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ABSTRACT:

The currently existing mobile mapping systems equipped with active 3D sensors allow to acquire the environment with high sampling

rates at high vehicle velocities. While providing an effective solution for environment sensing over large scale distances, such acquisi-

tion provides only a discrete representation of the geometry. Thus, a continuous map of the underlying surface must be built. Mobile

acquisition introduces several constraints for the state-of-the-art surface reconstruction algorithms. Smoothing becomes a difficult task

for recovering sharp depth features while avoiding mesh shrinkage. In addition, interpolation-based techniques are not suitable for

noisy datasets acquired by Mobile Laser Scanning (MLS) systems. Furthermore, scalability is a major concern for enabling real-time

rendering over large scale distances while preserving geometric details. This paper presents a fully automatic ground surface recon-

struction framework capable to deal with the aforementioned constraints. The proposed method exploits the quasi-flat geometry of the

ground throughout a morphological segmentation algorithm. Then, a planar Delaunay triangulation is applied in order to reconstruct

the ground surface. A smoothing procedure eliminates high frequency peaks, while preserving geometric details in order to provide

a regular ground surface. Finally, a decimation step is applied in order to cope with scalability constraints over large scale distances.

Experimental results on real data acquired in large urban environments are presented and a performance evaluation with respect to

ground truth measurements demonstrate the effectiveness of our method.

1. INTRODUCTION AND MOTIVATION

Generating continuous 3D models of urban environments, at

ground level, is becoming an increasing need for a wide range of

applications. Driving simulation engines, semantic perception for

intelligent vehicles, trajectory planning and visual servoing for

autonomous navigation are several applications requiring an au-

tomatic framework for producing accurate and scalable 3D mod-

els over large scale distances.

Mobile Mapping Systems (MMS) equipped with active 3D sen-

sors are well adapted for acquiring dense 3D measurements of

the underlying surface, while driving in normal traffic conditions.

Nevertheless, such a discrete representation must be further ex-

ploited in order to build a continuous surface via 3D modeling

techniques. In addition, 3D modeling from MMS datasets re-

quires scaling-up cartography which includes processing big

datasets in an automatic fashion, designing consistent zoom lev-

els for multi-scale mapping but also cloud computing for massive

scalability of geo-specific 3D model databases.

In this research work we focus on the ground surface reconstruc-

tion theme which in dense urban environments is concerned with

the road, sidewalk and ramp access areas. These sharp depth

changes and geometrical details need to be preserved in order to

cope with the accuracy required by the visual layer of simulator

engines or for intelligent vehicles.

When dealing with the surface reconstruction problem using 3D

point clouds acquired by MLS sensors, several key issues must

be addressed. Noise sources coming from the laser sensing de-

vice, external calibration and mobile acquisition (distance to the

scanned surface, incidence angle, surface geometry and material

type) must be carefully identified and modeled correspondingly.
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Smoothing the noise in MLS data while preserving sharpness is

still a difficult task for the state-of-the-art surface reconstruction

algorithms. Furthermore, scalability issues must be addressed in

order to deal with real-time rendering of big datasets acquired

over large distances. In this paper we propose a fully automatic

surface reconstruction framework for ground areas which copes

with the aforementioned constraints imposed by MLS datasets.

Our paper is organized as follows: Section 2 presents the ex-

isting solutions for ground surface reconstruction from 3D point

clouds. Section 3 provides an overview of our framework which

is driven by a ground segmentation module presented in Section

4. The ground points are exploited along with a novel surface

reconstruction pipeline described in Section 5. Section 6 evalu-

ates the performances of the proposed framework, while Section

7 presents quantitative results obtained over large scale distances.

Section 8 summarizes the work and presents future extensions of

our method.

2. RELATED AND PROPOSED RESEACH WORK

Ground surface is one of the main components of man-made en-

vironments; it corresponds either to road and sidewalks in out-

door urban scenes, or to the floor in indoor environments. At

the global level, the ground surface reconstruction usually con-

sists in two steps: ground extraction and surface reconstruction.

Special attention must be given when combining these steps in

order to enable scaling-up cartography. In addition, the core of

the framework relies on the surface reconstruction method which

must be well chosen in order to recover sharp depth features and

to preserve geometric details while dealing with scalability as-

pects. This section presents an overview of the existing ground

modeling systems and reviews the available surface reconstruc-

tion techniques, while focusing on detail-preserving and scalabil-

ity requirements.



