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ABSTRACT

Motivation: DNA copy number profiles characterize regions of

chromosome gains, losses and breakpoints in tumor genomes.

Although many models have been proposed to detect these alter-

ations, it is not clear which model is appropriate before visual inspec-

tion the signal, noise and models for a particular profile.

Results: We propose SegAnnDB, a Web-based computer vision

system for genomic segmentation: first, visually inspect the profiles

and manually annotate altered regions, then SegAnnDB determines

the precise alteration locations using a mathematical model of

the data and annotations. SegAnnDB facilitates collaboration between

biologists and bioinformaticians, and uses the University of California,

Santa Cruz genome browser to visualize copy number alterations

alongside known genes.

Availability and implementation: The breakpoints project on INRIA

GForge hosts the source code, an Amazon Machine Image can be

launched and a demonstration Web site is http://bioviz.rocq.inria.fr.

Contact: toby@sg.cs.titech.ac.jp

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

DNA copy number alterations (CNAs) are amplifications, gains

and losses of chromosomal regions that can result from different
cellular mechanisms, and are important in the study of many
types of cancer (Weinberg, 2006). Genome-wide assays such as

array comparative genomic hybridization (aCGH) and single
nucleotide polymorphism microarrays can be used to detect
CNAs. After spatial and sample normalization, these assays

yield noisy measurements of approximate copy number with a
resolution of up to �1 kb between probes.
The goal in analyzing these data is to accurately extract a list

of altered regions from each noisy sample. In this article, we
define accuracy in terms of annotated regions given by an

expert. We treat this expert as a gold standard, and so the goal

of our model is to be consistent with his or her annotations.

Hocking et al. (2013) observed large annotation error rates for

several segmentation algorithms applied to a large database of

neuroblastoma tumors. In this article, we propose to eliminate

these errors with SegAnnDB, a computer vision system whose

model always agrees with the provided annotations.

Previous work in DNA copy number analysis can be roughly

divided into two categories of methods: visualization and math-

ematical models. This article combines these two lines of research

by proposing a mathematical model that can be iteratively

improved by adding visual annotations to zoomed scatterplots

of the data. First, we will review previous methods in both

categories.
Many software packages have been developed for visualiza-

tion of aCGH data. For example, Visualization and Analysis of

Molecular Profiles (VAMP) can be used for exploratory analysis,

or to visualize predicted alterations from a model (La Rosa et al.,

2006). Another visual analysis program is ChARMView, which

allows manual identification of regions for significance testing

(Myers et al., 2005). A potential problem with these programs

is that the displayed model is calculated before visualization, and

cannot be interactively updated.
Several Web sites for array CGH analysis have been proposed.

CGHweb allows visual comparison of several algorithms applied

to the same normalized profile (Lai et al., 2008). ArrayCyGHt

and CAPweb provide normalization and copy number calling

(Kim et al., 2005; Liva et al., 2006). ISACGH supports analysis,

segmentation, visualization and export to the Ensembl genome

browser (Conde et al., 2007; Flicek et al., 2012). ArrayFusion

exports data and segmentations in formats suitable for genome

browsers (Yang et al., 2006). Like the method we propose in this

article, these Web sites facilitate collaboration with biologists.

Unlike these Web sites, our SegAnnDB software allows the

user to interactively update the displayed segmentation model.
In contrast to visual methods for alteration detection, math-

ematical models can be used to automatically predict lists of

alterations based on certain mathematical assumptions about

the data. The available mathematical models specifically

designed for detecting CNAs are summarized by Neuvial et al.

(2011). However, a major problem with this class of methods is*To whom correspondence should be addressed.
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model selection. Given a particular dataset to analyze, it is

obvious to choose neither a particular model nor its tuning par-

ameters. How to evaluate which model is best?
Without doing more experiments, the only method of evalu-

ation is to plot the model alongside scatterplots of the data. A

good model should capture all visible alterations in the data and

should not predict any false-positive detections. This visual cri-

terion for model evaluation can be used by creating a database of

annotated regions that encode an expert’s interpretation of the

data (Hocking et al., 2013). In that study, default parameter

values of several models were shown to yield many false-positive

and false-negative detections. And even after tuning the param-

eters of each model, there were no models with perfect detection

accuracy.

