell cycle progression in order to find genes involved in 

these processes, identify genes controlling multiple processes and determine how processes 

are functionally linked. We describe the identification, large-scale validation and 

quantitative annotation of 262 putative regulators, with 62% newly implicated in the 

processes studied and 35% implicated in more than one. As a result of in-depth validation of 

one hit class, we identify a conserved role of the DNA damage response in controlling 

microtubule stability, revealing a previously unappreciated link between those two 

therapeutically-relevant cell biological machineries. Moreover, by exploiting the richness of 

the multidimensional feature sets obtained from the screen, we investigate statistically and in 

detail the functional links across processes. We show that disruption of cell cycle 

progression does not necessarily impact on cell size control, and demonstrate that the causal 

links between cell shape and microtubule regulation in S. pombe are directional and 

complex, with distinct cell shape and microtubule features having defined epistatic 

relationships in this species.

The multi-process screen images and gene annotations are available online as a resource for 

the community at www.sysgro.org as well as linked to the centralized fission yeast 

repository PomBase www.pombase.org.
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RESULTS AND DISCUSSION

Establishment of a 3D image-based, yeast phenotypic profiling pipeline

In order to carry out a multi-process phenotypic screen in fission yeast we developed a live 

cell, 3D fluorescence image-based phenotypic profiling pipeline combining automated high-

resolution spinning disk confocal microscopy and large-scale, quantitative multiparametric 

image analysis. We used confocal microscopy and 3D (xyz) imaging in order to extract high-

resolution subcellular information from individual yeast cells, allowing us both to screen 

with high sensitivity and obtain refined phenotypic cell biological annotations. Details of the 

experimental and computational implementation of the pipeline are described in the 

Experimental Procedures.

We chose to screen for genes controlling cell shape, microtubules and cell cycle progression 

because they are fundamental, well-studied processes for which an extensive yet likely not 

exhaustive list of regulators is known. In addition, all three processes can be monitored 

simultaneously in live cells expressing only fluorescently-labelled tubulin, minimizing 

manipulation of their genetic background. Indeed, microtubules can be used as bona fide 

reporters of cell cycle state, as they take defined stereotypical patterns across the cell cycle 

(Hagan, 1998); in turn, cell shape can be simply monitored using extracellular fluorescent 

dyes (see below). Thus, we generated a version of the genome-wide KO library expressing 

GFP-tagged endogenous alpha tubulin 2 (GFP-Atb2; Figure 1 and Figure S1A), allowing us 

to visualize microtubules and cell cycle stage ‘live’ in all mutants. As the different KO 

mutants arrayed in 96-well plates had different growth proficiencies compared to the wild-

type (Kim et al., 2010), prior to imaging we used a serial dilution and manual re-pooling 

strategy to ensure all mutants grew exponentially and were hence physiologically 

comparable (Figure S1B). Then, in preparation for high-throughput imaging cells were 

immersed in Cascade blue dextran-containing fluorescent growth medium. This allowed 

visualisation of live cell morphology without the need to express a cytoplasmic fluorophore 

(Figure 1). Thereafter, mutants in the 96-well plates were filmed by two-colour (405nm, 

488nm) automated high-throughput confocal microscopy at high magnification (60× 1.2NA) 

and in 3D (xy and 16 z-planes), and their images computationally analysed and phenotyped 

using custom-made image analysis software.

Quantitative phenotyping of cell shape, microtubules and cell cycle stage

First, we segmented images in the Cascade blue channel, and extracted from each 2D cell 

object 57 shape and grey-level features (length, width, area, convexity, concavity, 

topological skeleton, fluorescence intensity along the object’s contour, etc; Figures 1B and 

2A, Figure S2 and Table S1). Then, using Machine Learning (Jones et al., 2009; Sommer 

and Gerlich, 2013), specifically a Random Forest classifier trained with both wild-type 

shaped and strongly misshapen mutant cells, we identified and rejected poorly segmented 

objects and kept only well-segmented cells for further analysis (9.28% out-of-bag error 

rate).

Subsequently, we detected microtubules in the GFP channel xyz image stacks, reconstructed 

microtubule orientation within every cell in 3D and extracted 24 geometrical and greylevel 
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microtubule features (number, length, fluorescence intensity, orientation, etc; Figures 1C 

and 2B, Figure S3A-D and Table S2).

Finally, we identified cell cycle stage for each cell based on 3D microtubule pattern, using a 

four-class Support Vector Machine (SVM) classifier (Jones et al., 2009; Sommer and 

Gerlich, 2013),. The classifier, trained with wild-type cells and cells from 4 known 

microtubule mutants (lacking Tip1/CLIP170 (Brunner and Nurse, 2000), Mto1/Centrosomin 

(Sawin et al., 2004), Ase1/PRC1 (Loiodice et al., 2005) and Pkl1/Kinesin-14A (Troxell et 

al., 2001)) distinguished 4 cell cycle-related microtubule patterns: interphase microtubule 

array (IP; characteristic of G2 phase in our exponential growth conditions), metaphase 

spindle (SP; characteristic of M phase), post-anaphase array (PAA; reflective of G1 phase) 

and post-mitotic interphase microtubule array (called IP2 for ‘interphase2’; likely reflective 

of G1-S phases). The classifier accuracy was 93.78% across the wild-type and 4 mutants 

combined, indicating that we could achieve robust cell cycle stage assignment even when 

microtubules had an abnormal phenotype. This was partly thanks to the use of 3D 

microtubule features, which allowed a more accurate assignment of cell cycle stage than 2D 

features (see Extended Experimental Procedures). The output was a signature of 4 scores 

reflecting the proportion of cells assigned to each cell cycle stage, for each wild-type 

(typically 70% IP, 10% SP, 10% PAA and 10% IP2) and mutant cell population, indicative 

of their cell cycle progression characteristics (Figure 1D and Figure S3E-F).