Ground modeling systems. A very important step in the ground

surface reconstruction process is represented by its extraction from

the global scene. In (Carlberg et al., 2008), the surface recon-

struction of a scan segment is preceded by a ground extraction

step and combined with a mesh segmentation procedure based on

a proximity criterion applied over the triangles. In (Wiemann

et al., 2010) the polygonal map is exploited to perform floor,

ceiling and wall labeling by clustering planar regions with sim-

ilar attributes based on region growing principle. However, in

cases where the reconstruction of the entire scene is not required,

these approaches result in extra-computation for both steps, re-

constructing non-ground objects and for eliminating them.

In this paper, the ground surface reconstruction workflow starts

by separating the ground from non-ground objects in order to

apply a planar surface reconstruction algorithm to the ground

area. Beside the computational effectiveness (reconstruct only

the ground), this approach leaves the possibility to integrate geo-

metrically consistent surface reconstruction algorithms (adapted

to complex or non-planar objets).

Existing methods (Carlberg et al., 2008) and (Jaakkola et al.,

2008) reported automatic mesh-based reconstruction frameworks

for road modeling. However, these techniques do not recover

sharp depth features commonly present in man-made environ-

ments (such as roads, sidewalks and ramp access) and they do

not address scalability issues.

We propose an automatic framework which combines an auto-

matic segmentation with a high-detailed surface reconstruction

framework capable to preserve sharp depth features and to gener-

ate a regular surface, while dealing with scalability issues.

Surface reconstruction methods. Surface reconstruction meth-

ods can be roughly categorized in two major classes. The first

class is represented by implicit techniques (Alexa et al., 2003),

(Otzireli et al., 2009) which aim at estimating new mesh ver-

tices from the original acquisition by performing a polynomial

fitting over a local planar neighbourhood. The implicit function is

usually exploited with the Marching Cubes algorithm (Lorensen

and Cline, 1987) to compute the surface. Methods for com-

puting watertight meshes were also designed based on implicit

functions, such as Poisson method (Kazhdan et al., 2006). The

aforementioned methods have several drawbacks with respect to

our concerns. They require normal computation which, beside

the computationally expensiveness, they rely on locally planar

approximations which may not hold for mobile acquisition at

varying vehicle speed. Moreover, implicit methods introduce

new mesh vertices, while reducing the amount of the original 3D

points. Consequently, they do not guarantee geometry preserva-

tion with respect to the point cloud which represents the closest

approximation of the scanned surface. The second class is rep-

resented by explicit methods (Edelsbrunner, 1998), (Gopi et al.,

2000) which proceed by triangulating the 3D points based on dif-

ferent geometric criteria, providing a reconstructed surface very

close to the point cloud. In (Carlberg et al., 2008), authors intro-

duce a surface reconstruction method which proceeds by trian-

gulating series of scan lines, taking advantage of the acquisition

setup. In (Marton et al., 2009), authors report a greedy triangula-

tion performed within a region growing approach. Nevertheless,

these methods do not deal with noise for recovering sharp depth

features and they do not address scalability issues for enabling

a detail-preserving surface reconstruction framework capable to

process automatically big datasets acquired over large distances.

Surface reconstruction algorithms based on interpolation were

also reported (Soucy and Laurendeau, 1995), (Bernandini et al.,

1999). Nevertheless, interpolation-based methods do not cope

with noisy datasets as those acquired by MMS. In (Digne et al.,

2014), authors introduce a volumetric approach. These methods

require massive simplification (via edge and vertices collapsing

operations) which is very ambiguous, leading to loss of detail

and artifacts.

In our research work we are interested in generating a triangu-

lar representation which is as close as possible to the scanned

surface. To this end, it is important to keep the original 3D

point cloud as the mesh vertices. For this reason, our attention

is directed towards the use of an explicit surface reconstruction

method which does not rely on normal computation and exploits

the quasi-flat geometry of the ground generally verified in struc-

tured outdoor environments. We also compare the results of our

method with respect to two representative frameworks belonging

to each class: Poisson (Kazhdan et al., 2006) and Greedy (Marton

et al., 2009) methods.