In this article, we propose to solve this problem by inter-

actively annotating alterations in scatterplots of the data

(Fig. 1). Then our software selects a tuning parameter that

agrees with the user-defined annotations and immediately

shows the updated model. If the displayed segmentation model

does not capture the alterations that are obvious from visual

inspection, then annotations can be added to correct the

model. A user-specific model can thus be iteratively improved

until it agrees with the annotator’s visual interpretation of the

data.
In addition, the annotations can be assembled into a database,

so we can apply algorithms that automatically recognize previ-

ously annotated patterns. We note that this computer vision ap-

proach has also been successful for recognizing phenotypes in

cell microscopy (Jones et al., 2009). After annotating a small

subset of the data, the system adapts to the annotations and

provides consistent predictions for unannotated data.

This article describes SegAnnDB, a Web-based free/open-

source implementation of this interactive genomic segmentation

model. The name is short for Segmentation and Annotation

DataBase, as annotations are stored in a database, which is

used by machine learning algorithms to find an appropriate seg-

mentation. After interactive annotation, the learned segmenta-

tion model can be directly exported to the University of

California, Santa Cruz (UCSC) genome browser for viewing de-

tected alterations alongside known genes (Kent et al., 2002).
Finally, SegAnnDB promotes collaboration between biolo-

gists, doctors and bioinformaticians doing genome-wide copy

number analysis (Fig. 2). Collaboration using SegAnnDB is

simple: once a bioinformatician uploads a profile, anyone with

a Web browser can create a user-specific segmentation model by

drawing annotated regions on the scatterplots (Fig. 1). This

makes it easy for people with expert prior knowledge but no

programming experience to browse the profiles and annotate

regions of interest (e.g. a biologist looking for alterations in

known oncogenes). After annotation, the bioinformatician can

download the annotations and segmentation model for further

analyses such as detection of common alterations in several

related samples, or survival regression based on the detected

alterations.

2 SYSTEM AND METHODS

In this section, we describe the general workflow when using a

SegAnnDB server for annotation-guided DNA copy number analysis.

Later in Sections 3 and 4, we give details about how the server inter-

actively calculates and displays the models.

2.1 Uploading profiles

The first step of any analysis is to upload the normalized log ratio data to

the Web site. The data should be uploaded in gzipped UCSC bedGraph

format, as this is the format that will also be used to export the data for

viewing on the UCSC genome browser (Kent et al., 2002). The four-

column text-based bedGraph format is simple, so any bioinformatician

should be able to quickly convert data from any platform-specific format.

The bedGraph header line must contain the following three important

variables specific to SegAnnDB. The db variable should indicate the

genome version of the probe positions (e.g. db¼hg19). The

maxSegments variable specifies the maximum number of segments

per chromosome for the initial SegAnnDB scatterplots, before manual

annotation (kmax in Section 3.1). The share variable controls who can

view the profile:

� share¼public means all users of the Web site.

Fig. 1. General workflow in annotation-guided DNA copy number analysis on SegAnnDB. Scatterplots of black points show log ratio as a function of

genomic position. Breakpoints in the current segmentation are shown with vertical dashed lines, and predicted copy number status of each horizontal line

segment is indicated by its color (Supplementary Table S2). Annotated regions can be added to update the copy number (top) and breakpoints (bottom)

in the displayed model. Dragging on an unannotated region creates a new region with Save and Delete buttons, as shown for the normal region in the

center. Before saving, the annotation can be changed by clicking the region. After saving, the displayed model is immediately updated to agree with the

annotation
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� A domain name such as share¼stat.berkeley.edu or

share¼curie.fr means only users with emails from the indi-

cated domain.

� share¼private means only the user who uploaded it.

Profiles can be uploaded one at a time using the Web upload form or

several at a time by using the upload_profiles.py command line

program. Once a profile has been uploaded, it must undergo two main

processing steps before interactive annotation is possible. First, the log

ratio values and several maximum likelihood segmentation models are

saved in BerkeleyDB, a highly efficient database system. Second, Portable

Network Graphics (PNG) scatterplots are generated for several zoom

levels (Supplementary Table S1). The only limit on the number of profiles

is the amount of disk space available on the SegAnnDB server.

