
HAL Id: hal-01097361
https://minesparis-psl.hal.science/hal-01097361

Submitted on 19 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Fast and Accurate Plane Detection Algorithm for
Large Noisy Point Clouds Using Filtered Normals and

Voxel Growing
Jean-Emmanuel Deschaud, François Goulette

To cite this version:
Jean-Emmanuel Deschaud, François Goulette. A Fast and Accurate Plane Detection Algorithm for
Large Noisy Point Clouds Using Filtered Normals and Voxel Growing. 3DPVT, May 2010, Paris,
France. �hal-01097361�

https://minesparis-psl.hal.science/hal-01097361
https://hal.archives-ouvertes.fr

A Fast and Accurate Plane Detection Algorithm for Large Noisy Point Clouds
Using Filtered Normals and Voxel Growing

Jean-Emmanuel Deschaud
François Goulette

Mines ParisTech, CAOR-Centre de Robotique, Mathématiques et Systèmes
60 Boulevard Saint-Michel 75272 Paris Cedex 06

jean-emmanuel.deschaud@mines-paristech.fr francois.goulette@mines-paristech.fr

Abstract

With the improvement of 3D scanners, we produce point
clouds with more and more points often exceeding millions
of points. Then we need a fast and accurate plane detection
algorithm to reduce data size. In this article, we present a
fast and accurate algorithm to detect planes in unorganized
point clouds using filtered normals and voxel growing. Our
work is based on a first step in estimating better normals at
the data points, even in the presence of noise. In a second
step, we compute a score of local plane in each point. Then,
we select the best local seed plane and in a third step start
a fast and robust region growing by voxels we call voxel
growing. We have evaluated and tested our algorithm on
different kinds of point cloud and compared its performance
to other algorithms.

1. Introduction
With the growing availability of 3D scanners, we are now

able to produce large datasets with millions of points. It is
necessary to reduce data size, to decrease the noise and at
same time to increase the quality of the model. It is in-
teresting to model planar regions of these point clouds by
planes. In fact, plane detection is generally a first step of
segmentation but it can be used for many applications. It
is useful in computer graphics to model the environnement
with basic geometry. It is used for example in modeling to
detect building facades before classification. Robots do Si-
multaneous Localization and Mapping (SLAM) by detect-
ing planes of the environment. In our laboratory, we wanted
to detect small and large building planes in point clouds of
urban environments with millions of points for modeling.
As mentioned in [6], the accuracy of the plane detection is
important for after-steps of the modeling pipeline. We also
want to be fast to be able to process point clouds with mil-
lions of points. We present a novel algorithm based on re-

gion growing with improvements in normal estimation and
growing process. For our method, we are generic to work
on different kinds of data like point clouds from fixed scan-
ner or from Mobile Mapping Systems (MMS). We also aim
at detecting building facades in urban point clouds or little
planes like doors, even in very large data sets. Our input is
an unorganized noisy point cloud and with only three ”in-
tuitive” parameters, we generate a set of connected compo-
nents of planar regions. We evaluate our method as well as
explain and analyse the significance of each parameter.

2. Previous Works
Although there are many methods of segmentation in

range images like in [10] or in [3], three have been thor-
oughly studied for 3D point clouds : region-growing,
hough-transform from [14] and Random Sample Consen-
sus (RANSAC) from [9].

The application of recognising structures in urban laser
point clouds is frequent in literature. Bauer in [4] and
Boulaassal in [5] detect facades in dense 3D point cloud
by a RANSAC algorithm. Vosselman in [23] reviews sur-
face growing and 3D hough transform techniques to de-
tect geometric shapes. Tarsh-Kurdi in [22] detect roof
planes in 3D building point cloud by comparing results on
hough-transform and RANSAC algorithm. They found that
RANSAC is more efficient than the first one. Chao Chen
in [6] and Yu in [25] present algorithms of segmentation in
range images for the same application of detecting planar
regions in an urban scene. The method in [6] is based on
a region growing algorithm in range images and merges re-
sults in one labelled 3D point cloud. [25] uses a method
different from the three we have cited : they extract a hi-
erarchical subdivision of the input image built like a graph
where leaf nodes represent planar regions.