Scalability. The research work reported in this paper addresses

the geometrical scalability problem which aims at reducing re-

dundant data, while preserving geometric details. Clustering pla-

nar regions has been an alternative for building primitive-based

3D models (Wiemann et al., 2010). On the other hand, vertex

removal has also been reported (Carlberg et al., 2008) to reduce

redundant data coming from multi-date laser scans. Nevertheless,

these approaches do not recover nor preserve geometric details,

providing more coarse 3D modeling solutions.

This paper presents an automated ground surface reconstruction

framework which provides a regular surface, recovers sharp depth

features and deals with scalability aspects. The proposed method

comes together with a parallel scheme dedicated to massive 3D

point cloud processing.

3. OVERVIEW OF THE PROPOSED METHOD

The overall processing workflow of the proposed surface recon-

struction method comes together with the global framework il-

lustrated in Figure 1 which has as input a massive 3D point cloud

acquired by a MMS. The dataset is first sliced into 3D chunks

of N Mpts (Million points) each, where N denotes the number

of 3D measurements recorded per chunk. According to the ve-

hicle speed, the length of the surveyed area may vary. Figure

2 (a) illustrates an example of a 3D chunk acquired over a dense

urban area situated in Paris, France. We do not make any assump-

tion about the acquisition setup, so the input data can be supplied

by different platforms (Paparoditis et al., 2012), (Goulette et al.,

2006).

When choosing a surface reconstruction method, the geometric

properties of the underlying surface must be taken into account in

order to design an adaptive framework, geometrically consistent

with each object. To this end, the proposed surface reconstruc-

tion framework starts with an automatic ground extraction phase

performed through the use of a 3D point cloud segmentation and

classification algorithm (Serna and Marcotegui, 2014) which as-

signs semantic labels with respect to different classes: ground,

buildings, urban furniture and cars.

Please note that the ground surface reconstruction algorithm de-

scribed in this paper can also receive as input a ground area ob-

tained by different segmentation methods (Rusu and Cousins,

2011), such as planar segmentation through the use of RANSAC

technique (Fischler and Bolles, 1981).

In a second step, the 3D points corresponding to the ground are

injected into the surface reconstruction procedure which com-

bines a planar Delaunay triangulation method with smoothing



(a) (b) (c)

Figure 2: Dataset Urban ♯1: (a) Example of 3D chunk containing N = 3 Mpts, acquired in Paris (France) over an approximative length

of 82 m. For visualization purposes, the original point cloud is colored with respect to elevation values; (b) 3D object segmentation

results: facades - dark blue, road and sidewalks - blue, non-ground objects - light blue, sidewalk borders and ramp access - red; (c) the

extracted ground corresponding to road, sidewalks and ramp access: 1.27 Mpts.
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Figure 1: The workflow of the proposed Automatic Ground

Surface Reconstruction (AGSR) framework designed to be inte-

grated within a global parallel computation scheme dedicated to

massive 3D point cloud processing.

and decimation techniques to generate automatically a regular

and scalable ground mesh representation. Each decimated mesh

resulted from the surface reconstruction method is further merged

within a global reference scene. This paper is concerned with the

automatic ground surface reconstruction (AGSR) phases, mainly

its extraction and surface reconstruction which are described in

the following two sections.

4. 3D POINT CLOUD SEGMENTATION AND

CLASSIFICATION

The focus here is the accurate and automatic segmentation of 3D

point clouds from MLS data, applying the method proposed in

(Serna and Marcotegui, 2014). It is based on elevation images

and it uses image processing techniques, specially Mathematical

Morphology (Matheron, 1975, Serra, 1988). The general work-

flow is composed by several steps: first, the 3D point cloud is

projected to an elevation image. At that point, ground is seg-

mented and object hypotheses are generated as discontinuities on

the model. Then, small and isolated regions are eliminated. Fa-

cades are segmented as the highest vertical structures. Finally,

the segmented image is reprojected to the 3D point cloud in order

to get the final result. The following two sections are dedicated to

a detailed description of ground segmentation and classification

steps. For further details and complete analysis in each step, the

reader is encouraged to review (Serna and Marcotegui, 2014).