Importantly, the amount of time and disk space required is linear in

the profile size (Table 1).

2.2 Plotting data and annotating breakpoints

Once a profile has been uploaded and processed, it can be plotted and

annotated. From the home page or the list of profiles, clicking a profile

name shows a zoomed out plot of all its chromosomes. Plots can be

zoomed to individual chromosomes and then zoomed further by clicking

the plot size links shown in Figure 1.

Each plot initially shows the uploaded data as black points and a

segmentation model as horizontal line segments (Fig. 1). We use vertical

dashed lines to draw the ‘breakpoints’, which are the change points in the

piecewise constant segmentation model.

The breakpoints in the displayed segmentation can be edited by adding

breakpoint annotations to the bottom half of the plot. There are two

types of breakpoint annotations: 1breakpoint means there is exactly

one breakpoint in the region, and 0breakpoints means there are no break-

points in the region. Dragging on an unannotated region creates a new

region with Save and Delete buttons, as shown in Figure 1. Before saving,

an annotation can be changed from 1breakpoints to 0breakpoints by

clicking the region. After saving the annotation, it is sent to the server,

which calculates the consistent segmentation model defined in Section

3.1. The server immediately sends the consistent segmentation back for

display in the Web browser. Thus, the segmentation model can be itera-

tively updated by adding breakpoint annotations, until the displayed

breakpoint locations match the expert interpretation of the annotator.

As explained in Section 3.1, one of the two possible segmentation

models will be used: pruned dynamic programming (PrunedDP) or

SegAnnot. The color of the dashed vertical breakpoint lines indicates

the algorithm: green for PrunedDP and purple for SegAnnot. It is im-

portant to note that when the SegAnnot algorithm is used, there must be

a 1breakpoint annotation for each breakpoint in the segmentation. In

contrast, the PrunedDP algorithm can detect breakpoints in unannotated

regions.

2.3 Annotating copy number

After finding a model with appropriate breakpoints, copy number anno-

tations can be added to the top half of each plot to define copy number

status (Fig. 1). Each copy number annotation should define a region of

equal copy number: deletion, loss, normal, gain or amplification

(Supplementary Table S2). More types of copy number annotations

can be defined for specific projects by editing the SegAnnDB source

code. After adding or deleting a copy number annotation, SegAnnDB

updates the predicted copy number status of each segment of the profile.

This is indicated by immediately updating the color of the displayed

horizontal line segments. This immediate genome-wide visual feedback

is crucial for avoiding accidental mistakes in annotation.

There are two special colors for horizontal line segments: green and

black. If a profile has no copy number annotations, then all segments are

colored green. If a segment has several different overlapping copy number

annotations, it is colored black to indicate that it should be corrected.

Copy number status is generalized across segments of a profile, so not

all segments need to be labeled. The segments with overlapping copy

number annotations are used to infer the copy number status of the

other unlabeled segments. However, one copy number annotation of

each type must be present to use this feature. For example, if there is

only one normal and one gain annotation on a profile, then the rest of the

segments will be labeled as either normal or gain, and there will be no

segments labeled loss.

2.4 Exporting data to the UCSC genome browser

After a profile has been appropriately annotated, a table of detected

alterations can be displayed by clicking the ‘Show alterations on the

UCSC genome browser’ link shown on the bottom of Figure 1.

Clicking a button on that page exports the probes, annotations and seg-

mentation to the UCSC genome browser (Fig. 2). Although positions of

genes can not be viewed while annotating profiles on SegAnnDB, they

can be viewed alongside the exported segmentation model on the UCSC

genome browser (Fig. 3). Data from multiple profiles can be displayed at

the same time on UCSC, for rapid visual verification of repeated alter-

ations in particular genes.

There are two methods for quickly navigating from SegAnnDB to

altered regions on the UCSC genome browser. First, shift-clicking any

annotated region opens a newWeb page with the UCSC genome browser

zoomed to that region. Second, each profile has an alterations table that

contains links to each detected breakpoint, gain, loss, amplification and

deletion.