Hit detection, 10-fold validation and selection

We used two complementary strategies for detecting KO mutants with aberrant cell shape or 

microtubules (‘hits’, Figure 1B-C, Figure S4). The first strategy identified mutants with a 

prominent alteration in a single feature (‘p-value’, Figure 1). The second strategy identified 

mutants with multiple subtle feature alterations (‘multiparametric profile scoring’, Figure 1). 

In proof-of-principle experiments prior to screening, the use of both strategies combined led 

to highly consistent detection of the wild-type and of 4 known microtubule mutants within 

and across 96-well microplates (Figure 2C-F), validating the quality and reproducibility of 

our hit detection strategy. The combined hit detection procedure was optimized 

independently for cell shape and microtubules based on the results of visual screening by a 

human observer of one genomic image dataset (Figures S5-S6).

To detect KO mutants (‘hits’) with altered cell cycle progression, we used bootstrap 

statistics to estimate the typical proportions of wild-type cells in each cell cycle stage, 

scoring as hits KOs where at least 2 cell cycle stages were statistically disproportionate with 

respect to the wild-type (i.e. under- or over-represented, Figure 1D). That criterion ensured 

only detection of hits where general cell cycle progression was affected. In particular, this 

allowed us to screen for genes distinct from classical cell cycle regulators which, when 

mutated, often lead to checkpoint-mediated delay in just one cell cycle stage or transition.

We grew, imaged and computationally screened independently the entire library twice 

(Figure S1C-F), analyzing 1 880 064 images and making and analyzing 1 707 870 cell, 5 

597 165 microtubule and 1 607 406 cell cycle stage assignments. This identified 372 cell 

shape hits, 449 microtubule hits and 199 cell cycle progression hits (note: hit identification 

for each process was independent of the others). To generate a high-confidence hit list, we 
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then rescreened all hits at large-scale to obtain 10 biologically-independent screening rounds 

and ranked hits according to the fraction of repeats in which they were detected (‘confidence 

value’; Figure 1E). Only hits with ≥35% confidence - the percentage corresponding to a 

well-established but weak phenotype hit (tea1Δ; Figure 2F) added as positive control in all 

repeats - were selected for further analysis. Altogether, this led to identification of 143 cell 

shape, 186 microtubule and 35 cell cycle progression high-confidence hit genes (Table S3) 

described next.

Genes and pathways controlling cell shape and cell size control

Genes whose KO affected cell shape (‘cell shape genes’, Figure 1E) included expected 

regulators of cell morphology, cell polarity and growth (Tea3, Pom1, Arf6, Rga2, Tea2, 

Sla2/End4, Myo1, Efc25, Scd2; for genes’ annotations see www.pombase.org/) but also 

many genes related to a wide range of other processes like trafficking or cell cycle control, 

and 17 altogether unannotated genes. 41% (58/143) of genes implicated in cell shape 

regulation had not been previously reported as such, to our knowledge. Importantly, they 

were not identified in a recent visual screen of the S. pombe KO library (Hayles et al., 2013). 

This is likely due to the very different physiological conditions used in that study (non-

exponential growth on solid medium) and our use of sensitive computational hit detection.

Similarly to previously published studies (Bakal et al., 2007; Fuchs et al., 2010), cell shape 

hit classification was done using 8 SVM classifiers trained to recognize 8 basic phenotypic 

classes on an individual cell basis (Figure 3A-B and Figure S4A): ‘stubby’ (wide), ‘banana’ 

(curved), ‘orb’ (round), ‘kinky’ (S-shaped), ‘long’ (elongated), ‘skittle’ (with one side wider 

than the other) and ‘T-shaped’ (branched). Classically, cell shape mutants are thought to 

display only one aberrant shape phenotype, like being round or curved (Hayles et al., 2013). 

Surprisingly we found that, instead, all strains including the wild-type did not display only a 

single shape phenotype but rather could be defined as a mixture of those eight phenotypes 

(Figure 3A-B and Figure S4A). Thus, even within a genotypically uniform cell population, 

the genome allows S. pombe cells to explore multiple morphogenetic states. These might be 

brought about by cell-to-cell differences in the content of key shape-controlling proteins due 

e.g. to non-exact equipartition of cellular material - polarity landmarks, secretory machinery, 

cell wall composition/properties, etc - between daughter cells at cell division, or from 

stochastic gene expression.

Quantitatively the most common aberrant cell phenotype was stubby (Figure 3C), indicating 

it may be the most general manifestation of compromised cell shape; conversely the least 

common was orb (i.e. completely non-polarised), consistent with the finding that known 

genes whose disruption leads to complete rounding are essential (Hayles et al., 2013) and 

with the notion that complete loss of polarity may be incompatible with viability.