There are also other methods like bayesian techniques.
In [16] and [8], they obtain smoothed surface from noisy
point clouds with objects modeled by probability distribu-

tions and it seems possible to extend this idea to point cloud
segmentation. But techniques based on bayesian statistics
need to optimize global statistical model and then it is diffi-
cult to process points cloud larger than one million points.

We present below an analysis of the two main methods
used in literature : RANSAC and region-growing. Hough-
transform algorithm is too time consuming for our applica-
tion. To compare the complexity of the algorithm, we take
a point cloud of sizeN with only one plane P of size n. We
suppose that we want to detect this plane P and we define
nmin the minimum size of the plane we want to detect. The
size of a plane is the area of the plane. If the data density
is uniform in the point cloud then the size of a plane can be
specified by its number of points.

2.1. RANSAC

RANSAC is an algorithm initially developped by Fis-
chler and Bolles in [9] that allows the fitting of models with-
out trying all possibilities. RANSAC is based on the prob-
ability to detect a model using the minimal set required to
estimate the model.

To detect a plane with RANSAC, we choose 3 random
points (enough to estimate a plane). We compute the plane
parameters with these 3 points. Then a score function is
used to determine how the model is good for the remaining
points. Usually, the score is the number of points belonging
to the plane. With noise, a point belongs to a plane if the
distance from the point to the plane is less than a parameter
γ. In the end, we keep the plane with the best score. The
probability of getting the plane in the first trial is p = (nN)3.
Therefore the probability to get it in T trials is p = 1 −
(1 − (nN)3)T . Using equation 1 and supposing nmin

N �
1, we know the number Tmin of minimal trials to have a
probability pt to get planes of size at least nmin :

Tmin =
log(1− pt)

log(1− (nmin

N)3)
≈ log(

1

1− pt
)(

N

nmin
)3. (1)

For each trial, we test all data points to compute the score
of a plane. The RANSAC algorithm complexity lies in
O(N(N

nmin
)3) when nmin

N � 1 and Tmin → 0 when
nmin → N . Then RANSAC is very efficient in detecting
large planes in noisy point clouds i.e. when the ratio nmin

N
is ' 1 but very slow to detect small planes in large point
clouds i.e. when nmin

N � 1. After selecting the best model,
another step is to extract the largest connected component
of each plane. Connnected components mean that the min-
imum distance between each point of the plane and others
points is smaller (for distance) than a fixed parameter.

Schnabel et al. [20] bring two optimizations to
RANSAC : the points selection is done locally and the score
function has been improved. An octree is first created from
point cloud. Points used to estimate plane parameters are
chosen locally at a random depth of the octree. The score

function is also different from RANSAC : instead of testing
all points for one model, they test only a random subset and
find the score by interpolation. The algorithm complexity
lies in O(Nr

4Nd
nmin

) where r is the number of random subsets
for the score function and d is the maximum octree depth.
Their algorithm improves the planes detection speed but its
complexity lies inO(N2) and it becomes slow on large data
sets. And again we have to extract the largest connected
component of each plane.

2.2. Region Growing

Region Growing algorithms work well in range images
like in [18]. The principle of region growing is to start
with a seed region and to grow it by neighborhood when
the neighbors satisfy some conditions. In range images, we
have the neighbors of each point with pixel coordinates. In
case of unorganized 3D data, there is no information about
the neighborhood in the data structure. The most common
method to compute neighbors in 3D is to compute a Kd-tree
to search k nearest neighbors. The creation of a Kd-tree
lies in O(NlogN) and the search of k nearest neighbors of
one point lies in O(logN). The advantage of these region
growing methods is that they are fast when there are many
planes to extract, robust to noise and extract the largest con-
nected component immediately. But they only use the dis-
tance from point to plane to extract planes and like we will
see later, it is not accurate enough to detect correct planar
regions .

Rabbani et al. [19] developped a method of smooth area
detection that can be used for plane detection. They first
estimate the normal of each point like in [13]. The point
with the minimum residual starts the region growing. They
test k nearest neighbors of the last point added : if the an-
gle between the normal of the point and the current normal
of the plane is smaller than a parameter α then they add
this point to the smooth region. With Kd-tree for k nearest
neighbors, the algorithm complexity is in O(N + nlogN).
The complexity seems to be low but in worst case, when
n
N ' 1, example for facade detection in point clouds, the
complexity becomes O(NlogN).