The annotations and displayed segmentation models can also be

downloaded for other analyses. For example, the annotations could be

used to develop better models for breakpoint detection or copy number

calling. Also, the displayed segmentation model could be used for further

Table 1. System requirements for profiles of different sizes

Profile size

probes

Time

seconds

BerkeleyDB

megabytes

Scatterplots

megabytes

Probes.gz

megabytes

2678 1 51 1 51

56855 3 1 1 1

262230 10 3 3 3

1 868857 100 22 27 28

Note: The processing time includes calculating segmentation models and PNG scat-

terplots on a 2.9GHz Intel i7-3520M CPU. We show disk space occupied by a

profile in the database (BerkeleyDB), the total size of the PNG images

(Scatterplots) and the size of the data file to upload and export to UCSC (Probes.gz).

SegAnnDB UCSC

Uploader
bioinformatician

AnalystAnnotator
biologist/bioinformatician

logratios
annotations
models

logratios
2.1

plots
models annotations

2.2, 2.3

plots
genes
2.4

Fig. 2. SegAnnDB exports data to the UCSC genome browser and fa-

cilitates collaboration between bioinformaticians and biologists. First,

profile probe log ratio values are uploaded to a SegAnnDB server by

an uploader (Section 2.1). Then an annotator can plot the data and refine

a segmentation model by adding annotations (Sections 2.2 and 2.3).

Finally, an analyst can send data to the UCSC genome browser, which

displays plots of the segmentation model with known genes (Section 2.4)
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analyses such as survival regression or plotting a genome alteration print

(Popova et al., 2009).

3 ALGORITHM

In this section, we explain the algorithmic details of the models

used to detect breakpoints and CNAs.

3.1 Calculating the displayed segmentation model

To find an appropriate segmentation model for each chromo-
some, we first calculate a sequence of segmentation models, then

use the expert’s breakpoint annotations to choose a consistent

model.
Let y 2 R

d be the normalized log ratios for one chromosome,

measured at positions p15 � � �5pd. This signal is drawn using
black points in Figure 1. Because of its speed and breakpoint

detection accuracy (Hocking et al., 2013), we segment using the

PrunedDP algorithm of Rigaill (2010). It calculates the least
squares segmentation ŷk 2 R

d for every k 2 f1, . . . , kmaxg

segments:

ŷk ¼
argmin

� 2 R
d

Xd
i¼1

ðyi � �iÞ
2

such that� has k� 1 changes

ð1Þ

The PrunedDP algorithm returns a sequence of progressively

more complex segmentation models ŷ1, . . . , ŷkmax . For each
model size k, the segmentation ŷk has the least squared error

among all models with k segments.
The maximum number of segments kmax is the only parameter

of PrunedDP. For interactive annotation on the SegAnnDBWeb

site, we usually set kmax ¼ 20, which means that up to 20 seg-
ments will be shown on the initial scatterplot, before manual

annotation. After annotation, if there are �20 breakpoint anno-

tations, then SegAnnot will be used instead of PrunedDP, as

explained below. For high-density arrays with many expected

breakpoints (e.g. chromothripsis), larger values may be specified

(e.g. kmax ¼ 200). However, kmax ¼ 20 was a reasonable

choice for even the high-density arrays that we analyzed

(Supplementary Fig. S1 and Supplementary Table S3).

The model selection problem is to choose one of the kmax

segmentation models, which we do using breakpoint annota-

tions. Let R0,R1 be the sets of 0breakpoints and 1breakpoint

annotations, respectively. These appear on the bottom half of

the scatterplots shown on SegAnnDB (Fig. 1). Each r 2 R0,R1

is an interval of base pairs, so to compare with the segmentation

model, we need to convert the model breakpoint locations to

base pairs. For each model size k, we estimate the set of base

pairs after which a change occurs using

Bðŷk,pÞ ¼ f ðpjþpjþ1Þ=2
� �

if ŷkj 6¼ ŷkjþ1,8j2 f1, . . . ,d�1gg ð2Þ

Equation (2) defines a breakpoint for every change ŷkj 6¼ ŷkjþ1
in the model, at the base pair halfway between the probes

ðpj þ pjþ1Þ=2
� �

. These breakpoint positions are shown using

dashed vertical lines on SegAnnDB scatterplots (Fig. 1).
We calculate the annotation error to determine which

PrunedDP models agree with the set of current breakpoint an-

notations. The annotation error e : f1, . . . , kmaxg ! Zþ uses the

zero–one loss to judge agreement of the predicted breakpoints

Bðŷk, pÞ and the annotated regions R0,R1:

eðkÞ ¼
X1
b¼0

X
r2Rb

IðjBðŷk, pÞ \ rj 6¼ bÞ ð3Þ

The indicator function I is 0 when the model ŷk predicts the

correct number of breakpoints in a region r, and 1 otherwise. If

the model with k segments has no annotation error eðkÞ ¼ 0,

then we say that the segmentation ŷk is consistent with the

given annotations. The set of consistent PrunedDP models is

K0 ¼ fkjeðkÞ ¼ 0g.

