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Abstract

This paper aims at developing a random morphological model for concrete mi-
crostructures. A 3D image of concrete is obtained by micro-tomography and is used
in conjunction with the concrete formulation to build and validate the model through
morphological measurements. The morphological model is made up of two phases, cor-
responding to the matrix, or cement paste and to the aggregates. The set of aggregates
in the sample is modeled as a combination of Poisson polyhedra of different scales. An
algorithm is introduced to generate polyhedra packings in the continuum space. The
latter is validated with morphological measurements.

Keywords Random microstructure models; concrete; multiscale materials; granu-
lometry

1 Introduction

Numerical methods are increasingly used for studying the mechanical response and
other properties of concrete. The development of computational tools aims at sup-
plementing or even replacing experiments in domains where the latter are difficult to
carry out. The response of concrete at very long time scales, typically creep, is but one
example. Reproducibility is another main concern, in materials where a large set of
aggregate types and sizes are employed.

The use of homogenization tools to tackle full-field micro-mechanical problems is,
however, challenging (Dunant et al., 2013). The mechanical and durability properties
depend to a large extent on the shape and spatial arrangement of aggregates and pores
inside a multi-scale microstructure. Other structure-dependent physical properties in-
clude fracture and crack propagation (Stroeven, 2000) or the spatial distribution of
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highest stressed zones (Escoda et al., 2011b). Thus, a very fine description of the mate-
rial microstructure is needed for numerical approaches. Numerical methods in general
apply to simulated microstructure models or to segmented images of real microstruc-
tures, be it concrete (Nagai et al., 1998), mortar (Escoda et al., 2011b) or cement
paste (Gallucci et al., 2007; Bullard & Garboczi, 2006; Hain & Wriggers, 2007).

The modeling of cement paste usually combines a cement microstructure and hydra-
tion simulation (Thomas et al., 2011; Stark, 2011). Authors have studied the influence
of water-to-cement ratio, hydration degree, capillar porosity, particles size distribution
or image resolution. In a number of works, spherical shapes (Bentz, 1997; Haecker et al.,
2005; Šmilauer & Bažant, 2010; Bentz et al., 1999; Bullard & Garboczi, 2006; Garboczi
& Bentz, 1992; Ye et al., 2003; Bishnoi & Scrivener, 2009) are used to model cement
(e.g. before hydration). Similar methods are applied to mortar modeling, e.g. Bernard
et al. (2008). Other models for cement paste directly address the problem of the cement
paste microstructure after hydration. In (Bary et al., 2009), the cement paste is a three-
phases microstructure made of aggregates and voids in the C-S-H matrix. The authors
make use of spherical aggregates or a mix of spherical and prismatic shapes. Like ce-
ment aggregates, concrete aggregates are often modeled by discs in 2D (Schlangen &
van Mier, 1992; Schutter & Taerwe, 1993; Zaitsev & Wittmann, 1981), or by spheres in
3D (Bazant et al., 1990; Gal & Kryvoruk, 2011; Wriggers & Moftah, 2006). Specifically,
the models of Schutter & Taerwe (1993) and of Pedersen et al. (2007) allow a gran-
ular skeleton compaction of 1100 kg/m3. Other models not based on spheres or discs
were also developed. Zaitsev & Wittmann (1981) considered aggregates with polygonal
shapes. Similarly, crushed aggregates have been modeled by polygons in 2D (Wang et
al., 1999; Kwan et al., 1999). In these models, the number of edges of the polygons as
well as their length and orientation are random variables, and aggregates are elongated
and scaled before being implanted in decreasing size order. The 2D model of Dequiedt
et al. (2001) involves a Voronoï tessellation followed by an erosion and an opening.
Voids are modelled in the matrix phase by a Boolean model of spheres whose radius
follows an exponential law. Kim & Abu Al-Rub (2011) tested in 2D the influence of
the aggregates shape on void nucleation and crack propagation. Discs, hexagons, pen-
tagons, tetragons and arbitrary polygonal shapes have been considered. The influence
of the size distribution of aggregates, their volume fraction and the thickness of an
interface transition zone has been studied as well.

In 3D, models using ellipsoidal and polyhedra-shaped aggregates have been com-
pared in terms of sphericity and specific surface area (He et al., 2010). Among the
shapes the authors tested, octahedra provided for the closest adjustment to X-ray to-
mography data. Modified ellipsoids with sinusoidal surfaces have been used by Häfner
et al. (2006) to model 3D aggregates. A Voronoï tessellation with a BCC distribution
of germs have been used by Caballero et al. (2006) to model 3D microstructures. In
other works, tomography images of cement and concrete have been used to extract
and model aggregates by means of harmonic spherical functions (Garboczi & Bentz,
1992; Garboczi, 2002). Static or dynamic discrete element modeling, which mimics the
packing process of particulate materials, are frequently used to model the dispersion of
particles in highly-dense materials like concrete (Stroeven et al., 2012a,b).