4.1 Elevation Images

Elevation images are 2.5D structures that contain altitude infor-

mation at each pixel. They can be processed quickly, implicitly

define neighborhood relationships and require less memory than

3D data. Elevation images are generated by an orthographic pro-

jection of the 3D point cloud using a virtual camera. This projec-

tion is a transformation from R
3 → N

2. The virtual camera is

located on the horizontal plane with normal vector−→n = (0, 0, 1)
and crossing the lowest point in the point cloud (0, 0, zmin).
Thus, each pixel on the elevation image contains the vertical dis-

tance from the projected point to the camera plane. The only free

parameter of this projection is the pixel size (pw). This param-

eter is directly related with the resolution and the computational

cost of the method. In our experiments, we have found a trade off

using square pixels of 5cm×5cm in the spatial domain.

As several points may be projected on the same pixel, we store

the maximal elevation, the minimal elevation and the number of

points (called accumulation) projected on the same pixel.



After images creation, a morphological interpolation is performed

in order to fill holes caused by occlusions and missing scan lines.

An interpolation technique based on the morphological fill holes

Fill(f ) is used since this transformation does not create new re-

gional maxima in the image.

4.2 Ground Extraction

Ground segmentation is a critical step since urban objects are as-

sumed to be located on it. When objects are filtered out it is

possible to define the digital terrain model. With the aim of seg-

menting the ground, we use the approach proposed in (Hernández

and Marcotegui, 2009). It is based on the λ–flat zones labeling

algorithm defined in (Meyer, 1998) as following: let f be a dig-

ital gray–scale image f : D → V , with D ⊂ Z2 the image

domain and V = [0, ..., R] the set of gray levels. Two neigh-

boring pixels p, q belong to the same λ–flat zone of f , if their

difference |fp − fq| is smaller than or equal to a given λ value.

For all x ∈ D, let Ax(λ) be the λ–flat zone of image f con-

taining pixel x. Using this definition, it is possible to obtain the

ground g = max arg{|(Ax(λ)|} as the largest λ–flat zone in the

elevation image. The parameter λ is set to 20 cm because it is

usually high enough to join road and sidewalk without merging

other objects, even if there are not ramp access for the sidewalk.

Figure 2 (b) presents the segmentation and classification result

corresponding to the input point cloud illustrated in Figure 2 (a).

Figure 2 (c) depicts the 3D point cloud representing the ground

composed by roads, sidewalks and accessibility ramps. The 3D

points belonging to the ground are further injected into the sur-

face reconstruction process which is described in the following

section.

5. GROUND SURFACE RECONSTRUCTION

The ground surface reconstruction module transforms a 3D point

cloud previously labelled as ground ( illustrated in Figure 2 (c) ),

into a continuous and scalable surface representation. The pro-

posed framework is composed by several steps which are illus-

trated in Figure 1 and described through the following sections.

First, the 3D point cloud representing the ground is triangulated

in the (x, y) plane using a constraint Delaunay algorithm which

provides points connectivity. Then, we apply a mesh cleaning

process to eliminate long triangles. In order to provide a continu-

ous and regular surface model of the road, we apply the Sinc Win-

dowed (Taubin et al., 1996) smoothing algorithm which elimi-

nates high frequencies, while preserving sharp depth features and

avoiding surface shrinkage. In a final step, a progressive dec-

imator (Schroeder et al., 1992),(Hoppe, 1996) is applied to the

smoothed mesh in order to cope with scalability constraints when

performing surface reconstruction over large scale distances. It

provides surface representation with low memory usage, enabling

efficient data transmission and visualization. In addition, the dec-

imation procedure enables progressive rendering in order to deal

with real-time constraints imposed by driving simulation engines.

5.1 Point Cloud Triangulation

Let us note with P = {xi, yi, zi|i = 1, .., Np} the 3D point

cloud corresponding to the ground, where Np denotes the number

of points. We apply the Triangle algorithm (Shewchuk, 1996) to

the 3D point cloud P to generate a planar constraint Delaunay

triangulation with angles no smaller than 30◦. Let us note with

MDT the resulting ground mesh, which has Nt ≈ 2Np triangles.