Fig. 3. The data, annotated regions and labeled segments are exported for visualization alongside RefSeq genes on the UCSC genome browser. From

top to bottom, the probe log ratios are shown in black, the annotated regions are shown using their colors on SegAnnDB, the log ratio of the

segmentation model is shown using a white 5 black scale, the breakpoints in the segmentation model are red and the inferred copy number status

of each segment is shown using the copy number annotation colors of Supplementary Table S2. In this example, it is clear that the MYCN oncogene is

amplified in this neuroblastoma tumor sample
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If there are any consistent PrunedDP models, then jK0j40

and we define the optimal number of segments as

k� ¼
argmin

k 2 K0
jk� k̂ðyÞj ð4Þ

where the predicted number of segments k̂ðyÞ 2 f1, . . . , kmaxg is

learned using the log.s.log.d max margin interval regression

model on the other annotated chromosomes (Rigaill et al.,

2013). In short, k̂ is a prediction function that minimizes the

average annotation error over all annotated chromosomes. So,

as annotations are added, the predicted set of breakpoints tends

to get more accurate (Fig. 4). To support fast model updates

during interactive annotation, the prediction function k̂ is

learned in the background on the Web server. Equation (4) is

used to pick the consistent model k 2 K0, which is closest to the

complexity of the predicted model k̂ðyÞ.

If there are no consistent PrunedDP models then jK0j ¼ 0 and

we use the SegAnnot dynamic programming algorithm (Hocking

and Rigaill, 2012). SegAnnot exactly recovers the least squares

segmentation such that the annotation error is 0, meaning that

each R0 region has 0 breakpoints and each R1 region has exactly

1 breakpoint:

SegAnnotðy, p,R1Þ ¼
argmin

� 2 R
d

Xd
i¼1

ðyi � �iÞ
2

such that 8r 2 R1, jBð�, pÞ \ rj ¼ 1

and �has no other changes

ð5Þ

The constraint in (5) means that the estimated mean � changes

once in each 1breakpoint region r 2 R1, and has no changes

elsewhere.

In summary, the displayed segmentation is given by

ŷk
�

if jK0j40
SegAnnot ðy, p,R1Þ otherwise

�
ð6Þ

By construction, this segmentation is consistent with the

breakpoint annotations R0,R1.

3.2 Calculating copy number state

Segments with overlapping copy number annotations are used to

infer the copy number status of unannotated segments on the

same profile. Copy number status is inferred by learning a set of

up to four thresholds, between the five possible copy number

annotations (Supplementary Table S2). Each of these thresholds

is learned in the same way, which we explain below for just the

threshold between normal and gain.
Let N,G be the sets of normal and gain segment means, re-

spectively. Let there be n ¼ jNj normal segments and g ¼ jGj

gain segments, and let Ŷ15 . . .5Ŷnþg be the ordered segment

means. We consider thresholds ti ¼ ðŶi þ Ŷiþ1Þ=2 2 R for all

i 2 f1, . . . , nþ g� 1g. Given a threshold and a segment mean

m 2 R, we predict copy number status

normal if m5ti
gain if m4ti

�
ð7Þ

The best threshold minimizes the number of incorrectly pre-

dicted copy number annotations:

argmin

i 2 f1, . . . , nþ g� 1g

X
m2N

Iðm4tiÞ þ
X
m2G

Iðm5tiÞ ð8Þ

The indicator functions I are 0 when the threshold ti correctly

predicts the copy number status of an annotated segment, and 1

otherwise. The best threshold (8) can be calculated in linear

Oðnþ gÞ time.

4 IMPLEMENTATION

In this section, we discuss the technologies required to implement

a Web-based interactive system like SegAnnDB.