At the scale considered in this paper, concrete is most often made of a cementitious
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paste surrounding aggregates and voids. The aim of this study is to provide a model
that accounts for two families of morphological criteria concerning aggregates in con-
crete, namely their size distribution, as given in the formulation, and their distribution
in space as described by the covariance of the material estimated on 3D images. In
particular the behaviour of the covariance for short distances is related to the ratio of
the surface over volume of aggregates, while its long range behaviour accounts for the
scale induced by the packing. Our model is based on morphological data obtained from
3D micro-tomography images and from concrete’s formulation. Formulation should be
interpreted here as sieve curve for concrete technologists. One sample of a concrete
material is first introduced in section (2). Its formulation and 3D tomography images
are given. The sample’s morphological characteristics are derived from the 3D image in
section (3). In section (4), a model for concrete microstructure simulation is developed:
two types of polyhedra family, Poisson polyhedra and Voronoï polyhedra are considered
and compared to the model’s aggregates. In section (5) we propose a microstructure
model and validate it using morphological measurements. Moreover, an algorithm used
to generate Poisson polyhedra simulation is introduced and validated in Appendix (A).
This algorithm is “vectorial”, i.e. all computations are analytically carried out in the
continuous space. The choice of polyhedra is adequate to reproduce the morphology
of aggregates obtained by fragmentation (or crushed rock aggregate) as in the present
material. Other shapes would be required for other types of materials. We are not
considering here details of the shape of polyhedra like statistics about their number of
faces or edges, but only their volume distribution, and their overall average shape as
contained in the covariance.

2 Concrete sample

This work is based on a concrete sample that is introduced in this section. Hereafter
we present the concrete’s formulation granulometry and 3D tomography images.

2.1 Morphological data

The aggregates formulation of the concrete sample is divided in three classes of aggre-
gates diameters: sand (0−4mm), fine gravels (4−12. 5mm) and gravels (10−20mm),
with relative proportions of 0.41, 0.17 and 0.42, respectively. The three classes of ag-
gregates granulometries are noted G0−4, G4−12.5 and G10−20 for sand, fine gravels and
gravels, respectively. They are given in Fig. (1a). The aggregates full granulometry
G(r) is derived according to the relative proportions of each class as:

G(r) = 0.41G0−4(r) + 0.17G4−12.5(r) + 0.42G10−20(r), (1)

as shown in Fig. (1b). Each of the three functions entering the right-hand term above is
given numerically for a finite number of values of r. Linear interpolation has been used
to apply the formula as the values of r do not coincide for the three granulometries. We
emphasize that the material studied in this work is a simplified model of concrete with
a limited number of sieves. The latter is nevertheless useful for simulation purposes.
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Hereafter, aggregates with a diameter smaller than 0. 1mm are incorporated in the
cement paste. The latter is modelled as a homogeneous phase. From the mass/volume
density of aggregates as well as the volume of the concrete sample, we deduce the
volume fraction of the three classes: 25.9%, 12.3% and 30.5%, respectively, for classes
0.1− 4mm, 4− 12. 5mm and 10− 20mm. Hence, the total aggregates volume fraction
is 68.7%.

(a) (b)

Figure 1: Granulometries G0−4(r), G4−12.5(r) and G10−20(r) of the three classes of aggregates
in the material formulation as a function of the radius r (a) and full granulometry (b)
obtained by linear combination of granulometries given in (a).

2.2 3D Microtomography

A 3D image of a concrete sample is acquired using microtomography technique. This
image is statistically representative of the material if the sample is large enough. Con-
crete is a material with high absorption. To let X-rays cross the sample, a powerful
source is needed. This is especially important to obtain contrasted images with a low
signal-to-noise ratio. This acquisition was carried out at École des Ponts ParisTech
(Marne-la-Vallée, France), on a cylindrical sample of diameter 110mm. The image is
of size 12243 voxels, for a resolution of 54µm/voxel. The 16 bits data image was recon-
structed from 1440 projections. A 2D cut of the microtomography image is shown in
Fig. (2). In the next section, we use the tomography image to determine the sample’s
morphological characteristics.

3 Morphological characteristics of the concrete

sample

In this section, we first correct the tomography image bias regarding non-uniform lumi-
nosity and noise. An improved gray-level image is obtained. We then derive some of the
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Figure 2: 2D cross-section of a 3D tomography image of concrete, containing 12243 voxels.
The image resolution is 54µm/voxel.

concrete’s morphological characteristics by measurements carried out on the improved
gray-level 3D tomography image. Hereafter we denote by g(x, y, z) the value of the
original tomography image along voxel of coordinates x, y and z. The image size is
Lx × Ly × Lz in voxels.

3.1 Luminosity bias correction and noise filtering

As a first improvement of the microtomography image, we correct two types of lumi-
nosity bias, characterized by non-uniform luminosity over the sample. For an image of
good quality, the vertical variations of illumination should be homogeneous, without
any drift as observed on the reconstructed image. Hereafter, we correct the drifts by
removing on each horizontal section its average illumination. Without this correction,
the aggregates segmentation leads to non-uniform density. The first “vertical” bias is
easily noticed when computing the means of the function g along planes perpendicular
to the z-axis, as a function of the coordinate z (Fig. 3), i.e.

g2D(z) = 〈g(x, y, z)〉x,y =
1

LxLy

∫

dxdy g(x, y, z) (2)

The z-axis is also the axis along which the sample was rotated during the acquisition
process. Luminosity variations of up to 8% are observed. Uncorrected, this drift of the
luminosity leads to biased morphological measurements such as anisotropic covariance
functions, whereas the material is presumably isotropic. Accurate covariances are in
particular necessary for the validation of the morphological modeling of the material.
The second “radial” bias is well-known on microtomography images (Escoda et al.,
2011b). The means of g over lines parallel to z

g1D(x, y) = 〈g(x, y, z)〉z =
1

Lz

∫

dz g(x, y, z) (3)

is represented as a function of the coordinates x and y in Fig. (4a). Concentric circles
appear along the rotation axis.
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The vertical and radial luminosity biases outlined above are removed by computing
local means and substracting them from the initial image. However, the unwanted
influence of well-contrasted voids does not allow one to compute these local means
directly from the initial image g, as pointed out in Escoda et al. (2011b). Accordingly, a
treatment of the voids is carried out as a preprocessing step. This consists in extracting
voids, by a manual segmentation with threshold 18000, and replacing them by the global
mean over the whole sample 〈g〉:

g′(x, y, z) =

{

g(x, y, z) if g(x, y, z) > 18000
〈g〉 otherwise.