3. Voxel Growing
3.1. Overview

In this article, we present a new algorithm adapted to
large data sets of unorganized 3D points and optimized to
be accurate and fast. Our plane detection method works
in three steps. In the first part, we compute a better esti-
mation of the normal in each point by a filtered weighted
plane fitting. In a second step, we compute the score of lo-
cal planarity in each point. We select the best seed point that
represents a good seed plane and in the third part, we grow
this seed plane by adding all points close to the plane. The

growing step is based on a voxel growing algorithm. The
filtered normals, the score function and the voxel growing
are innovative contributions of our method.

As an input, we need dense point clouds related to the
level of detail we want to detect. As an output, we produce
connected components of planes in the point cloud. This
notion of connected components is linked to the data den-
sity. With our method, the connected components of planes
detected are linked to the parameter d of the voxel grid.

Our method has 3 ”intuitive” parameters : d, areamin
and γ. ”intuitive” because there are linked to physical mea-
surements. d is the voxel size used in voxel growing and
also represents the connectivity of points in detected planes.
γ is the maximum distance between the point of a plane and
the plane model, represents the plane thickness and is linked
to the point cloud noise. areamin represents the minimum
area of planes we want to keep.

3.2. Details

3.2.1 Local Density of Point Clouds

In a first step, we compute the local density of point clouds
like in [17]. For that, we find the radius ri of the sphere
containing the k nearest neighbors of point i. Then we cal-
culate ρi = k

πr2i
. In our experiments, we find that k = 50 is

a good number of neighbors. It is important to know the lo-
cal density because many laser point clouds are made with a
fixed resolution angle scanner and are therefore not evenly
distributed. We use the local density in section 3.2.3 for the
score calculation.

3.2.2 Filtered Normal Estimation

Normal estimation is an important part of our algorithm.
The paper [7] presents and compares three normal estima-
tion methods. They conclude that the weighted plane fit-
ting or WPF is the fastest and the most accurate for large
point clouds. WPF is an idea of Pauly and al. in [17]
that the fitting plane of a point p must take into consider-
ation the nearby points more than other distant ones. The
normal least square is explained in [21] and is the mini-
mum of

∑k
i=1(np · pi + d)2. The WPF is the minimum

of
∑k
i=1 ωi (np · pi + d)2 where ωi = θ(‖pi − p‖) and

θ(r) = e
−2 r2

r2
i . For solving np, we compute the eigenvec-

tor corresponding to the smallest eigenvalue of the weighted
covariance matrixCw =

∑k
i=1 ωi

t(pi−bw)(pi−bw) where
bw is the weighted barycenter. For the three methods ex-
plained in [7], we get a good approximation of normals in
smooth area but we have errors in sharp corners. In fig-
ure 1, we have tested the weighted normal estimation on two
planes with uniform noise and forming an angle of 90˚. We
can see that the normal is not correct on the corners of the
planes and in the red circle.

To improve the normal calculation, that improves the
plane detection especially on borders of planes, we propose
a filtering process in two phases. In a first step, we com-
pute the weighted normals (WPF) of each point like we de-
scribed it above by minimizing

∑k
i=1 ωi (np · pi + d)2.

In a second step, we compute the filtered normal by us-
ing an adaptive local neighborhood. We compute the new
weighted normal with the same sum minimization but keep-
ing only points of the neighborhood whose normals from
the first step satisfy | np · ni |> cos(α). With this filtering
step, we have the same results in smooth areas and better
results in sharp corners. We called our normal estimation
filtered weighted plane fitting (FWPF).

Figure 1. Weighted normal estimation of two planes with uniform
noise and with 90˚ angle between them.

We have tested our normal estimation by computing nor-
mals on synthetic data with two planes and different angles
between them and with different values of the parameter α.
We can see in figure 2 the mean error on normal estimation
for WPF and FWPF with α = 20˚, 30˚, 40˚ and 90˚. Us-
ing α = 90˚ is the same as not doing the filtering step. We
see on Figure 2 that α = 20˚ gives smaller error in normal
estimation when angles between planes is smaller than 60˚
and α = 30˚ gives best results when angle between planes
is greater than 60˚. We have considered the value α = 30˚
as the best results because it gives the smaller mean error
in normal estimation when angle between planes vary from
20˚ to 90˚. Figure 3 shows the normals of the planes with
90˚ angle and better results in the red circle (normals are
90˚ with the plane).