5.2 Long Triangles Elimination

In order to eliminate long triangles from non-uniform bound-

ary points, we perform statistics on the edge lengths and iden-

tify those with maximum length, noted emax. We identified that

long edges correspond to emax ≈ δē, where ē denotes the mean

length computed over all edges e
j
i belonging to the meshMDT ,

i.e. over all triangles tj ∈ MDT , j = 1, .., Nt and for its cor-

responding edges e
j
i , i = {1, 2, 3}. The term δ denotes a pro-

portionality factor. A triangle tj is eliminated if any of its edges

e
j
i > emax, i = {1, 2, 3}. This criterion ensures that only long

triangles belonging to the boundary are eliminated; moreover,

since small triangles are not eliminated, holes can not be gener-

ated within the mesh. In practice, for several datasets acquired in

urban areas by different MLS systems (Paparoditis et al., 2012),

(Goulette et al., 2006), we found that a coefficient δ = 20 results

in a mesh without long triangles, which we noteMC .

5.3 Building a Regular Surface

As illustrated in Figures 3 (a) and (b), the triangulation of noisy

3D measurements results in high frequency peaks. Since we want

to inject the ground surface model in driving simulator engines,

an important issue which needs to be addressed is the geometrical

accuracy. The 3D model must be distortion-free and regular. In

order to obtain a regular surface, the Sinc windowed smoothing

procedure (Taubin et al., 1996) is applied which approximates

low-pass filters by polyhedrons in order to eliminate high fre-

quency peaks. Figures 3 (c) and (d) illustrate the smoothed mesh,

notedMS ; it can be observed that the Sinc Windowed smoothing

technique provides a regular surface, while preserving roads and

sidewalk borders sharpness.

5.4 Scalability

The smoothed mesh has a high number of triangles, being redun-

dant and causing a high memory usage. Moreover, in order to

merge several mesh segments into a global scene, the mesh res-

olution must be drastically reduced. To this end, we apply the

progressive decimation method (Schroeder et al., 1992), (Hoppe,

1996), mainly the default implementation available in the VTK

library (Schroeder et al., 2006). The mesh resolution r(MD) is

controlled by the reduction factor, noted fD(%).

The algorithm proceeds as follows: first, each vertex is classified

and inserted in a priority queue for further processing. The pri-

ority is set in order to minimize the distance to the original mesh

caused by the vertex elimination and by the re-triangulation of the

resulting hole. As stated in (Schroeder et al., 1992), following the

vertex type (simple, interior, boundary, etc.), a different distance

criterion is computed (distance to plane, distance to edge). Let us

note with MD the decimated mesh, with ND
t the corresponding

number of triangles.

Figure 4 illustrates the result obtained for the input depicted in

Figure 2 (c) reducing fD = 90% of the entire mesh. The remain-

ing number of triangles corresponds to r(MD) = 10% of the

original mesh.

It can be observed that the decimation algorithm preserves the re-

construction of the road, sidewalk borders and accessibility ramps.

In order to emphasize the detail-preserving capability of the dec-

imation algorithm, Figure 5 illustrate the speed bump reconstruc-

tion after applying a maximal mesh reduction factor of fD =
90%.

Accuracy of the decimated mesh. As in (Turnet and Zakhor,

2013), we evaluate the accuracy of the decimated mesh by mea-

suring the distance between the original point cloud P and the
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Figure 3: Mesh smoothing results on dataset Urban ♯2. (a) Delaunay triangulation; (b) zoom-in view on the sidewalk border corre-

sponding to the black rectangle area illustrated in Figure (b); (c) the result of the Sinc windowed smoothing procedure (d) zoom-in

view on the sidewalk border corresponding to the black rectangle area illustrated in Figure (c).

(a) (b)

(c) (d)

Figure 4: Decimation results obtained for the dataset Urban ♯1: (a) full resolution smoothed mesh: Nt = 2.54 Mpts; (b) zoom-in

view in the area around the sidewalk border indicated by the white arrow from Figure (a); (c) wire-frame view of the decimated mesh:

fD = 90%, ND
t : 254 kTriangles, (d) wire-frame view: zoom-in view in the area around the sidewalk border indicated by the white

arrow from Figure (c).