(4)

The segmentation of the voids used above needs not be an accurate representation of
the porous phase. Hereafter, the subscripts 2D, 1D and the superscript ′ are used to
indicate the transforms given in equations (2), (3) and (4) resp. The “vertical” and
“radial” luminosity biases are then corrected by computing successively

g1(x, y, z) = g(x, y, z) −
(

g′
)

2D
(z), g2(x, y, z) = g1(x, y, z) −

(

g′1
)

1D
(x, y) (5)

A 2D cross-section of the corrected image g2 is shown in Fig. (5). The 2D image (g′1)1D
used in the luminosity correction is shown in Fig. (4b). The effect of voids has been
reduced compared to image (4a) that represents g1D. However, effects of the large
aggregates are still present.

Figure 3: “Vertical” luminosity bias in the z direction, shown by the vertical profiles g2D(z).

We now remove some of the noise from the corrected g2 image using a 3D Gaussian
filter, following Escoda et al. (2011b). The filter depends on a size parameter R. We
consider values of R in the range 1 ≤ R ≤ 6 in voxels. For each value of R, we
apply an automatic thresholding on the filtered image. We determine the value of R
“visually” as the one giving the “best” automatic thresholding. The value R = 4 is
chosen. A 2D cross-section of the filtered image is shown in Fig. (6). Use of a median
filter gives similar results, however the Gaussian filter provides smooth boundaries after
segmentation, and is therefore more appropriate here.
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(a) (b)

Figure 4: “Radial” luminosity bias, shown by the means g1D (a) and, after void correction,
(g′1)1D (b).

3.2 Morphological measurements

In this section, the granulometry and covariance of the granular phase are measured
from the grey-level image. These morphological measurements are used in section (4.2)
to derive and validate a random morphological model for concrete.

Voids are first “eliminated” so as to obtain measures that are relevant to the aggre-
gates phase. We segment them using an automatic thresholding that maximizes the
entropy of two-phases media (Escoda et al., 2011b; Kapur et al., 1985; Sezgin & Sankur,
2004). We then set the porous phase to a constant value, equal to the mean over the ce-
ment paste phase. Again, the latter is determined using automatic thresholding (Otsu,
1979; Sezgin & Sankur, 2004).

3.2.1 Granulometry of aggregates

The granulometry is first measured on the grey-level image. The cumulative granulom-
etry GA(r) of a set A (i.e. a binary image) is obtained by:

GA(r) =
P{x ∈ A} − P{x ∈ AFr}

P{x ∈ A} , (6)

where the set AFr is the opening (i.e. one erosion followed by a dilation) of A by the
structuring element Fr. We choose a rhombicuboctaedron of radius r for the structuring
element Fr, to approximate a ball of radius r. For the grey-level image g(x), the
cumulative granulometry is:

G(r) =
E[g(x)]− E[gFr(x)]

E[g(x)]
, (7)
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Figure 5: 2D cross-section of concrete tomography image g2, after correction of the two
luminosity drifts.

where gFr(x) is the opening of g by Fr, and E is the expectation of the grey-level image.
The granulometry G(r) measured on the 3D grey-level image, as well as concrete for-
mulation, are given in Fig. (7). The two granulometries are different. First, aggregates
of radius larger than 6. 25mm are not correctly characterized, because the volume of
the sample is not large enough to be representative of the material. Second, the image
resolution is 0.054mm, which is not sufficient for characterizing aggregates with radius
below this value. This effect is magnified by the low signal-to-noise ratio of the image
and the filtering of high frequencies used to suppress noise. As the sensor size of the
tomography device is fixed, a compromise should be found between volume size and
resolution when acquiring images for multi-scale materials such as concrete.

3.2.2 Covariance of aggregates

The covariance function is a measure of the correlations in the microstructure at varying
length scales. It is also a sensitive criterion for identifying concrete models representa-
tive of the real microstructure. The centered covariance is defined by:

Cc(h) = E[g(x)g(x + h)]− E
2[g(x)], (8)

whereas the correlation function is:

Cc,r(h) =
Cc(h)

D2
g

=
Cc(h)

Cc(0)
(9)

with D2
g as the variance over the image of grey-level g(x). The correlation function,

shown in Fig. (8), is computed on the grey-level image after luminosity bias correction,
noise filtering and void removal. This function will be used in section (4.2) for validating
the morphological model.

Granulometry measurements from the microtomographic image show that the ex-
amined sample is not representative of the material, in terms of size distribution of
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Figure 6: 2D cross-section of the concrete tomography image after luminosity correction and
Gaussian filtering of size R = 4.

aggregates. One should generate representative and realistic random models to study
the physical behavior of concrete. We develop such a model in the remaining part of
this paper.

4 3D morphological modeling of concrete

In this section, we develop a morphological model for concrete microstructure simula-
tions based on the contracted formulation of the aggregate size distribution. Two types
of polyhedra are first considered to model the aggregates shapes: Poisson and Voronoï
polyhedra. The experimental aggregate size distribution is then modeled by truncated
multi-scale size distribution of each family of polyhedra. A model based on multi-scale
Poisson polyhedra is chosen and validated.