4.1 Interactive scatterplots

Scatterplots of probe log ratio values are displayed quickly on

SegAnnDB, as they are pre-rendered and saved as bitmap PNG

images when a profile is uploaded. Some zoom levels are scaled

in proportion to the number of probes, so high-density profiles

can result in large PNG images (Supplementary Table S1). Some

Web browsers do not render these large PNG images. For ex-

ample, current iPad Web browsers do not render images wider

than 20 000 pixels, so we defined an ‘‘ipad’’ zoom level specific-

ally to accommodate this maximum possible zoom level. Among

desktop Web browsers, we found that Google Chrome works

best on several platforms.

Interactive model updates are implemented using the D3

Javascript library (Bostock et al., 2011). The basic idea is to

draw the segmentation model and breakpoints for each chromo-

some on an HTMLWeb page with an SVG element that has the

PNG scatterplot as the background. After each change to the

annotated regions, the server updates the displayed model by

sending a JavaScript Object Notation file to the annotator’s

Web browser.

4.2 Data storage, export and server configuration

To support interactive annotation and model updates,

SegAnnDB needs to store data in a fast database system. We

used Berkeley DB, as it allows quick storage and retrieval of any

data types. In addition, the disk space requirements are approxi-

mately linear in profile size (Table 1).

Fig. 4. Cross-validation was used to estimate breakpoint detection error

in the neuroblastoma.U830.bac dataset. It is clear that the supervised

methods (dnacopy.sd, SegAnnDB) adapt to the training set, and provide

better breakpoint detection on test data. Note that dnacopy.sd sometimes

had lower test error than SegAnnDB in the other datasets we examined

(Supplementary Fig. S5)
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Data can be exported to the UCSC genome browser by click-

ing a button on the SegAnnDB Web site. This sends the copy

number data, annotations and model directly from SegAnnDB

to the UCSC genome browser. Figure 2 explains the relationship

between the uploader, annotator, SegAnnDB server and UCSC

genome browser.
Configuring the SegAnnDB software on a Debian/Ubuntu

GNU/Linux system requires Python and several free/open-

source extension packages. For example, the Pyramid Web

framework and the SegAnnot and PrunedDP segmentation mod-

ules are required. To avoid the time-consuming task of config-

uring all these packages for every new SegAnnDB server, we

made a public Amazon Machine Image, so launching a new

SegAnnDB server takes only 10min on Amazon’s Elastic

Compute Cloud. A list of current Amazon Machine Images

can be found in the SegAnnDB source code README on

INRIA GForge.

5 RESULTS AND DISCUSSION

5.1 Supervised versus unsupervised analysis

In the machine learning literature, a learning problem is

‘supervised’ when there is a teacher or oracle that provides cor-

rect predictions for training an algorithm. In this article, the type

of supervision that we proposed is a set of annotated regions

from an expert’s visual interpretation of the data. These anno-

tated regions are then used by SegAnnDB to build a model with

consistent breakpoint locations and copy number calls.
In contrast, most statistical models for DNA copy number

analysis can be viewed as unsupervised because they do not

use an annotation database for model training. Typically, an

unsupervised statistical model is first fit to the data, and then

an expert plots the model to judge if it fits the data well. This

sequence of steps is inverted on SegAnnDB: first, we plot and

annotate the data, and then we fit a model to the combined data

and annotations.

We considered the DNAcopy circular binary segmentation

model of Venkatraman and Olshen (2007) as an unsupervised

baseline model and compared its performance with SegAnnDB.

We analyzed speed, train error and test error with respect to

seven annotation datasets, consisting of 708 neuroblastoma,

lymphoma and medulloblastoma copy number profiles

(Supplementary Table S4). The data come from cell lines and

primary tumors (Supplementary Fig. S2) analyzed using different

platforms (Bacterial Artificial Chromosome (BAC)/P1 Artificial

Chromosome (PAC), Nimblegen, Affymetrix), so the number of

probes per profile ranges from 1719 to 1 868 857 (Supplementary

Table S3). In total, there were 4467 annotated chromosomes

containing 6937 annotated regions.
Supplementary Table S5 shows that the PrunedDP algorithm