(a) (b)

Figure 5: Surface reconstruction results for the dataset Urban ♯2 over 51 m length. (a) Google street view of the surveyed area (although

not exactly the same pose, it is useful for surface inspection purposes), (b) Np = 1.01 Mpts, Nt = 2.026 MTriangles, decimated mesh

with fD = 90%, ND
t = 203 kTriangles.

vertices of the decimated mesh, MD . We choose to compute

the Hausdorff distance (Cignoni et al., 1998), we study both, the

mean and the root mean squared (RMSH) distance for different

mesh resolutions r(MD). We observed that the mean is less sen-

sible to the decimation process, while the RMSH varies with

a higher amplitude, although negligible (±10−3m ). This let

us conclude that the memory usage can be reduced by a maxi-

mal factor of fD = 90%, without sacrificing the accuracy of the

model.

6. PERFORMANCE EVALUATION

We evaluate the performances of the proposed framework in terms

of accuracy, memory usage and computation time.

Accuracy evaluation. We quantify the accuracy of the recon-

structed surface with respect to several ground truth measure-

ments which were performed manually on site (Cassette road,

situated in Paris, France), mainly: the height of the sidewalk bor-

der, the height of the access and the road width, noted Hsidewalk,

Hramp and Wroad, respectively. Table 1 illustrates the ground

truth and the reconstructed dimensions for dataset Urban ♯2 illus-

trated in Figure 5. It can be observed the reachable accuracy is

better than 1.5 cm.

Dataset Urban ♯2 Hsidewalk Hramp Wroad

GT 10.5 (cm) 2.5 (cm) 3.5 (m)

Reconstruction 10.1 (cm) 2.3 (cm) 3.514 (m)

Table 1: Accuracy evaluation of the ground surface reconstruc-

tion with respect to ground truth (GT) data for Urban ♯2.

Computation time. We evaluate our algorithm on a 64b Linux

machine, equipped with 32 Gb of RAM memory and an Intel

Core i7 running at 3.40 GHz. Our method is implemented in

C/C++ and exploits PCL (Rusu and Cousins, 2011) and VTK

(Schroeder et al., 2006) libraries. Table 2 illustrates the computa-

tion time obtained for the dataset Urban ♯2. We can observe that

the decimation step is the most expensive phase, being related to

the decimation factor fD . In this example, a maximum decimator

factor was used fD = 90% for a mesh with 2 MTriangles, which

results in 9 sec of computation time.

Memory usage. Table 3 illustrates the memory usage for each

surface reconstruction step. It can be observed that the mesh rep-

Steps PS MDT MC MS MD

CPU (s) 2 2.14 0.18 3 9

Table 2: Computation time for dataset Urban ♯2 illustrated in Fig-

ure 5 where PS denotes the point cloud segmentation phase for

the ground extraction; each column gives the runtime correspond-

ing to each output of the algorithm. The overall computation time

is about 17s for Np=1.01 Mpts and Nt=203 kTriangles.

resentation is more efficient than the point-based one, allowing to

reduce the memory usage 3 times for the full resolution mesh and

20 times for a resolution mesh of r(MS) = 10%. These results

show that the proposed surface reconstruction framework pro-

vides a memory efficient surface representation, while preserving

geometric details.

Visual rendering. The frame frequency, measured in frames per

second (FPS), allows to quantify the quality of a 3D model with

respect to the visual rendering capability. The second row of Ta-

ble 3 illustrates the frame frequency, noted νrate and measured

using Cloud Compare (Girardeau-Montaut, 2013) for different

surface representations (discrete and continuous). It can be ob-

served that the point-based representation detains faster rendering

capabilities than the full resolution mesh, which does not cope

with real-time rendering requirements. In contrast, the decimated

mesh exhibits real-time frame rates, while providing a continuous

surface representation.

Urban ♯2 P MDT MS MD

Memory (Mb) 14.856 81.61 37.600 3.7

νrate (FPS) 267.74 10.273 12.448 131.96

Table 3: Memory usage and frame frequency measures corre-

sponding to the input chunk P and to the main outputs of the

algorithm for dataset Urban ♯2 illustrated in Figure 5.

Although the decimation step is the most computationally ex-

pensive processing block of the proposed surface reconstruction

framework, it enables real-time rendering of a continuous surface

over large scale scenes, while preserving geometric details.

Ground surface comparison. We evaluate the results of the

proposed framework, entitled Automatic Ground Surface Recon-

struction (AGSR), with two well known surface reconstruction

techniques. The first method is based on implicit functions (Kazh-

dan et al., 2006), while the second is an explicit method (Marton



et al., 2009) which proceeds by a greedy projection. Figure 6 and

Table 4 illustrate the results obtained by applying each recon-

struction algorithm to the point cloud P associated to the ground

area depicted in Figure 2 (c).