4.1 Definitions

4.1.1 Poisson point process

In the homogeneous case, the Poisson point process, of density θ ≥ 0 in the space R
3 is

a random point generation process such that the number of points N(K) contained in
a compact K follows a Poisson law with expectation N0 = θµ3(K) (with µ3 denoting
the Lebesgue measure, or volume, in R

3):

P{N(K) = k} = e−N0Nk
0

k!
. (10)

For a Poisson point process, the numbers N(Ki) are independent random variables for
any family of disjoint compact sets (Ki)i∈I , I ⊂ N.
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(a) (b)

Figure 7: Granulometry measured on the grey-level image after ”eliminating“ voids (red) vs.
concrete formulation (black): cumulative granulometry G(r) (a) and granulometry distribu-
tions g(r), as functions of the radius r.

4.1.2 Poisson tessellation

A Poisson tessellation of R3 is generated by implanting planes. In its homogeneous and
isotropic variant, it is a Poisson point process in the space S3 × R

+, where S3 is the
unit sphere and R

+ is the set of positive real numbers (Matheron, 1971, 1972). Each
plane H of the tessellation is identified by its normal u and distance to the origin r.
The homogeneous isotropic Poisson tessellation model is completely determined by its
density λ ≥ 0. The density of planes λ is the Poisson point density induced on any line
of the space R

3. This is measured by computing the density of the number of intersects
between the planes and one line.

0 5 10 15 20 25

h (mm)
0

0,2

0,4

0,6

0,8

1

C
c,r

(h)

Figure 8: Centered reduced covariances Cc,r(h) (or correlation function) of the aggregates
measured on the concrete 3D grey-level image.
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(a) (b)

Figure 9: Voronoï tessellation (in red) with underlying Poisson point process shown as gray
spheres (a); Voronoï polyhedron (b).

4.1.3 Poisson vs. Voronoï polyhedra

Poisson polyhedra are the complementary set of the Poisson tessellation. A Poisson
polyhedron is generated by randomly selecting one polyhedron enclosed by Poisson
planes. Polyhedra are selected uniformly random in number, i.e. with the same prob-
ability. This is in contrast with a selection in volume where the probability assigned
to each polyhedron is proportional to its volume. The latter is obtained by choosing
the polyhedron containing the origin. Contrary to the selection in volume, a selection
in number requires one to label all polyhedra present in the tessellation. Note that
a new tessellation is generated for generating each polyhedron, so that polyhedra are
independant.

A Voronoï tessellation of the space R
3 is obtained from a Poisson point process in

R
3 (Gilbert, 1962). The space is divided into cells corresponding to the Poisson points

influence zones. More exactly, each cell consists of all points closer to one Poisson point
than to any other points. The resulting tessellation, shown in Fig. (9) consists of convex
polyhedra and each cell is obtained by the intersection of half-spaces.

4.2 Parameter assessment for multiscale modeling of

aggregates

In this section, models of concrete aggregates are introduced. Both Poisson and Voronoï
polyhedra are considered to represent the concrete’s granulometry formulation. The
formulation of concrete is made of three classes of aggregates: sand, fine gravels and
gravels. The characteristic length scales in each class are well separated as shown by
the convexity changes in the cumulative granulometry (Fig. 1b). We accordingly model
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the concrete’s formulation granulometry (i.e. its sieve curve) by a combination of three
truncated granulometries.

4.2.1 Concrete formulation by multiscale truncated granulometry

Hereafter, the concrete formulation is successively modeled by a combination of trun-
cated granulometries of Poisson polyhedra (section 4.2.2) and of Voronoï polyhedra
(section 4.2.3). We denote by GP (r;λ) and GV (r;Vm) the full (non-truncated) cu-
mulative granulometries of Poisson and Voronoï polyhedra, respectively. The former
depends on the Poisson planes intensity λ and the latter on the average polyhedra vol-
ume Vm. Both granulometries are generically noted GM (r; ξ) where M = V or M = P
and ξ = λ or ξ = Vm is related to a size parameter. The truncated cumulative granu-
lometry GM

Λ1,Λ2
(r; ξ) is the cumulative granulometry of Poisson (or Voronoï) polyhedra

with radius comprised between Λ1 and Λ2. We recall that the radius of a polyhedron is
the minimum size of the structuring element necessary to remove the object using an
opening by reconstruction. Accordingly, the truncated granulometry is given, in terms
of the full granulometry, by the conditional law:

GΛ1,Λ2
(r; ξ) =

G(r; ξ) −G(Λ1; ξ)

G(Λ2; ξ)−G(Λ1; ξ)
if Λ1 ≤ r ≤ Λ2 (11)

and GΛ1,Λ2
(r; ξ) ≡ 0 (resp. 1) if r ≤ Λ1 (resp. r ≥ Λ2). We now model the concrete

formulation granulometry, refering to Eq. (1) by:

GM
Λ1,Λ2

(r; ξ1, ξ2, ξ3) = 0.41GM
Λ0,Λ1

(r; ξ1) + 0.17GM
Λ1 ,Λ2

(r; ξ2) + 0.42GM
Λ2 ,Λ3

(r; ξ3), (12)

where Λ0 = 0, Λ3 = 12.5mm consistently with figure (1b). The three granulometries on
the right-hand side are truncated in the intervals [Λi−1,Λi] (1 ≤ i ≤ 3) and the relative
weights are as in Eq. (1). We let Λ1 and Λ2 vary because the granulometry classes
slightly overlap one another. We determine the two truncation parameters Λ1 and Λ2

and the three size parameters ξi (i = 1, 2, 3) by minimizing:
∑

r

[

GM
Λ1,Λ2

(r; ξ1, ξ2, ξ3)−G(r)
]2

, (13)

where the sum is carried out over all values of r given by the concrete formulation
(Fig. 1b). This least-square minimization is carried out numerically using the nonlinear
optimization algorithm in Nelder & Mead (1965). We emphasize that the aggregates’s
sizes in Eq. (1) are diameters measured by sieving, whereas Λ1 and Λ2 are radii. Here-
after, we use radii instead of diameters when referring to the aggregates’s sizes. The
latter are easier to work with when using morphological operators.