We clustered mutants based on their shape phenoprint and found that KOs of specific 

pathways shared characteristic morphological signatures (Figure 3D). One major cluster of 

predominantly stubby mutants comprised regulators of endocytosis and exocytosis (Vps25, 

Vps32, Vps36, Shd1, Dip1, Did4, Sla2/End4, Sft1; likely involved in apical restriction of 

cellular growth zones), genes involved in ubiquitin/COP9 signalosome-mediated protein 

degradation (Csn1, Csn2, Pub1, Ubi1) and several uncharacterized factors. Another major 
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cluster comprised significantly longer mutants (note: cell elongation, usually associated with 

cell cycle deregulation, was scored in our screen as a cell shape defect), corresponding to 

factors involved in the DNA damage response (DDR) (Mre11, Rad50, Rad55, Set1, Ccq1, 

Cdt2, Ctp1; the DDR leads to cell cycle delay and cell elongation), transcriptional regulators 

(Cuf1, Rep2), elongator complex subunits (Elp3, Elp4, Elp6, Dph3; this complex has been 

involved in negatively regulating exocytosis), histone modifiers (Brl2, Cph1, Cph2, Dep1, 

Rtx2) and other putative regulators.

We next asked whether, given their geometrical disruption, cell shape mutants properly 

control cell size. S. pombe cells are thought to need to reach a critical cell size at the G1/S 

and most importantly the G2/M cell cycle transition, when cells engage in cell division only 

after reaching twice their original size at birth (Mitchison, 2003). We calculated the average 

cell area (as a proxy for size) at mitosis by looking at cells containing a mitotic spindle, and 

plotted distributions of the average area at mitosis for all hits (Figure 3E, top) and its 

coefficient of variation (Figure 3E, bottom). 90% of cell shape hits had an area at division 

lower or higher than wild-type cells, which divide at an area of ~48 μm2.

This included KOs of factors known to be involved in cell size control such as Pom1 

(Martin and Berthelot-Grosjean, 2009; Moseley et al., 2009). Strikingly, 30% had a higher 

coefficient of variation of the cell area than the 0.12-0.22 coefficient of the wild-type (grey, 

Figure 3E), indicative of lack of precision in cell size control at division. Interestingly, the 

latter was enriched for mutants in the ubiquitin/COP9 signalosome complex (implicated in 

cell cycle and cell size control in D. melanogaster (Bjorklund et al., 2006)), DDR regulators 

and various factors involved in intracellular protein transport. As the COP9 complex 

regulates cullin activity in mammals and cullin (Cul-4) has been implicated in both cell 

cycle control and the DDR (Hu et al., 2004), one possibility is that ubiquitin/COP9 and the 

DDR act on cell size control via the same pathway, possibly via their role in cell cycle 

regulation. Alternatively, each may play a distinct role that needs to be further explored. 

Similarly, the role in size control of other factors identified needs to be clarified.

Genes and pathways associated with characteristic microtubule signatures

Genes whose KO affected microtubules (‘microtubule genes’; Figure 1E) included known 

microtubule regulators (Tea2, Tip1, Mal3), mitochondrial factors, trafficking-related genes 

and 19 altogether unannotated factors. Notably, 93.5% (174/186) of the genes implicated in 

microtubule regulation had not, to our knowledge, been previously reported as such. 

Mutants in those genes primarily led to deregulation of microtubule number, length or 

orientation, with most KOs affecting several features simultaneously albeit in different 

proportions (Figure 4A). Microtubule length (encompassing the features: ‘length’, ‘length 

variance’, ‘occupancy’, ‘occupancy variance’; Figures 4B-C) was by far the most common 

quantitatively affected microtubule property, demonstrating that microtubule length per se is 

not essential for cell viability. By contrast, low microtubule number was a very infrequent 

feature, consistent with the fact that microtubule nucleation is essential for cell viability.

Clustering of microtubule hits was done using a subset of 12 features selected by visual 

quality control to optimize for high inter-class variability and low intra-class variability (i.e. 

to optimally group together KOs judged visually to have the same phenotype and assign to 
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separate groups KOs with visually different phenotypes) and identified various pathways, 

each associated with a specific microtubule phenoprint (Figure 4D). Among the most 

prominent pathways we found: cytoskeleton/cell polarity (Tea2, Tip1, Tea4, Mal3; whose 

KO leads to short, disoriented microtubules), DDR (Mre11, Rad50, Rad51, Rad55, Mcl1, 

Ccq1, Cdt2, Ctp1; slightly elongated, hyper-oriented microtubules), transport/vesicles and 

mitochondria (Vps25, Vps66, Tlg2, Ryh1, SPAC823.10c, Tom7, SPAC1F3.03, Sat1, and 

Rrf1, SPAC823.10c, SPAC1610.02c, Cys11, SPBC106.07c, Coq5; slightly more 

microtubules) and tubulin folding (the Prefoldin complex subunits SPBC1D7.01, Pac10, 

SPAC227.10, Bob1; fewer microtubules). We next assessed whether differences in tubulin 

content could account for the mutants‘ microtubule feature signatures by quantitating their 

intracellular GFP-Atb2 fluorescence. We found that, although many mutants displayed 

substantial differences in tubulin content compared to the wild-type, there was no obvious 

correlation between their microtubule feature signatures and GFP-tubulin fluorescence, 

suggesting that their microtubule phenotype arises from deregulation of microtubule 

assembly rather than tubulin content (Figure 4E). Interestingly, analysis of the hits’ 

microtubule length in interphase versus mitosis revealed a correlation between the two in 

~80% of cases (Figure 4F), indicating that many genes identified may also play a role in 

mitotic spindle control.

