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Abstract. A new coating process involving a short stretching distance (1 mm) and a high draw ratio (around 200) is 

considered. The resulting thin molten polymer film (around 10 micrometers) is set down on a solid primary film and then 

covered by another solid secondary film. In experimental studies, periodical fluctuation in the thickness of the coated 

layer may be observed. The processing conditions markedly influence the onset and the development of these defects and 

modeling will help our understanding of their origins. The membrane approach which has been commonly used for cast 

film modeling is no longer valid and two dimensional time dependent models (within the thickness) are developed in the 

whole domain (upstream die and stretching path). A boundary-value problem with a free surface for the Stokes equations 

is considered and stability of the free surface is assessed using two different numerical strategies: a tracking strategy 

combined with linear stability analysis involving computation of leading eigenvalues, and a Level Set capturing strategy 

coupled with transient stability analysis. 
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INTRODUCTION 

The considered coating process is used in several industrial processes such as coating and laminating. Polymer is 

driven in a flat die at high temperature and the extrudate is stretched at high draw ratio (above 200) on a very short 

distance (around 1 mm). The resulting thin polymer film is set down on a solid substrate to form a two-layer film 

(see Figure 1-a). A wavelike instability is observed through periodical variations in the thickness of the polymer film 

(draw resonance instability). It depends on processing conditions and it is obtained at draw ratios above a critical 

value. Numerical simulation of this process provides a better understanding of this instability.  
 

 
FIGURE 1. (a) Schematic of the coating process, (b) Half flow domain of fluid 

In the case of cast film process, Barq et al. identified the occurrence of draw resonance instability by measuring 

thickness and width fluctuations of the film as a function of time [1]. In the case of fiber spinning, when the 

stretching distance is increased, the critical Draw ratio Dr* increases, which is explained by non-isothermal effects 

[2,3,4]. Silagy et al. investigated the stability of the cast of film process using different constitutive equations. A 

membrane model has been considered and both linear stability analysis and direct numerical simulation have been 

employed [5]. In that case, increasing the drawing distance stabilizes the process. However, in our experimental 

studies, it was noticed that reducing the stretching distance to the order of the die gap considerably improves the 

stability of the process. This finding was proved by Souli et al. in the case of fiber spinning by using a 2D model and 

a tracking strategy combined with the linear stability method [6]. 

In this paper, we study the flow of polymer melt between the extrusion die and the substrate during stretching 

(Figure 1). Since the stretching distance is of the order of die gap, thin shell assumption is no longer valid. A 2D 

model in the thickness of the polymer film is considered instead. Numerical two-dimensional and time-dependent 

models are developed to investigate the onset of draw resonance instability. A boundary-value problem with a free 



surface for the Stokes equations is considered and stability of the free surface is assessed using two different 

numerical approaches : the first one consists in a tracking strategy combined with a linear stability tool involving 

computation of leading eigenvalues, while the second approach is a direct simulation method involving a Level Set 

capturing strategy coupled with transient stability analysis. The novelty of this work is the ability to use a stabilized 

finite element anisotropic meshing coupled with a Level Set method to assess interface stability in coating processes. 

GOVERNING EQUATIONS 

Stokes Problem 

Inertia and gravitational forces are neglected, isothermal problem with a Newtonian behavior is considered. 

Moreover, this model does not account for surface tension at fluid interfaces because it is considered negligible 

comparing to drawing forces [7]. Therefore, the momentum equations are given by :  

 ⃗⃗      (1) 

where  is the Cauchy stress tensor defined by : 

         ̇( ⃗⃗ ) (2) 

and   ⃗⃗  *
 

 
+ is the velocity vector,  ̇( ⃗⃗ ) is the rate of deformation tensor,  is the dynamic viscosity of the fluid 

and p is the pressure inside the fluid. 

In addition, the fluid is assumed to be incompressible, so we have : 

 ⃗⃗   ⃗⃗    (3) 

The Boundary Conditions 

The applicable boundary conditions are given by : 

 At the wall 1 :   ⃗⃗   ⃗  (no-slip condition) 

 On 2, a Poiseuille flow velocity field is imposed 

 On 3, we have symmetry conditions 

 On 4, take-up velocity is imposed 

On the free surface H, two different boundary conditions are considered: the first condition assumes a zero stress 

at the free surface    ⃗   , while the second condition is a non-miscibility condition and it is given by  ⃗⃗   ⃗   , 

where  ⃗    
  

  
,1) is a normal vector to the free surface. 

In general, the draw ratio is a dimensionless number that can be defined as follows: 
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PROBLEM SOLVING 

The interface-tracking and the interface-capturing techniques are both used in the computation of flow problems 

with moving boundaries and interfaces [8]. The Stokes problem is discretized and solved using a classical stable 

mixed-formulation (MINI element). All the implementation details are given in the following section. 

Tracking Strategy 

An interface-tracking technique requires moving meshes that “track” the interfaces and are updated as the flow 

evolves [8]. Therefore, we consider only the half flow domain of fluid Figure 1-b). For the resolution, we use a 

structured mesh and apply a transformation to refine it around the die exit singularity (see Figure 2). 