3.2.3 The score of local planarity

In many region growing algorithms, the criteria used for the
score of the local fitting plane is the residual, like in [18]
or [19], i.e. the sum of the square of distance from points
to the plane. We have a different score function to estimate
local planarity. For that, we first compute the neighbors Ni
of a point p with points i whose normals ni are close to

Figure 2. Comparison of mean error in normal estimation of two
planes with α = 20˚, 30˚, 40˚ and 90˚(=No filtering).

Figure 3. Filtered Weighted normal estimation of two planes with
uniform noise and with 90˚ angle between them (α = 30˚).

the normal np. More precisely, we compute Ni = {p in k
neighbors of i/ | ni · np |> cos(α)}. It is a way to keep
only the points which are probably on the local plane before
the least square fitting. Then, we compute the local plane
fitting of point p with Ni neighbors by least squares like
in [21]. The set N ′i is a subset of Ni of points belonging to
the plane, i.e. the points for which the distance to the local
plane is smaller than the parameter γ (to consider the noise).
The score s of the local plane is the area of the local plane,
i.e. the number of points ”in” the plane divided by the local
density ρi (seen in section 3.2.1) : the score s =

card(N ′
i)

ρi
.

We take into consideration the area of the local plane as the
score function and not the number of points or the residual
in order to be more robust to the sampling distribution.

3.2.4 Voxel decomposition

We use a data structure that is the core of our region growing
method. It is a voxel grid that speeds up the plane detection
process. Voxels are small cubes of length d that partition the
point cloud space. Every point of data belongs to a voxel
and a voxel contains a list of points. We use the Octree
Class Template in [2] to compute an Octree of the point
cloud. The leaf nodes of the graph built are voxels of size d.
Once the voxel grid has been computed, we start the plane
detection algorithm.

3.2.5 Voxel Growing

With the estimator of local planarity, we take the point p
with the best score, i.e. the point with the maximum area of
local plane. We have the model parameters of this best seed
plane and we start with an empty set E of points belonging
to the plane. The initial point p is in a voxel v0. All the
points in the initial voxel v0 for which the distance from the
seed plane is less than γ are added to the set E. Then, we
compute new plane parameters by least square refitting with
set E.

Instead of growing with k nearest neighbors, we grow
with voxels. Hence we test points in 26 voxel neigh-
bors. This is a way to search the neighborhood in con-
stant time instead of O(logN) for each neighbor like with
Kd-tree. In a neighbor voxel, we add to E the points for
which the distance to the current plane is smaller than γ
and the angle between the normal computed in each point
and the normal of the plane is smaller than a parameter α:
| cos(np,nP) |> cos(α) where np is the normal of the
point p and nP is the normal of the plane P . We have tested
different values of α and we empirically found that 30˚ is
a good value for all point clouds. If we added at least one
point in E for this voxel, we compute new plane parameters
fromE by least square fitting and we test its 26 voxel neigh-
bors. It is important to perform plane least square fitting in
each voxel adding because the seed plane model is not good
enough with noise to be used in all voxel growing, but only
in surrounding voxels. This growing process is faster than
classical region growing because we do not compute least
square for each point added but only for each voxel added.

The least square fitting step must be computed very fast.
We use the same method as explained in [18] with incre-
mental update of the barycenter b and covariance matrix
C like equation 2. We know with [21] that the barycen-
ter b belongs to the least square plane and that the normal of
the least square plane nP is the eigenvector of the smallest
eigenvalue of C.

b0 = 03x1 C0 = 03x3.

bn+1 =
1

n+ 1
(nbn + pn+1).

Cn+1 = Cn +
n

n+ 1
t(pn+1 − bn)(pn+1 − bn).

(2)

where Cn is the covariance matrix of a set of n points, bn
is the barycenter vector of a set of n points and pn+1 is the
(n+ 1) point vector added to the set.