Cell cycle progression genes reveal temporal linkage between non-consecutive cell cycle 
phases

Genes whose KO affected cell cycle progression (‘cell cycle progression genes’; Figure 1E) 

comprised a diverse range of factors and, as expected, did not include classical cell cycle 

regulators. To look for interesting functional groups, we measured experimentally the cell 

cycle duration of all cell cycle progression hits. This allowed us to convert for each KO the 

proportions of cells in each cell cycle stage into average times spent in each stage (Figures 

5A-B). We then calculated the Z-score of all four stage times (durations) with respect to the 

wild-type, for all hits (Figure 5C). Subsequently, we used Ergodic Rate Analysis (ERA 

(Kafri et al., 2013)) to estimate the average rate of progression from each cell cycle stage to 

the next (i.e. the rate of exit from each stage) and calculated the ERA rates’ Z-score with 

respect to the wild-type rates for all cell cycle progression hits (Figure 5D).

Clustering of the KOs based on their ERA rate Z-scores (Figure 5E) revealed groups of 

factors whose KO mainly results in accelerated exit from: IP into SP (Mal3, Pom1, Pac10: 

cytoskeleton/polarity related); SP into PAA (for example Pxa1: intracellular trafficking; 

Tos4, Iws1: transcription); PAA into IP2 (the largest group, including Pop3, Gar2, Dph3, 

Dbp7; RNA processing and metabolism); and IP2 into IP (including Twf1, Apl4: actin and 

endocytosis). Genes from the first cluster could be involved in regulating the IP-SP 

transition via the Pom1 cell size control pathway (Martin and Berthelot-Grosjean, 2009; 

Moseley et al., 2009). Some genes from the fourth cluster could control the IP2-IP transition 

via regulation of the cytokinetic actomyosin ring (Rincon and Paoletti, 2012). It will be 

interesting to determine how all other genes, known and uncharacterized, are linked to cell 

cycle progression control.
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Analysis of correlations in durations/rates among the four cell cycle stages (Spearman or 

MIC (Reshef et al., 2011); Figure 5F) for our hits revealed a strong anti-correlation between 

IP and PAA, i.e. KOs with an extended IP tend to have a shorter PAA and vice versa. Since 

IP and PAA reflect G2- and G1-phase respectively, this suggests that an accelerated G1/S 

transition (PAA-IP2 exit) causes delayed G2/M transition (IP-SP exit) and vice versa. As S. 

pombe has been shown to possess two apparently independent cell size control mechanisms 

acting at G2/M (the dominant one) and G1/S (revealed in small wee1-50 mutants) (Fantes, 

1977; Fantes and Nurse, 1978; Mitchison, 2003), which secure that nuclear division does not 

occur before cells reach a critical size, the observed anti-correlation might reflect 

compensation in cell cycle progression caused by one of the mechanisms when the other 

fails. Interestingly, as the cell cycle progression mutants identified here did not display 

altered size at cell division (Figure 6B and next section; contrary for example to wee1-50 

mutants), this suggests that both mechanisms exist and are active even in normally-sized 

cells.

Genes involved in multiple processes

Of the 262 genes identified for the three processes investigated 168 (64%) were associated 

to a single process and 94 (36%) had multiple functional assignments (Figure 6A). Only 10 

(4%) genes were shared between cell shape and cell cycle progression and 16 (6%) between 

microtubules and cell cycle progression, implying that those processes are largely 

independent.

By contrast, 84 (32%) genes were shared between cell shape and microtubules implying a 

potentially significant co-regulation of both processes, as expected. These included factors 

involved in cell morphogenesis and polarity (Aah3, Efc25, Tea2, Tip1), endocytosis (Did4, 

Vps25, Vps36, Snf7), but also transcriptional regulation (Pof3, Pmc6, Rep2, Rxt2, Tup12), 

chromatin remodelling (Rsc4, Set1, Arp42, Spp1, Swd1) and DDR (Mre11, Rad50, Rad55, 

Ctp1, Set1, Mcl1, Ubi1). Notably, 60/143 (42%) cell shape genes and 106/186 (57%) 

microtubule genes had a role in a single process alone. This implies that a link between cell 

shape and microtubule deregulation is not obligatory in cells and may be specific to 

particular machineries.

Future work will be needed to clarify which genes associated here with multiple processes 

actually correspond to factors that actively couple those processes.

The DDR induces stabilisation of interphase microtubules

The largest functional group of KOs co-deregulating cell shape and microtubules was that of 

genes related to the DNA damage response (DDR). While the role of DDR genes in cell 

shape control (specifically in cell length and, hence, size control; Figures 3D-E) could be 

understood as resulting from DDR-induced cell cycle arrest and elongation (Melo and 

Toczyski, 2002; Zhou and Elledge, 2000), a link between DDR and microtubules (Figure 

4D) was unexpected and raised the question of whether DDR gene KOs lead to microtubule 

deregulation indirectly (via cell shape deregulation) or directly.
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Therefore, we decided to investigate this link further and use this as a means to validate the 

predictions of our phenoprint clustering analysis. Inspection of cells lacking the DNA repair 

factors Mre11 and Rad55 revealed that in those mutants interphase microtubules are 

elongated compared to wild-type cells, often curling around cell ends indicating increased 

microtubule stability (Figure 6B, quantitation not shown). By contrast, in cells lacking the 

ATR and ATM checkpoint kinases Rad3 and Tel1 microtubules were of wild-type length 

(not shown). This suggested that impaired DNA repair functions, and ensuing DDR arising 

from unrepaired DNA damage, may induce microtubule stabilisation via the ATM/ATR 

pathway. To test this directly, we treated wild-type cells with different doses of hydroxyurea 

(HU) to induce the DDR in a primarily ATR dependent manner, and we quantitated the 

effect of HU dosage on the average length of cellular microtubules and how it scales with 

cell length (‘microtubule occupancy’). Cells untreated with HU displayed a range of 

microtubule lengths that varied proportionately with the wild-type range of cell lengths 