used by SegAnnDB took52h to train on the entire dataset, but

DNAcopy took 43h for each of the 31 parameter values we

tested. PrunedDP was faster overall because it was faster for

the high-density profiles (Supplementary Fig. S3).
The displayed segmentation on SegAnnDB is always consist-

ent with the given breakpoint annotations, so SegAnnDB has

0% training error by definition (Section 3). In contrast, it may

be impossible to achieve zero annotation errors with an

unsupervised model that does not directly use the breakpoint

annotations (Hocking and Rigaill, 2012). Supplementary Table

S6 shows that the unsupervised dnacopy.default algorithm pre-

dicts 4–50% incorrect breakpoint annotations across the seven

datasets we examined. For a more balanced comparison,

Hocking et al. (2013) showed that DNAcopy breakpoint detec-

tion can be improved by picking an undo.SD parameter which

minimizes breakpoint annotation error (we did not apply

smoothing before segmentation, and we kept default values for

all other parameters). For each dataset, we picked chromosome-

specific undo.SD values, yielding better training error rates (Sup-

plementary Table S6, dnacopy.sd, 0.33–2.75%). Although break-

points detected by these methods are qualitatively similar

(Supplementary Fig. S4), SegAnnDB is quantitatively more ac-

curate with 0% error.
We also evaluated the test error by training a model on a set of

annotated chromosomes, and counting the number of incorrectly

predicted breakpoint annotations on a test set. Figure 4 and

Supplementary Figure S5 show that adding more annotations

improves the test error of the supervised SegAnnDB and

dnacopy.sd methods (dataset-specific parameters were chosen

by minimizing annotation error for each randomly chosen train-

ing set). Predictably, the supervised methods adapt to the pro-

vided annotations and detect breakpoints more accurately than

the unsupervised dnacopy.default algorithm. However, on some

high-density datasets, even the best methods showed up to 20–

40% test error (Supplementary Fig. S5). The large test error of

these supervised methods motivates spending time on interactive

annotation, which always achieves 0% training error.
SegAnnDB is a computer vision system that exploits the

strong points of the human visual system and mathematical

models. The human visual system is good at detecting noise

and breakpoints in the copy number signal over large regions,

but bad at detecting the precise location of a breakpoint.

Mathematical models are good at detecting the precise locations

of alterations, if tuning parameters are adjusted appropriately.

SegAnnDB combines the best of both approaches by automat-

ically adjusting the tuning parameters of a mathematical model

to agree with an expert’s visual annotations.

5.2 Time required for visual annotation on SegAnnDB

The amount of time is proportional to the number of annotated

regions that need to be added to correct the displayed model.

More breakpoint annotations are sometimes necessary for larger

profiles (Supplementary Fig. S6), but when SegAnnDB provides

good predictions in unannotated regions (Fig. 4), annotating all

breakpoints is not necessary (Supplementary Fig. S1). So in our

experience, it takes �10min to completely annotate even high-

density profiles, and it should be feasible to annotate each profile

in datasets of a few dozen samples.

For larger datasets, it may not be feasible to annotate every

profile. For example, visually annotating every profile from the

1000 Genomes Project of Altshuler et al. (2010) would require

�10min/profile 	 1000 profiles=(60min/h)¼ 166h, which is sev-

eral weeks of work. However, for large datasets, SegAnnDB can

still be useful for creating a relatively small database of 5–10

visually annotated profiles that are representative of the bigger

dataset (generated on the same platform and for the same tumor
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type). Then the protocols of Hocking et al. (2013) can be used for

training and validating an algorithm for automatically detecting

CNAs on the unannotated profiles. The main idea is that for

each manually annotated region, one can check whether an al-

gorithm predicts the indicated copy number or breakpoints in

that region. If there is some disagreement, then the algorithm

needs to be improved. So when there is not enough time to visu-

ally annotate every profile, an annotated region database is still

useful for checking the validity of an automatic annotation

algorithm.

5.3 Correcting experimental artifacts

Supervised copy number analysis is useful for correcting the vari-

ous types of noise and artifacts that can be present in DNA copy

number profiles. In this section, we discuss three types of correc-

tions that can be easily visually annotated using SegAnnDB.