4.2.2 Model parameters for Poisson polyhedra

The granulometry by opening GP
∗ (r;λ) of a set of Poisson polyhedra of intensity λ is

given by (Matheron, 1971, 1972):

GP
∗ (r;λ) = 1−

(

1 + 4πλr +
π4

6
λ2r2 +

2

9
π5λ3r3

)

e
−4πλr. (14)
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We emphasize that the granulometry considered in section (4.2.1) makes use of openings
by reconstruction, whereas the above one is valid for a classical openings granulometry.
Nevertheless, numerical results carried out in appendix A.2.4 (see also Fig. 25) show that
both granulometries are very close to each other so that we assume GP (r;λ) ≈ GP

∗ (r;λ).
The expression in (13) is found to be minimal (equal to about 0.012) when:

λ1 = 0.518mm−1, λ2 = 0.0695mm−1, λ3 = 0.0418mm−1,

Λ1 = 2.41mm, Λ2 = 6.15mm. (15)

The corresponding granulometries are shown in Fig. (10). The values Λ1 and Λ2 are
estimates of the minimum and maximum radius in the second class, and were com-
puted by the optimization process. They compare well to the diameters given by the
formulation (section 2.1), which are respectively 2 and 6.25 mm.

(a) (b)

Figure 10: Concrete formulation (black) and granulometry of the optimized model of Poisson
polyhedra (red) based on three truncated granulometries (a). The model parameters, given
in (15), have been optimized. The three truncated granulometries are shown separately in
(b).

4.2.3 Model parameters for Voronoï polyhedra

Contrary to Poisson polyhedra, no exact theoretical expression is known for the granu-
lometry GV (r;Vm) of Voronoï polyhedra. Nevertheless, Marthinsen (1996) carried out
simulations and proposed approximations using a gamma law. We recall the expression
of the gamma law of parameters η > 0 and ϑ > 0:

γ(x; η, ϑ) =
xη−1

ϑηΓ(η)
e
−x/ϑ,

where Γ is the Gamma function, i.e. Γ(t) =
∫ +∞
0 dt tx−1

e
−t. The expectation of the

gamma law is ηϑ. The distribution in number fX of the random variable X = V/Vm
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was fitted by the gamma law (Marthinsen, 1996):

fX(x) ≈ γ

(

x; k,
1

k

)

=
xk−1kk

Γ(k)
e
−kx, (16)

where k = 5.56. The granulometry in volume gX corresponding to fX is gX(x) =
̺V fX(x) where ̺ > 0 is chosen so that gX is of mean 1. Making use of

∫

dxxfX(x) = 1,
we find that ̺ = 1/Vm, and:

gX(x) = xfX(x) ≈ γ

(

x; k + 1,
1

k

)

. (17)

Similarly, the distribution in volume of the random variable V is:

g′X(x) =
1

Vm
gX

(

x

Vm

)

≈ γ

(

x; k + 1,
Vm

k

)

. (18)

For comparison with the concrete formulation, this distribution should be expressed in
terms of radius r. We use:

GV (r;Vm) ≈ g′X

(

4

3
πr3

)

, (19)

where we have assumed V is a sphere. The expression in (13) is found to be minimal
when:

V 1
m = 0.1157mm3, V 2

m = 187.9mm3, V 3
m = 2077mm3,

Λ1 = 2.01mm, Λ2 = 5.08mm. (20)

The corresponding granulometries are represented in Fig. (11). The fit is closer to the
experimental data with Poisson polyhedra (score 0.012) than with Vornoï polyhedra
(score 0.053). This result is consistent with previous models of materials obtained by
iterated fragmentation using Poisson polyhedra (Matheron, 1971). Hereafter, we use
Poisson polyhedra solely to represent the concrete aggregates.

5 Modeling of the concrete microstructure using

Poisson polyhedra

We detail hereafter the selection and implantation of Poisson polyhedra following the
granulometry fitted in Fig. (10a). Polyhedra are selected from a pre-computed library
of Poisson polyhedra. After implantation, the polyhedra do not overlap, as aggregates
cannot physically intersect.

5.1 Polyhedra selection

We detail hereafter how aggregates are selected from a library of pre-computed Poisson
polyhedra. Each polyhedron is stored in vector description in the library together with
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(a) (b)

Figure 11: Concrete formulation (black) and granulometry of the optimized model of Voronoï
polyhedra (red) based on three truncated granulometries (a). The model parameters, given
in (20), have been optimized. The three truncated granulometries are shown separately in
(b).

its bounding box. This library, detailed in appendix (A), is generated with a Poisson
intensity resulting in an average of N = 200 planes in the simulated volume. It is a full
(non-truncated) Poisson granulometry. We wish to choose Poisson polyhedra following
the truncated granulometry [Λ1,Λ2] with Poisson intensity λI and volume fraction fI .
We first apply an homothethy of factor α to all polyhedra to account for the change of
scales between the library and that of the simulation:

R′
i = αRi, α =

N

2π
√
3λIL

, (21)

where L is the size of the simulated microstructure and Ri is the polyhedron radius.
The quantity 2π

√
3λIL represents the average number of Poisson planes intersecting

the sphere circumscribed to the volume of the simulation (see appendix A). We retain
polyhedra with radius R′

i in the range Λ1 < R′
i < Λ2. To achieve the volume fraction

fI , we choose randomly in the retained Poisson polyhedra np aggregates with:

np =
fIL

3

KT
0

, (22)

where KT
0 is the average Poisson polyhedra volume in the truncated granulometry. In

turn, we compute KT
0 numerically using the formula of Miles-Lantuéjoul, to correct for

border effects (see appendix A):

KT
0 = α3 1

∑

i∈I P [Bi ⊂ D]−1

∑

i∈I

1

P [Bi ⊂ D]
V i, (23)

where α3 accounts for the scale change between the library and the scale of the simula-
tion, Bi and V i are the bounding box and the volume of the polyhedron i, respectively.
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D is the simulated volume and I is the set of polyhedra in the truncated granulometry.
The formula for the probabilty P [Bi ⊂ D] is given in appendix (A).