(Figure 6C, 0 mM HU). Similarly, following treatment with low dose of HU cells became 

elongated due to cell cycle arrest and their microtubules became longer proportionally with 

cell length increase (Figures 6C and 6D top, 3 mM HU). By contrast, at higher dose of HU 

microtubules became disproportionately longer than cells, indicating an increase in 

microtubule stability induced specifically by the DDR (Figures 6C and 6D bottom, 15 mM 

HU). In agreement with this, in elongated G1- and G2-arrested cdc2-as mutant cells - where 

in principle no DDR activation occurs - microtubule elongation was also proportional to cell 

elongation (Figure 6C quantitations). Furthermore, the enhanced HU-induced microtubule 

stabilization was specifically DDR dependent, as microtubules did not become stabilized in 

cells lacking Rad3 or Tel1 treated with 15 mM HU (Figure 6E). Altogether these data 

suggest that DNA damage induces microtubule lengthening in an ATR-dependent manner. 

To test whether this functional link is conserved, we then asked whether induction of DNA 

damage in human (Hc3716-hTERT) cells by UV treatment (30J/m2) also elicited a similar 

effect. We found that in those cells induction of DDR often causes microtubules to organise 

in dense bundles around the cell nucleus (Figure 6F and not shown), suggestive of 

microtubule stabilisation. To test this further, we then induced partial microtubule 

depolymerisation by cold (4°C) treatment in both UV-untreated and UV-treated Hc3716 

cells. We found that while hardly any UV-untreated cells contain thick bundles after cold 

depolymerisation (1.22%, n=575 cells; 15% of cell fields scored) many UV-treated cells still 

contain thick bundles (5.89%, n=577 cells; 45% of cell fields scored) of much more 

connected microtubules (Figure 6G). In addition, microtubules in DDR-activated cells 

contain a much higher amount of acetylated tubulin (Figure 6H), indicative of increased 

microtubule stability (Hammond et al., 2008). We conclude that the DDR specifically 

induces stabilisation of interphase microtubules, revealing a conserved link between the 

DDR and cytoskeletal control in cells. Though some links between those two machineries 

have been reported (Baschal et al., 2006; Lee et al., 2010; Lee et al., 2011; Xie et al., 2011), 

the conserved link described here points to a more general connection, whose exact 

physiological role and mechanistic details - in particular the cytoskeletal DDR target(s) 

involved - will need to be clarified. This might be of particular therapeutic relevance as a 

combination of cytostatic doses of DNA-damaging drugs with microtubule drugs has been 

shown to result in selective cytotoxicity and radio-/chemo-sensitisation in some cancer cells 

(Baumgart et al., 2012; Blagosklonny et al., 2000; Lee et al., 2011).
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Systems-level functional relationships between processes

One important aspect of our quantitative, multi-process screening strategy is that it allowed 

us, beyond hit identification and phenotypic clustering, to obtain rich multi-dimensional 

feature sets characterizing all three processes simultaneously in cells, for hundreds of 

different KO conditions. Hence, we exploited the richness of those multidimensional feature 

sets to investigate statistically the systems-level functional relationships across processes.

We first turned to cell cycle progression hits - selected as having at least two 

disproportionate cell cycle stages with respect to the wild-type (Figure 1D) – and asked 

whether their cell cycle progression defect impacted quantitatively on their cell size. 

Remarkably, we found that their cell size distribution – as assessed by measuring cells 

undergoing division - was indistinguishable from that of wild-type cells (Figure 7A). This is 

in contrast with mutants in conventional cell cycle genes, which have traditionally been 

identified by virtue of their abnormal cell size phenotype, and indicates that the cell cycle 

progression genes uncovered here likely constitute a mechanistically distinct class of cell 

cycle regulators. Likewise and importantly, it demonstrates that disruption of cell cycle 

progression does not necessarily impact on cell size control.

We next turned to cell shape and microtubule hits and investigated dependencies between 

their features using Bayesian network analysis (Collinet et al., 2010; Yu et al., 2004). Like 

correlation analysis, Bayesian network analysis allows graphical representation of the 

probabilistic relationships between variables in a dataset. However, in addition Bayesian 

networks allow inferring conditional dependencies between variables. Thus, two variables 

are disconnected in a Bayesian network graph if they are either independent or conditionally 

independent knowing one or several other variables. This allows inference of direct links 

between two variables, as opposed to indirect effects mediated or caused by a third variable.

We focused on five key features quantitated in our screen: microtubule number, microtubule 

length, microtubule (dis)orientation, cell length and cell width. Using data from all cell 

shape and microtubule hits together, we constructed three Bayesian networks corresponding 

to three different cell cycle stages (IP, SP, PAA), by using for each network only cells in the 

corresponding cell cycle stage, and compared edges between the networks. We found that, 

while specific pairs of features are interdependent in a consistently correlated or anti-

correlated manner, many of those dependencies are cell cycle stage specific (Figure 7B, top 

three graphs; + sign: correlation, − sign: anti-correlation; Figure S7 illustrates the robustness 

of the analysis). For example, we found that cell length and microtubule number are always 

linked in cells except during post-anaphase (PAA), when a profuse, radial microtubule 

network assembles in the cell middle. Similarly, cell width and microtubule (dis)orientation 

are always linked except in post-anaphase, indicating that in this species not only interphase 

microtubule alignment but also mitotic spindle orientation relies mostly on cellular geometry 

(Thery et al., 2007). Instead, cell length and microtubule length are interdependent except 

during mitosis, indicating that mitotic spindle size is independent of cell size in this species 

(Wilbur and Heald, 2013).