The velocity and the pressure fields are then computed on this structured mesh which is restricted to the polymer 

flow. Interface with air is determined by successive iterations of Newton-Raphson’s method (by adjusting the 

position of the nodes on the interface) to satisfy the kinematic interface equation given by : 
  

  
   

  

  
      (5) 

 



where (
  

  
) is the velocity vector at interface and h is the interface position. This strategy is relatively precise but it 

is unable to describe transient evolution of the interface. The linear stability method is then used to predict onset of 

draw resonance. Since free surface        is the only time-dependent variable, the steady state interface solution 

undergoes a perturbation of the form : 

        ̅      ̂    (6) 

 

where  ̅ is the steady-state interface solution and      ̂    is a perturbation of the interface. Therefore, the kinematic 

interface equation is linearized near the steady state interface solution, which gives the following linearized 

equation: 

  ( ̅)  ̂    ̂ (7) 

where          
  

  
    . Thus, the stability problem is reduced to a classical eigenvalue problem. The stability 

of the steady-state solution is investigated through computing the leading eigenvalue. 

 
FIGURE 2. Structured mesh transformation 

Capturing Strategy 

The interface between the air and liquid is now captured by solving a convected Level-Set function as introduced 

in [9, 10]. The basic idea of this method is to use both the physical time and the convective time derivative in the 

classical Hamilton-Jacobi reinitialisation equation. Consequently, a modified level-set function is given first as 

follows: 
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where  stands for the standard distance function, and E is the truncation thickness. The level-set evolution equation 

is then given by:  
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where  is a coupling constant depending on time discretisation and spatial discretisation, typically        and   

is the convection velocity.  Finally, the authors in [10] show that by setting  
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   , a rearranged form of (9) leads to the following simple convection equation: 
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The finite element formulation for the level set method is based on the use of the classical SUPG (Streamline 

upwind Petrov-Galerkin) method. It controls the spurious oscillations in the advection dominated regime. In brief, 

the finite element formulation of equation (10) can be written as follows: find      , such that,         

∫  (
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where    and   are standard test and weight finite element spaces. 



The classical Galerkin terms are represented by the first two integrals whereas the element-wise summation, tuned 

by the stabilization parameter      , represents the SUPG term needed to control the convection in the streamline 

direction. Once the level-set function is defined all over the domain, it can be used to easily separate both polymer 

and surrounding air phases. At the interface, the sharp discontinuity of the viscosity is smoothed over a transition 

thickness using the following expressions: 
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where H is a smoothed Heaviside function. Here  is a small parameter such that        , known as the interface 

thickness, and    is the mesh size in the normal direction to the interface. Combined with anisotropic mesh 

adaptation, it leads to an accurate and precise multiphase flow framework (see [10] for details). 

NUMERICAL RESULTS AND DISCUSSION 

In this section, two case studies are presented and analyzed. In the first case, we check the steady-state solutions 

obtained by both tracking and capturing techniques for a draw ratio of 18. In the second case study, we investigate 

the stability of the steady-state solution using a draw ratio of 10. The leading eigenvalue in each case are then 

computed and compared. In both cases, a shape factor  
 

 
   is considered (Figure 1-b). 

Steady-State Solution 

Figure 3-a shows  a comparison for the shape of the interface at the steady-state obtained by both strategies. We 

can clearly see that both methods are able to converge to the same solution. This is also confirmed by comparing the 

velocity profiles along the x-axis (figure 3-b). Using the capturing strategy, we solve a multiphase Stokes problem 

that accounts for both polymer and air. Figures 4-a and 4-b highlight the velocity and the viscosity distribution all 

over the domain. As expected, the use of anisotropic mesh adaptation allows capturing precisely the polymer-air 

interface and thus leading to very accurate solution.  

 
FIGURE 3. (a) The shape of the interface, (b) The velocity profile along the x-axis 

Stability of the free surface 

In this section, the stability of steady state solution is investigated for a draw ratio of 10 and a shape factor 
 

 
  . 

In the case of tracking strategy, stability analysis is conducted by computing the leading eigenvalue as explained 

above. The free surface is stable only if the real part of the leading eigenvalue is negative. At those conditions, a 

leading eigenvalue                is obtained meaning that the process is stable. In the case of capturing 

strategy, the transient stability analysis is performed by introducing a small perturbation to the steady-state solution.  

The transient response due to this perturbation is followed by the direct simulation, taking into account both 

domains, the polymer fluid and the surrounding air. Therefore, we can capture the evolution of the final thickness of 

the film      as depicted in figure 5-a. The real part of the leading eigenvalue is estimated from the exponential 

envelope of the transient response while its imaginary part is estimated from oscillation’s time period. A leading 

eigenvalue of               is obtained for the same conditions. This finding shows that both strategies were 

able to give the same stability results using two different stability analysis techniques. Figure 5-b shows that, at a 



draw ratio of 18, the leading eigenvalue decreases when the shape factor 
 

 
 decreases. Thus, reducing the stretching 

distance improves the stability of the coating process. 
 

 

FIGURE 4. (a) Velocity profile, (b) The viscosity distribution, (c) The obtained mesh 

 
FIGURE 5. (a) Transient stability analysis, (b) Leading eigenvalue evolution as a function of  

 

 
 

  CONCLUSIONS 

 The coating process was accurately simulated using tracking and capturing techniques and its stability was 

investigated. It was demonstrated that reducing the stretching distance improves the process stability. This 

corresponds to some experimental evidence. Future work will concern the development of models accounting for a 

pressure differential between the two sides of the polymer film and more realistic constitutive equations. 
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