Dataset Urban ♯1 Poisson Greedy AGSR

Nout
p 748 k 1.28 M 127 k

Nout
t 1.5 M 2.764 M 254 k

CPU (s) 133 422 26

Table 4: Comparison between surface reconstruction methods:

results obtained by running the algorithms on the dataset Urban

♯1. Nout
p and Nout

t denote the number of vertices and the number

of triangles corresponding to each output, respectively.

By visually inspecting Figures 6 (a) and 6 (d), it can be observed

that although Poisson method provides a watertight surface, it re-

sults in mesh shrinkage around the sidewalk borders. Moreover, it

reduces the number of points considerably, introducing thus inac-

curacies between the point cloud geometry and the final surface.

In contrast, the Greedy projection method keeps all the measure-

ments provided by the acquisition. Nevertheless, it results in dis-

continuity and high frequency peaks. The third row of Table 4

illustrates the computation time obtained using PCL implemen-

tations. It can be observed that the proposed method increases the

performances not only in terms of accuracy, as showed in Figure

6, but also in terms of computation time. More precisely, it al-

lows to decrease the runtime 5 times when compared to Poisson

method, and 16 times with respect to the Greedy projection tech-

nique. Both methods, Poisson and Greedy, are computationally

expensive due to the normal computation step. When comparing

final results, it can be observed that, although the proposed tech-

nique includes a computationally expensive decimation phase,

beside the detail-preserving rendering capability, it features real-

time surface reconstruction on parallel processing units.

7. SCALING-UP DETAIL-PRESERVING GROUND

MODELS

We test the surface reconstruction algorithm on several chunks

acquired over urban areas acquired with different MLS systems

(Paparoditis et al., 2012), (Goulette et al., 2006); different smooth-

ing parameters were applied for each MLS. Figure 7 illustrates

the result obtained on several chunks corresponding to dataset

Urban ♯2 acquired by a MLS equipped with a Riegl sensor (Pa-

paroditis et al., 2012). Figure 7 shows the results obtained for 4
scans segments acquired over 217 m, containing 12 Mpts, from

which 4 Mpts were classified as belonging to ground. It can be

observed that due to the vehicle speed which may vary, the ac-

quired 3D chunks have different lengths. By taking into account

the computation time obtained for dataset Urban ♯2, in average,

we process 3 Mpts for 50 m length of surveyed area in about

17 s. For 100 Mpts (100 scan segments with 30% ground), it

is possible to obtain the ground surface in about 28 min. For

100 km, the ground surface can be computed in about 10h. Even

though time scalability is not our prior concern, by increasing

the computational resources by a factor of 10, we provide a sur-

face reconstruction framework capable to perform in real time. In

this upgraded configuration, the algorithm can deliver the recon-

struction of the entire road network for a country with 10000 km

length in about 5 days, non-stop driving and data acquisition at

90 km/h.

8. CONCLUSIONS AND FUTURE WORK

This paper presented Automatic Ground Surface Reconstruction

(AGSR), a fully automatic framework for generating detail-

(a) (b)

Figure 7: Surface reconstruction results obtained for dataset Ur-

ban ♯2. (a) Google street view of the surveyed area, (b) surface re-

construction results obtained for 4 chunks with different lengths

(each one included in its bounding box), overall approximative

distance: 217 m.

preserving and scalable ground surface reconstruction from MLS

data in outdoor environments. The presented research work is

mainly concerned with urban areas, where the ground is usu-

ally represented by quasi-flat zones; for off-road terrain model-

ing, adapted schemes must be designed. The proposed algorithm

comes with a parallel scheme to be expanded at two levels: i)

for running on series of ground chunks, and ii) at upper level,

for reconstructing different classes, allowing to integrate adapted

surface reconstruction frameworks for complex (non-planar) ob-

jets. The proposed method emphasizes the high potential of the

MMS which, when combined with suitable frameworks, it allows

to generate accurate and scalable 3D models in a fully automatic

fashion. Future work focuses on the facade surface reconstruction

step, while tacking into account the integration of multiple mesh

surfaces (ground and facades) within a global referential frame.
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