We then constructed three different Bayesian networks using features from KOs deregulated 

in cell shape, microtubules or both (Figure 7B, bottom three graphs), and visually compared 
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the networks to seek to infer directionality in the dependencies among features. We found 

that cell length and microtubule length are linked in hits deregulated in cell shape alone and 

in hits deregulated in both cell shape and microtubules. Instead, the two features are not 

linked in hits deregulated in microtubules only. We interpret this as implying that the 

causality is from cell length to microtubule length (e.g. increased cell length promotes 

increased microtubule length). Conversely and unexpectedly, we found that microtubule 

number and cell width are linked in microtubule only hits and in cell shape and microtubule 

hits, but not in hits only deregulated in cell shape, leading us to interpret that the causality in 

this case is from microtubule number to cell width (e.g. increased microtubule number in 

cells promotes increased cell width). These results are summarized in Figure 7C.

To corroborate the inferred statistical relationships, we sought to externally validate some of 

its predictions. First, we looked at cdc2-as cells - which have altered cell length due to cell 

cycle arrest - and found (Figure 6C) that in this mutant cell length changes induce 

proportional microtubule length changes (Figure 7D, top). By contrast, in mutants lacking 

the microtubule stabilizer Tip1/CLIP170 or the catastrophe-promoting kinesin-like protein 

Klp6/Kinesin-8 - with, respectively, shorter and longer microtubules - microtubule length 

changes do not induce cell length changes (Figure 7D, bottom). Thus, cell length controls 

microtubule length and not the reverse, as predicted.

Secondly, we looked at mutants lacking the microtubule bundling protein Ase1/PRC1 or the 

microtubule nucleation factor Mto1/Centrosomin - with, respectively, a higher and lower 

number of microtubule bundles - and found that in those mutants microtubule number 

changes induce cell width changes (Figure 7E, top). Instead and by contrast, in mutants 

lacking the Rho2 GTPase-activating protein (GAP) Rga2 or the Cdc42/Rho2 GAP Rga4 - 

narrower and wider than wild-type cells, respectively - cell width changes do not induce 

microtubule number changes (Figure 7E, bottom). Hence, microtubule number controls cell 

width and not the reverse, as inferred.

Thirdly we asked whether, as implied by the analysis, microtubule number and microtubule 

length are not directly linked. The absence of that direct link is interesting as (despite the 

fact that microtubule number and length are known to be regulated by different machineries 

in cells) one could expect both features to be somewhat dependent on one another, given 

that both rely on the common pool of tubulin available in each cell.

In fact, plotting microtubule length versus number - both using the screen dataset (Figure 

7F, top) and external data from wild-type, 3mM HU-treated and cdc2-as cells for validation 

(Figure 7F, bottom) - showed a positive correlation between both features, implying a link 

between them. However, the correlation was absent amongst cells of similar length (Figure 

7F). This demonstrates that, as predicted, microtubule number is not directly linked to 

microtubule length but rather both features are conditionally independent knowing cell 

length, i.e. they are coupled indirectly via the length of the cell.

Thus, the causal relationship between cell shape and microtubule regulation in S. pombe is 

directional and complex, with specific cell shape and microtubule features having defined 

epistatic relationships. Importantly, although our preliminary validation from Figures 7D-F 
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suggests that Bayesian analysis is indeed a useful predictor, given the partial and therefore 

potentially misleading nature of the parametrical description we have used, it will be crucial 

in the future to carefully validate the other predictions obtained using this approach.

CONCLUSIONS

In an effort to begin deciphering systematically how genes affect multiple cell biological 

processes and how processes are functionally linked, we carried out a quantitative multi-

process screen simultaneously monitoring three fundamental cell biological processes: cell 

shape, microtubule organisation and cell cycle progression.

Our screen identified and annotated 262 genes of which 131 were uncharacterised in S. 

pombe (of those, 29 had no predicted function in any species) and 131 had been described in 

the context of a different process, including: 6 genes of the ubiquitin/elongator pathways not 

implicated in cell shape control, 39 membrane trafficking/mitochondrial genes, which we 

show are involved in microtubule regulation, and 9 RNA processing/metabolism genes 

implicated in cell cycle progression. We also probed in depth the systemic relationships 

between those three processes - identifying 94 genes regulating multiple processes and 

functional relationships linking defined aspects of such processes, in particular of cell shape 

and microtubule control. This provides a rich, quantitative genomic dataset available for 

further mining, validation and mechanistic analysis by the scientific community (available at 

www.sysgro.org and www.pombase.org).

We extrapolate that an important gain in unexpected mechanistic insights could be obtained 

from multi-process screening across an increasing range of cell biological processes, using 

simple unicellular systems with standardised/optimised genomic KO or siRNA/RNAi 

libraries (Collinet et al., 2010). A future challenge therefore lies in developing graphical and 

statistical modelling approaches (Nicolau et al., 2011; Singh et al., 2007) suited to cope with 

the very high dimensionality information generated by such screens, in particular to combine 

information from independent studies (Kemmer et al., 2009; Nicolau et al., 2011; Spalding 

et al., 2000; Troyanskaya et al., 2003) in a representable and interpretable manner. Such 

developments will be key to obtain a systemic picture of cell function and to better 

understand and predict synergistic or antagonistic interactions, including those among 

clinically-relevant compounds (Horn et al., 2011).