5.2 Algorithm for polyhedra implantation

Polyhedra implantation is carried out as detailed below. No overlap occurs but contacts
are allowed. We suppose that the set of Poisson polyhedra to be implanted is given
and follows the volume fraction of each compacted class of aggregates in concrete, i.e.
25.9%, 12.3% and 30.5% of polyhedra for classes 0.05 − 2. 4mm, 2.4 − 6. 15mm and
6.15 − 12. 5mm, respectively (see section 2.1).

We first order polyhedra by decreasing volume, irrespective of the classes they be-
long to. Large aggregates are implanted first to maximize the total aggregates volume
fraction that the method achieves. Use of the volume of polyhedra as the sorting cri-
terion is appropriate in the context of convex polyhedra with moderate aspect ratios.
Prior to the implantation of a polyhedron, we generate two vectors: a position x uni-
formly distributed in the 3D space and a direction v uniformly distributed in the unit
sphere. The polyhedron is initially implanted in x or equivalently, translated by a vector
x from the origin. The packing is carried out using an attraction-repulsion mechanism
through a translation of the polyhedron in the direction v. Intersection between the
current polyhedron and others already-implanted polyhedra are tested. At this point,
two possibilities arise. In the case of an intersection, a repulsion mechanism is used.
The polyhedron is iteratively translated in the direction v by step of size ̟, until there
is no intersection anymore. When one-quarter of the size of the image has been scanned,
a new position x and a new direction v are generated and used for this polyhedron. In
the case of no intersection, an attraction mechanism is used. The polyhedron is trans-
lated in the direction v by steps ̟ until there is a non empty intersection. When there
is intersection, the polyhedron is moved once in the opposite direction, with a transla-
tion length ̟. The repulsion mechanism ensures there is no overlap between implanted
polyhedra. The attraction mechanism provides higher maximum volume fractions of
polyhedra in the microstructure. To avoid creating clusters containing large polyhedra,
which are implanted first, the first ten polyhedra are implanted without attraction:
only the repulsion mechanism is used.

The above procedure does not guarantee that a polyhedron will be implanted. When
a large number Nmax of initial positions and directions followed by the repulsion mech-
anism have been generated for a given polyhedron, we consider that the polyhedron
cannot be implanted and that the desired volume fraction is too high to be attained.
We choose Nmax = 1000.

Translations and scalings are performed in the same manner as for the implantation
of polyhedra in a Boolean model, detailed in appendix (A.2.5). Although the polyhedra
are defined vectorially in the continuous space, testing for polyhedra intersections vecto-
rially would be too cumbersome. In the procedure outlined above, we test intersections
of Poisson polyhedra using discretizations on a grid of voxels. This binarization is a
convenient intermediate step in the computation. In the end, the method nevertheless
allows one to simulate vectorial microstructures of polyhedra packings. Finally, we also
choose to generate periodic microstructures for later use with Fourier-based methods
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to compute concrete’s physical properties (Willot et al., 2014).

5.3 Maximum filling ratio

Hereafter we give the maximum filling ratio, or aggregates volume fraction, our method
achieves, for the truncated and non-truncated Poisson polyhedra granulometries. For a
given granulometry, the target volume fraction is increased until the method does not
provide a valid microstructure, i.e. one polyhedron could not be implanted. We fix the
size of the microstructure to 5003 voxels, the step size to ̟ = 1 voxel. We also fix the
resolution so that the number of implanted polyhedra should be in the order of 1000, as
a compromise between representativeness and computational efficiency. Equation (22)
provides the resolution in the microstructure in mm per voxel. The filling ratio is
augmented by increasing the number of aggregates. For each target volume fraction,
10 microstructures are generated. A filling ratio is attainable if at least one of the 10
images was successfully generated at the given volume fraction.

Results for the compaction tests and the percentage of polyhedra retained when
truncating the granulometry are given in Tab. (1). The highest aggregates density is
attained by the non-truncated granulometry, whereas, as expected, narrow granulome-
tries provides the lowest maximal density. These figures give a first indication of the
volume fractions of aggregates of the three classes that we will be able to implant in the
microstructure. Suppose that polyhedra from the two truncated granulometries with
the largest radius have been implanted with the volume fractions corresponding to the
concrete formulation. According to data in section 2.1, a volume space of 57.2% is
left in the material for the cement paste and for the third truncated Poisson polyhedra
granulometry. The concrete’s formulation requires a volume fraction of 25.9% for the
latter, so that 45% of the space left has to be filled with the smallest polyhedra. This
is slightly larger than the maximum volume fraction of 42% which can be attained in
an empty cube. We therefore conclude that it will not be possible to fully respect the
concrete’s formulation as far as the smallest aggregates are concerned. Nevertheless the
difference is small. This is investigated in the following section.