This voxel growing method leads to a connected com-
ponent set E because the points have been added by con-
nected voxels. In our case, the minimum distance between
one point and E is less than parameter d of our voxel grid.
That is why the parameter d also represents the connectivity
of points in detected planes.

3.2.6 Plane Detection

To get all planes with an area of at least areamin in the point
cloud, we repeat these steps (best local seed plane choice
and voxel growing) with all points by descending order of
their score. Once we have a setE, whose area is bigger than
areamin, we keep it and classify all points in E.

4. Results and Discussion
4.1. Benchmark analysis

To test the improvements of our method, we have em-
ployed the comparative framework of [12] based on range
images. For that, we have converted all images into 3D
point clouds. All Point Clouds created have 260k points.
After our segmentation, we project labelled points on a seg-
mented image and compare with the ground truth image.
We have chosen our three parameters d, areamin and γ by
optimizing the result of the 10 perceptron training image
segmentation (the perceptron is portable scanner that pro-
duces a range image of its environment). Bests results have
been obtained with areamin = 200, γ = 5 and d = 8
(units are not provided in the benchmark). We show the re-
sults of the 30 perceptron images segmentation in table 1.
GT Regions are the mean number of ground truth planes
over the 30 ground truth range images. Correct detection,
over-segmentation, under-segmentation, missed and noise
are the mean number of correct, over, under, missed and
noised planes detected by methods. The tolerance 80% is
the minimum percentage of points we must have detected
comparing to the ground truth to have a correct detection.
More details are in [12].

UE is a method from [12], UFPR is a method from [10].
It is important to notice that UE and UFPR are range image
methods and our method is not well suited for range images
but 3D Point Cloud. Nevertheless, it is a good benchmark
for comparison and we see in table 1 that the accuracy of our

method is very close to the state of the art in range image
segmentation.

To evaluate the different improvements of our algorithm,
we have tested different variants of our method. We have
tested our method without normals (only with distance from
points to plane), without voxel growing (with a classical
region growing by k neighbors), without our FWPF nor-
mal estimation (with WPF normal estimation), without our
score function (with residual score function). The compari-
son is visible on table 2. We can see the difference of time
computing between region growing and voxel growing. We
have tested our algorithm with and without normals and we
found that the accuracy cannot be achieved whithout normal
computation. There is also a big difference in the correct de-
tection between WPF and our FWPF normal estimation as
we can see in the figure 4. Our FWPF normal brings a real
improvement in border estimation of planes. Black points
in the figure are non classified points.

Figure 5. Correct Detection of our segmentation algorithm when
the voxel size d changes.

We would like to discuss the influence of parameters on
our algorithm. We have three parameters : areamin, which
represents the minimum area of the plane we want to keep,
γ, which represents the thickness of the plane (it is gener-
aly closely tied to the noise in the point cloud and espe-
cially the standard deviation σ of the noise) and d, which is
the minimum distance from a point to the rest of the plane.
These three parameters depend on the point cloud features
and the desired segmentation. For example, if we have a
lot of noise, we must choose a high γ value. If we want to
detect only large planes, we set a large areamin value. We
also focus our analysis on the robustess of the voxel size d
in our algorithm, i.e. the ratio of points vs voxels. We can
see in figure 5 the variation of the correct detection when
we change the value of d. The method seems to be robust
when d is between 4 and 10 but the quality decreases when
d is over 10. It is due to the fact that for a large voxel size
d, some planes from different objects are merged into one
plane.

GT Regions Correct Over- Under- Missed Noise Duration (in s)
detection segmentation segmentation

UE 14.6 10.0 0.2 0.3 3.8 2.1 -
UFPR 14.6 11.0 0.3 0.1 3.0 2.5 -

Our method 14.6 10.9 0.2 0.1 3.3 0.7 308

Table 1. Average results of different segmenters at 80% compare tolerance.

GT Regions Correct Over- Under- Missed Noise Duration (in s)
Our method detection segmentation segmentation

without normals 14.6 5.67 0.1 0.1 9.4 6.5 70
without voxel growing 14.6 10.7 0.2 0.1 3.4 0.8 605

without FWPF 14.6 9.3 0.2 0.1 5.0 1.9 195
without our score function 14.6 10.3 0.2 0.1 3.9 1.2 308

with all improvements 14.6 10.9 0.2 0.1 3.3 0.7 308

Table 2. Average results of variants of our segmenter at 80% compare tolerance.