EXPERIMENTAL PROCEDURES

Full methods are available in Extended Experimental Procedures.

Knockout screen for cell shape, microtubule & cell cycle progression genes

The Bioneer haploid deletion (knockout, KO) library v.2 (Bioneer, Korea) was modified to 

generate a GFP-tubulin expressing library (Dixon et al., 2008). KO mutants were grown 

exponentially for >48 hours and imaged in 96-well microplates (lectin-coated glass bottom, 

10μg/well) containing Cascade Blue Dextran-labelled YES medium (0.1 mg/ml). Two-

colour images were acquired using an automated OperaLX spinning-disk confocal 

microscope (Perkin Elmer) with 60× water-immersion objective (NA 1.2). Six stacks of 16 
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z-planes 0.4 μm separation were collected for each well. The entire genomic KO library was 

filmed twice. Customized software was used for image analysis and feature extraction.

Hit detection, large-scale validation and Bayesian analysis

Cell shape or microtubule hits were KO strains with a: a) low Kolmogorov-Smirnov p-value 

relative to a mean wild-type for any one feature, or b) significant Euclidean distance 

deviation from a mean wild-type across many features. Cell cycle progression hits were KOs 

with the proportion of cells in >2 two cell cycle stages outside the 95% bootstrap confidence 

interval of the corresponding wild-type stages. Genotypic and visual quality controls were 

done for corroboration. Hits were large-scale validated by 10-times independent rescreening 

and if picked in >35% of cases kept as high-confidence hits for analysis. SVM classifiers 

assigned 8 phenotypic classes to cell shape hits. ERA rates (Kafri et al., 2013) were 

calculated for cell cycle progression hits. Clustering used R, functional GO assignments 

DAVID, Bayesian analysis the R package bnlearn (Scutari, 2010).

Investigation of DNA damage response & microtubules

Yeast were treated with Hydroxyurea 9 hours before filming and every 3 hours after, and 

were imaged on lectin-coated MatTek dishes using a DeltaVision system (GE Healthcare). 

Hc3716-hTERT cells were grown to 70% confluence in Hepatocyte Medium Bullet Kit, 

exposed to 30J/m2 UVC and grown for 8 hours before cold treatment or fixing. 

Immunostaining for β-tubulin or α-acetylated tubulin was done with ALEXAfluor-

conjugated secondary antibodies, DNA was DAPI-labelled. Cells were imaged on a Leica 

SP5 confocal.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 3D image-based multi-process screening pipeline and multiparametric hit detection
(A) 2× genomic screen input. 3004 gene KO strains were imaged in 96-well microplates. 3D 

z-stack images were collected from 6 locations per well in two fluorescence channels to 

detect cell outlines and GFP-microtubules. (B) and (C) Cell shape (B) and microtubule (C) 

hit detection strategy, using single feature p-value measurements to detect extreme hits in 

one feature (left) or multi-feature profile analysis to detect subtle changes across many 

features (right). (D) Cell cycle progression hit identification, by comparison for each mutant 

of the proportion of its cells assigned to each cell cycle stage compared to a bootstrapped 

reference wild-type. (E) 10-fold high-throughput hit validation using the strategies in (B), 
(C) and (D). Hits were ranked based on the fraction of independent screening rounds where 

they were coincidently-identified as hits (‘confidence value’). Hits with >35% confidence 

value were subsequently analysed. Scalebar: 10μm. See also Figures S1-S6 and Tables S1-

S3.
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Figure 2. Quality Control
(A) Spearman correlation of cell shape features for all mutants and for cell shape hits 

between the two genomic screening rounds. Only features consistent between both screens 

were used for analysis. (B) Similar to (A) for microtubule features. (C) Arrangement of 

known microtubule mutants and wild-type cells in plates used in proof-of-method 

experiments, designed to test for plate location effects and reproducibility of positive and 

negative control phenotypes. (D) Percentage of correct identification of mutant vs. wild-type 

populations within and between test plates. (E) Known mutants used and features for which 

they were picked. (F) Rates of incorrect identification of a mutant as ‘wild-type’ (false 

negative rate) for four mutants versus the rate of incorrect identification of wild-type 

controls as ‘mutant’ (false positive rate).

Graml et al. Page 18

Dev Cell. Author manuscript; available in PMC 2015 November 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 3. Cell shape genes and deregulation of cell size control
(A) Example cell shape hits. (B) Corresponding cell shape hit shape profiles illustrating the 

co-manifestation of multiple cell shape phenotypes within the genotypically uniform mutant 

populations. (C) Phenotypic trait abundance (pie chart) illustrating the proportion of cells 

from all shape hit populations combined into stereotyped categories. (D) Phenoprint 

clustering of cell shape hits based on the shape profiles in (B) and major functional gene 

ontology (GO) groups. (E) Distributions of cell size at division (top) and its coefficient of 

variation (lower) for cell shape mutants. Mutants with greater coefficient of variation than 

wild-type are shown in grey with selected gene names. Scalebar: 10μm. See also Figures S2 

and S4 and Tables S1 and S3.
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Figure 4. Genes associated with characteristic microtubule signatures
(A) Example microtubule hits. (B) Phenotypic trait abundance (pie chart) illustrating the 

proportion of cells from all microtubule mutant cell populations combined displaying a 

significant phenotype in the features shown. (C) Three significant features for all (top), only 

short (bottom) or only long (middle) mutants. (D) Phenoprint clustering of microtubule hits 

based on extracted microtubule features and major functional GO groups. (E) GFP-tubulin 

content. Average GFP-Atb2 fluorescence level per cell for each mutant shown in (D), as a 

proxy for tubulin concentration with respect to the average wild-type value. Colours of the 

gene groups indicate which clusters from (D) they correspond to. (F) Correspondence 

between interphase and mitotic phenotype. Top: Comparison of interphase and spindle 

microtubule length changes for all microtubule hits. Grey: KOs with significantly altered 

spindle length (‘spindle hits’). Bottom: Percentage of cells with a given spindle length, for 

spindle hits with a spindle shorter/longer than wild-type (‘shorter’/’longer’ spindle hits). In 

all three classes of populations shown, cells accumulate with a short spindle, likely 

corresponding to pro-metaphase state during chromosome capture. Long spindle mutants 