First, some profiles have noise patterns that should be ignored

and are easy to visually identify. Examples are wave patterns and

outliers, as shown in the left panel of Figure 5. If one of these

patterns can be visually identified, then SegAnnDB can be used

to exclude it by simply placing a 0breakpoints region around it.

Second, many copy number calling algorithms assume that the

baseline normal level of two copies should be centered around

log ratio 0, but this can depend on the normalization procedures.

For example, the center panel of Figure 5 shows a profile whose

normal level appears at log ratio �0:5. When it is visually obvi-

ous that normal copy number is at a non-zero log ratio value,

then normal copy number regions can be used to indicate that.

Finally, many algorithms have a parameter for the minimal

number of probes required for identifying a CNA. For example,

by default DNAcopy sets its min.width parameter to two probes.

Instead of defining an arbitrary value that may not hold for all

alterations in a dataset, breakpoint annotations can be used to

define small alterations that are visually obvious, such as the loss

shown in the right panel of Figure 5. Then, for example, the an-

notations can be used to check which values of the DNAcopy

min.width parameter are appropriate for a given dataset.

5.4 Using annotations in later analyses

The annotation database, segmentation and copy number calls

created on SegAnnDB can be used as inputs to other analyses.

SegAnnDB creates a list of breakpoints which is more accurate

than other methods such as DNAcopy (Supplementary Table S6),

and this degree of accuracy can be critical for several applications.

For example, to construct a genome alteration print, Popova

et al. (2009) require a good segmentation algorithm: ‘the absence

of true breakpoints could significantly alter the GAP pattern’.

Annotated regions can be used on SegAnnDB to ensure that the

segmentation contains all visible breakpoints.
As another example, the locations of detected alterations can

be used to construct predictors when modeling survival outcome.

SegAnnDB can be used to construct predictors that agree with

an expert’s visual interpretation of the data.
An important final example is detecting recurrent alterations

in related samples, or excluding germ line alterations that also

appear in normal samples. There are two approaches: either the

model shown on SegAnnDB can be post-processed, or the anno-

tated regions created using SegAnnDB can be used to train and

validate another algorithm.

6 CONCLUSIONS

We described the usage and implementation of SegAnnDB, a

Web-based computer vision system for DNA copy number pro-

file analysis. SegAnnDB improves previous visualization

approaches by allowing the model to be interactively updated

using annotated regions. In contrast with other mathematical

models in the literature, SegAnnDB has no tuning parameters,

as they are selected automatically using the provided annota-

tions. Overall, SegAnnDB is a useful research tool that provides

accurate annotation of copy number profiles, facilitates inter-

action between biologists and bioinformaticians, and allows visu-

alization of several copy number profiles simultaneously.

Annotated regions can be added on SegAnnDB until the dis-

played model is consistent with an expert’s visual interpretation

of a copy number profile. In other words, an expert with enough

time can always find a consistent model by adding annotations,

as our model always has zero training error with respect to the

annotated regions.
However, predicting accurate breakpoints for unannotated

test data was difficult for the models we considered

(Supplementary Fig. S5). Developing models that can more

quickly achieve better breakpoint detection and copy number

calling in unannotated test data remains an interesting research

direction. Although different experts do not always provide con-

sistent annotations (Supplementary Fig. S7), we are also investi-

gating a multitask learning model that could potentially have

better prediction accuracy for each of those experts.

Fig. 5. Examples of noise and alterations that can be annotated using SegAnnDB. Left: outliers and wave noise can be ignored using 0breakpoints

annotations. Center: normal copy number at a non-zero log ratio value can be indicated using normal annotations. Right: small alterations can be

annotated using 1breakpoints and copy number annotations
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One current feature of SegAnnDB is the ability to plot
a random unannotated chromosome. Instead of plotting a
random profile, we could plot a profile that is likely to improve
model predictions. We are interested in future research

into sampling methods that improve the model faster than
random sampling in DNA copy number profile annotation
databases.

Finally, we are interested in using visual annotations for mod-
eling copy number changes in next-generation sequencing data.
In particular, Teo et al. (2012) show figures with clear break-

points in read depth and fragment count. Boeva et al. (2012)
show plots with clear breakpoints in copy number and B allele
frequency. These breakpoints can be visually annotated and

saved to a database to ensure that they are respected by any
trained models.
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