4.1.1 Large scale data

We have tested our method on different kinds of data. We
have segmented urban data in figure 6 from our Mobile
Mapping System (MMS) described in [11]. The mobile sys-
tem generates 10k pts/s with a density of 50 pts/m2 and very
noisy data (σ = 0.3m). For this point cloud, we want to de-
tect building facades. We have chosen areamin = 10m2,
d = 1m to have large connected components and γ = 0.3m
to cope with the noise.

We have tested our method on point cloud from the Trim-
ble VX scanner in figure 7. It is a point cloud of size 40k
points with only 20 pts/m2 with less noise because it is a
fixed scanner (σ = 0.2m). In that case, we also wanted to
detect building facades and keep the same parameters ex-
cept γ = 0.2m because we had less noise. We see in fig-
ure 7 that we have detected two facades. By setting a larger
voxel size d value like d = 10m, we detect only one plane.
We choose d like areamin and γ according to the desired
segmentation and to the level of detail we want to extract
from the point cloud.

We also tested our algorithm on the point cloud from
the LEICA Cyrax scanner in figure 8. This point cloud has
been taken from AIM@SHAPE repository [1]. It is a very
dense point cloud from multiple fixed position of scanner
with about 400 pts/m2 and very little noise (σ = 0.02m).
In this case, we wanted to detect all the little planes to model
the church in planar regions. That is why we have chosen
d = 0.2m, areamin = 1m2 and γ = 0.02m.

In figures 6, 7 and 8, we have, on the left, input point
cloud and on the right, we only keep points detected in
a plane (planes are in random colors). The red points in
these figures are seed plane points. We can see in these fig-
ures that planes are very well detected even with high noise.
Table 3 show the information on point clouds, results with

number of planes detected and duration of the algorithm.
The time includes the computation of the FWPF normals

of the point cloud. We can see in table 3 that our algo-
rithm performs linearly in time with respect to the number
of points. The choice of parameters will have little influence
on time computing. The computation time is about one mil-
lisecond per point whatever the size of the point cloud (we
used a PC with QuadCore Q9300 and 2Go of RAM). The
algorithm has been implented using only one thread and
in-core processing. Our goal is to compare the improve-
ment of plane detection between classical region growing
and our region growing with better normals for more ac-
curate planes and voxel growing for faster detection. Our
method seems to be compatible with out-of-core implemen-
tation like described in [24] or in [15].

MMS Street VX Street Church
Size (points) 398k 42k 7.6M

Mean Density 50 pts/m2 20 pts/m2 400 pts/m2

Number of Planes 20 2 142
Total Duration 452s 33s 6900s

Time/point '1ms '1ms '1ms

Table 3. Results on different data.

5. Conclusion

In this article, we have proposed a new method of plane
detection that is fast and accurate even in presence of noise.
We demonstrate its efficiency with different kinds of data
and its speed in large data sets with millions of points. Our
voxel growing method has a complexity of O(N) and it is
able to detect large and small planes in very large data sets
and can extract them directly in connected components.

Figure 4. Ground truth, Our Segmentation without and with filtered normals.

Figure 6. Planes detection in street point cloud generated by MMS (d = 1m,areamin = 10m2, γ = 0.3m).

References
[1] Aim@shape repository http://shapes.aim-at-shape.net/. 6
[2] Octree class template http://nomis80.org/code/octree.html. 4
[3] A. Bab-Hadiashar and N. Gheissari. Range image segmen-

tation using surface selection criterion. 2006. IEEE Trans-
actions on Image Processing. 1

[4] J. Bauer, K. Karner, K. Schindler, A. Klaus, and C. Zach.
Segmentation of building models from dense 3d point-
clouds. 2003. Workshop of the Austrian Association for
Pattern Recognition. 1

[5] H. Boulaassal, T. Landes, P. Grussenmeyer, and F. Tarsha-
Kurdi. Automatic segmentation of building facades using
terrestrial laser data. 2007. ISPRS Workshop on Laser Scan-
ning. 1

[6] C. C. Chen and I. Stamos. Range image segmentation
for modeling and object detection in urban scenes. 2007.
3DIM2007. 1