17



Class (mm) 6.15− 12.5 2.4− 6.15 0.05− 2.4 0−+∞
λ (mm−1) 0.0418 0.0695 0.518 0.518
Resolution (mm/voxel) 0.6 0.31 0.025 0.03

Reached filling ratio 0.38 0.40 0.42 0.43
Retained polyhedra 22.5% 41.9% 96.6% 100%

Table 1: Maximum filling ratio for the three truncated Poisson polyhedra granulometries and
for the full (non-truncated) Poisson polyhedra granulometry. The percentage of polyhedra
retained after truncation, by comparison with the full granulometry, is given in row 3.
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5.4 Microstructure generation

We generate a microstructure containing 16003 voxels according to the parameters
given in Tab. (2). The number of aggregates is about 106. The volume fractions
of aggregates from the two truncated granulometries at the largest scales are that of
the concrete’s formulation. Smaller aggregates from the third truncated granulometry
are implanted with a volume fraction of 24%. As expected, this is slightly less than
concrete’s formulation. The resulting overall aggregates volume fraction is ft ≈ 65.2%,
not far from the formulation (68.7%). 2D cross-sections of the microstructure are
represented in Fig. (12).
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Class (mm) 6.15− 12.5 2.4− 6.15 0.05− 2.4
λI (mm−1) 0.0418 0.0695 0.518

fI 0.305 0.123 0.24
Resolution 0.09 mm/voxel
Image size 16003 voxels (1443 mm3)
Step size ̟ 2 voxels

Table 2: Parameters used for generating a three-scales concrete microstructure: Poisson
intensity λI (row 2), aggregates volume fractions fI in the three classes (row 3), resolution,
image size and step size (rows 4-6 resp.). The resulting aggregates volume fraction is ft ≈
65.2% and fLPE

t ≈ 64.3% after polyhedra disconnection.
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(a) (b)

Figure 12: 2D cross-section of a 3D microstructure of multiscale Poisson polyhedra (in grey)
embedded in a cement paste (red), generated according to the parameters given in Tab. 2
(a). Same microstructure after disconnection with the watershed algorithm with cement
paste in black and polyhedra in white (b).

Due to the large number of contact points between implanted polyhedra, the
aggregates percolate in the simulated microstructure. Percolation has strong effects
on the overall elastic properties of the composite (Willot & Jeulin, 2009). When the
aggregates are much stiffer than cement paste, the effective elastic moduli are over-
estimated. We accordingly disconnect aggregates by disconnecting by applying a 3D
watershed algorithm (Beucher & Meyer, 1992) to the inverse of the distance function
inside the polyhedra phase (Escoda et al., 2011b). Polyhedra labels are used as mark-
ers. The impact on the volume fraction is small: the aggregates volume fraction is
down from ft ≈ 65.2% to fLPE

t ≈ 64.3% after disconnection in the three-scales mi-
crostructure. This is in contrast with materials generated on smaller grids. For a
microstructure of size 5123 voxels with the same Poisson intensity as in Tab. (2), but
resolution 0. 3mm/voxel, the aggregates volume fraction decreases from 0.657 to 0.532
after applying the watershed algorithm. Not surprisingly, fine discretization is necessary
for generating non-percolating aggregates following concrete’s formulation.

5.5 Model validation using covariance and granulometries

measurements

We first check the influence of the step parameter ̟ on the implantation algorithm
with regards to covariances. We consider microstructures containing two classes of
polyhedra with the largest sizes and varying step sizes ̟ = 1, 2, 4 voxels (Tab. 3).
A 2D section of the microstructure with ̟ = 2 is represented in Fig. (13), and the
covariances of each model are shown in Fig. (14). The three covariances are very
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close to each other. Additionaly, we verify that the aggregates percolate in the three
microstructures, irrespective of the value of ̟. Accordingly, the step size parameter
does not influence the covariance, and can not be used to control percolation.
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Class (mm) 6.15− 12.5 2.4− 6.15
λI (mm−1) 0.0418 0.0695

fI 0.305 0.123
Resolution 0.24 mm/voxel
Image size 10243 voxels (2463mm3)
Step size ̟ 1, 2, 4 voxels

Table 3: Parameters used for generating a two-scales microstructure: Poisson intensity λI

(row 2), aggregates volume fractions fI in the two classes (row 3), resolution, image size and
step sizes (rows 4-6 resp.).
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Figure 13: 2D cross-section of the microstructure corresponding to the parameters given in
Tab. (3) with step size ̟ = 2

.

We now compare the centered reduced covariance Cc,r(h) of the three-scales model
in Tab. (2) with the tomography image (Fig. 15). The characteristic lengths of these
two covariance graphs are identical, however the curves are very different in the range
h < 10mm. This is presumably an effect of the low resolution of the tomography
image and of the absence of small aggregates, in the class 2 − 6.25 mm, as explained
in section (3.2.1). These small aggregates are taken into account in the simulated
microstructure making use of the formulation.

As a criterion, the covariance function of the tomography image is not relevant given
the very large differences between the smallest and largest aggregates. We therefore
did not investigate the covariance properties of a model based on Voronoï polyhedra.

Finally, we now investigate the granulometry of our generated model and compare it
to that of the tomography image (Fig. 16). Opening by reconstruction granulometry is
measured on the three-scales microstructure. In terms of the cumulative granulometry,
the largest difference between the simulated granulometry and that of the theoretical
one is found to be about 8% at r = 6.5mm. We interpret the latter as size effects at
the highest length scale, which are due to the limited representativity of the simulated
multi-scale microstructures. In that respect, the difference should be compared with
fluctuations in the granulometry of the generated model, which are about 4% when r
is large.