(grey dashed) also accumulate cells with a longer spindle, which may indicate a delay during 

or on exiting anaphase B. Scalebar: 10μm. See also Figures S3 and S4 and Tables S2-S3.
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Figure 5. Cell cycle progression genes and cell cycle stage correlation analysis
(A) Proportional representation of the cell cycle phases - interphase (yellow), spindle (light 

blue), PAA (blue), interphase 2 (purple) - for a selection of cell cycle progression hits and a 

reference wild-type. (B) As in (A) but with distributions scaled by the doubling time of each 

mutant. (C) z-score plot showing the significance of deviation from wild-type of cell cycle 

stage durations for all hits. (D) As (C) for ergodic rate analysis (ERA) derived progression 

rates. (E) Phenoprint clustering based on hits’ ERA rates and major functional GO groups. 

(F) Correlation analysis among the four cell cycle stages’ durations and ERA progression 

rates. The graphs show correlation plots of the duration (left graph, bottom half) and rate 

(right graph, bottom half) of each cell cycle stage against every other, for all hits. Spearman 

(and MIC, in parenthesis) correlation coefficients are shown for each combination in the top 

half of the graphs. Black boxes indicate significant anti-correlation between the duration and 

ERA rate of IP and PAA. The diagonal shows the distribution of z-score values for the 

durations (left) and ERA rates (right) across all hits, for each cell cycle stage quantitated. A 

diagram representation of the implications of that anti-correlation for the overall cell cycle is 

illustrated beneath (pointy arrows: accelerated progression; blunt arrows: delayed 

progression). See also Figure S3 and Table S3.
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Figure 6. Genes regulating multiple processes and role of the DDR in inducing interphase 
microtubule stabilisation
(A) Venn diagram illustrating cell shape, microtubule and cell cycle progression hits. (B) 
The DNA repair defective mutants mre11Δ and rad55Δ display highly elongated 

microtubules. (C) Hydroxyurea (HU) induces disproportionate microtubule elongation in 

wild-type cells. Microtubule occupancy is the ratio of average microtubule length to cell 

length. Contrary to 15 mM HU-treated cells, 3mM HU-treated cells and cell cycle-arrested 

cdc2-as cells do not disproportionately elongate microtubules. (D) Images of 3 mM HU- 

(top) and 15 mM HU-treated cells (bottom). (E) 15 mM HU treatment does not induce 

enhanced microtubule stabilisation in the DNA damage checkpoint mutants rad3Δ and 

tel1Δ. (F) Left: Effect on microtubules of UV-induced DNA damage in human cultured cells 

(Hc3716-hTERT). Right: γH2AX staining showing extent of DNA damage. (G) Contrary to 

UV-untreated cells, UV-treated cells contain denser (right: quantitations) microtubule 

bundles that resist cold-induced depolymerisation indicative of microtubule stabilisation. 

(H) UV-treated cells contain significantly higher acetylated tubulin levels (right: 

quantitations) than UV-untreated cells. Scalebars: 10μm.
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Figure 7. Systems-level functional interactions between processes
(A) Distribution of cell length and area at division for long cell shape hits (orange) versus 

cell cycle progression hits (yellow). Note their lack of intersection. Wild-type controls 

(black) and other hits (grey) are shown, for comparison. (B) Bayesian network inference 

graphs of the conditional correlation between cell shape and microtubule features across 

hits, filtered by cell cycle stage (top row) or, for interphase cells only, subdivided by hitlist 

(cell shape and/or microtubule; bottom row). Correlation coefficients between variables are 

displayed on top of network edges (note that correlations were not directly used to obtain the 

networks). (C) Diagram summarising significant Bayesian causal links between cell shape 

and microtubule regulation in S. pombe. (D) Causation between cell length and microtubule 

length. Top: Plot of interphase cell length and microtubule length for wild-type and cdc2-as 

cells. Bottom: The inverse plot for cells with shorter (tip1Δ) or longer (klp6Δ) microtubules. 

Note that cell length influences specifically microtubule length, not the inverse. (E) 
Causation between microtubule number and cell width. Top: Plot of microtubule number 

against cell width for cells with more (ase1Δ) and fewer (mto1Δ) microtubules. Bottom: 

Inverse plot for wider (rga4Δ) and narrower (rga2Δ) cells. To aid visualisation, points have 

been artificially displaced along the microtubule number axis for different genotypes. Note 

that microtubule number influences specifically cell width, not the inverse. (F) Plots of 

microtubule number against microtubule length coloured by cell length (different colours 

signify different cell lengths), illustrating that correlation between these features is 

dependent upon cell length. Top: Data from genomic screens, each point represents the 
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average of all cells analysed for a given mutant. Bottom: Low-throughput validation using 

cells artificially elongated by cell cycle arrest. See also Figure S7.
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