[7] T. K. Dey, G. Li, and J.Sun. Normal estimation for point
clouds: A comparison study for a voronoi based method.
2005. Eurographics on Symposium on Point-Based Graph-
ics. 3

[8] J. R. Diebel, S. Thrun, and M. Brunig. A bayesian method
for probable surface reconstruction and decimation. 2006.
ACM Transactions on Graphics (TOG). 1

[9] M. A. Fischler and R. C. Bolles. Random sample consen-
sus: A paradigm for model fitting with applications to image
analysis and automated cartography. 1981. Communications
of the ACM. 1, 2

[10] P. F. U. Gotardo, O. R. P. Bellon, and L. Silva. Range image
segmentation by surface extraction using an improved robust
estimator. 2003. Proceedings of Computer Vision and Pat-
tern Recognition. 1, 5

[11] F. Goulette, F. Nashashibi, I. Abuhadrous, S. Ammoun, and
C. Laurgeau. An integrated on-board laser range sensing sys-
tem for on-the-way city and road modelling. 2007. Interna-
tional Archives of the Photogrammetry, Remote Sensing and
Spacial Information Sciences. 6

[12] A. Hoover, G. Jean-Baptiste, and al. An experimental com-
parison of range image segmentation algorithms. 1996. IEEE
Transactions on Pattern Analysis and Machine Intelligence.
5

[13] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Surface reconstruction from unorganized points.
1992. International Conference on Computer Graphics and
Interactive Techniques. 2

[14] P. Hough. Method and means for recognizing complex pat-
terns. 1962. In US Patent. 1

[15] M. Isenburg, P. Lindstrom, S. Gumhold, and J. Snoeyink.
Large mesh simplification using processing sequences. 2003.

Figure 7. Planes detection in street point cloud generated by fixed Trimble VX Scanner (d = 1m,areamin = 10m2, γ = 0.2m).

Figure 8. Planes detection in church point cloud generated by fixed LEICA Cyrax Scanner (d = 0.2m,areamin = 1m2, γ = 0.02m).

Proceedings of the 14th IEEE Visualization. 6
[16] P. Jenke, M. Wand, M. Bokeloh, A. Schilling, and

W. Strasser. Bayesian point cloud reconstruction. 2006.
Computer Graphics Forum. 1

[17] M. Pauly, R. Keiser, L. P. Kobbelt, and M. Gross. Shape
modeling with point-sampled geometry. 2003. Proceedings
of ACM SIGGRAPH 2003. 3

[18] J. Poppinga, N. Vaskevicius, A. Birk, and K. Pathak. Fast
plane detection and polygonalization in noisy 3d range im-
ages. 2008. International Conference on Intelligent Robots
and Systems. 2, 3, 4

[19] T. Rabbani, F. A. V. den Heuvel, and G. Vosselman. Segmen-
tation of point clouds using smoothness constraint. 2006.
ISPRS Commission V Symposium ’Image Engineering and
Vision Metrology’. 2, 3

[20] R. Schnabel, R. Wahl, and R. Klein. Efficient ransac for
point-cloud shape detection. 2007. Computer Graphics Fo-
rum. 2

[21] C. M. Sharkarji. Least-squares fitting algorithms of the nist

algorithm testing system. 1998. Journal of Research of the
National Institute of Standards and Technology. 3, 4

[22] F. Tarsha-Kurdi, T. Landes, and P. Grussenmeyer. Hough
transform and extended ransac algorithms for automatic de-
tection of 3d building roof planes from lidar data. 2007.
Laser07. 1

[23] G. Vosselman, B. G. H. Gorte, G. Sithole, and T. Rabbani.
Recognising structure in laser scanner point clouds. 2004.
International Archives of Photogrammetry, Remote Sensing
and Spatial Information Sciences. 1

[24] M. Wand. Rendering of very large models. 2007. In: M.
Gross, H. Pfister (editors): Point-Based Graphics, Morgan
Kaufmann/Elsevier. 6

[25] G. Yu, M. Grossberg, G. Wolberg, and I. Stamos. Think
globally, cluster locally: A unified framework for range sege-
mentation. 2008. 4th Intl. Symposium on 3D Data Process-
ing, Visualization, and Transmission (3DPVT). 1