6 Conclusion

The procedure presented in this work allows one to simulate concrete microstructures
using experimental granulometry data. Our model takes into account the granulometry
of concrete aggregates in the range 0.1− 20 mm, reproducing the size distribution of a
simplified model material. The concrete’s formulation granulometry is approached by
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Figure 14: Centered reduced covariance Cc,r(h) of the three microstructures detailed in
Tab. (3).

Figure 15: Centered reduced covariance Cc,r(h) of the three-scales microstructure given in
Tab. (2) (black) and of the micro-tomography concrete image (red).

combinations of three families of polyhedra, representing sand, fine gravels and coarse
gravels. Poisson and Voronoï polyhedra were emphasized for this purpose, with the
best results achieved with the first type.

We developped and validated an algorithm for generating vectorially and implanting
Poisson polyhedra in a fine-grained mortar matrix. The model parameters are derived
from the granulometry and volume fraction of aggregates specified by the concrete
formulation. They are efficiently determined by optimizating on analytical formula.
More generally, our model could be applied to other granular media of similarly-shaped
grains. The simulated microstructures allows one to predict concrete’s local and ef-
fective properties (Escoda et al., 2011b). In that respect, comparisons between our
Poisson-polyhedra model and binarized microtomography images should be carried out
in terms not only of the effective but also on the local elastic response Escoda (2012).
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Figure 16: Granulometry measurement on microstructures simulated according to the pa-
rameters given in Tab. (2) (blue) vs. theoretical granulometry (black).

A Appendix: Implementation and validation of

an algorithm to simulate Poisson polyhedra

We give in this appendix a vector implementation of an algorithm that generates Pois-
son polyhedra. This extends the presentation given in Escoda et al. (2011a). The
vector implementation outlined here consists in an analytical definition of the polyhe-
dra contrary to bitmap implementations in which images are defined on a grid of voxels.
Vector algorithms allow for faster generation and have lower memory cost, both in terms
of RAM when generating the polyhedra and in terms of hard drive memory for stor-
ing. Last, a polyhedron defined vectorially may be binarized at arbitrary resolutions.
Our algorithm is validated by comparing theoretical expressions of various morpho-
logical measurements (Matheron, 1975) and measurements carried out on simulations.
This algorithm is used to create a library of vector Poisson polyhedra. An open-source
version of the algorithm and code will be made available as part of EDF’s Material Age-
ing Platform (http://materialsageingplatform.org). A vectorial library of Poisson
polyhedra will be shared at http://cmm.ensmp.fr/∼willot.

A.1 Algorithm implementation

A.1.1 Space tessellation

A Poisson tessellation of a cubic subdomain D of size L included in the space R
3 is

first generated, following section (4.1). We limit ourselves to a Poisson points process
in S3× [0; r1], where r1 =

√
3L/2 is the radius of the circumscribed sphere to the cubic

domain D, to avoid generating planes which do not intersect D. The expectation N of
the number of Poisson planes intersecting the circumscribed sphere is proportional to
λ and to the measure of the set S3 × [0; r1]:

N = 2π
√
3λL. (24)

We implant NP planes, where NP follows a Poisson distribution (Eq. 10) with expec-
tation N above. The planes (Pi)i≤NP

are defined by their normal vectors ui, taken
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uniformly on the sphere S3 and by the distance ri that is uniformly distributed over
[0,
√
3L/2]. The uniform distribution on the unit sphere S3 is obtained by the method

described in Knuth (1969): we generate a random vector (x1, x2, x3), where the xi
are random variables following a standard normal distribution; the normalized variable
x/‖x‖ is uniformly distributed on the unit sphere S3.

A.1.2 Polyhedra labeling

To select polyhedra uniformly random in number, by contrast to a selection in volume,
we label all polyhedra in the tessellation. Additionaly, only polyhedra that are not cut
by the boundary of D are labeled. The tessellation is defined as a set of planes (Πi)i≤Np

of Cartesian equations aix+ biy+ ciz + di = 0. Each polyhedron is completely defined
by its location in one of two half-spaces delimited by each plane. Thus a polyhedron is
labelled as a list of signs (si)i≤NP

such that all points (x, y, z) in the polyhedron verify:

si = sign (aix+ biy + ciz + di) , (25)

We now consider all straight lines (∆i,j)i,j≤NP
at the intersection of pairs of planes

Πi and Πj , as illustrated in figure (17) in 2D. We first eliminate lines which do not
intersect the domain D of the image. Consider now a particular line ∆i,j among the
remaing ones and its intersections with all planes in the tessellation (Πkc)kc≤Np

. We
select the M − 1 intersecting points (Ik)1≤k≤M−1 that lie inside D, ordered by their x
coordinates so that xk < xk+1. By convention, we set I0 and IM as the intersections
of ∆i,j with D, so that ∆i,j is cut into M segments. Each one of these segments is
the edge of four polyhedra in the tessellation. The values of (sk)k 6=i,k 6=j are common to
all four polyhedra. They are equal to the sign of aix + biy + ciz + di at any point in
the segment [IK ; IK+1], for instance (Ik + Ik+1)/2. The signs (si, sj) take on the four
possible values (±1,±1) for each of the four polyhedra.

Carefulness is required to determine incomplete Poisson polyhedra, i.e. Poisson
polyhedra that intersects D. We also wish to determine the list of planes that form the
faces of each polyhedron and its bounding box, useful for binarization. To this aim, we
maintain a flag indicating wether each polyhedron is a “complete” or “incomplete” one.
This flag is updated during the iterations process as follows. Each polyhedron is added
if not already present. When considering the extremal segments [I0; I1] and [IM−1; IM ],
the flag is set to “incomplete” irrespective of its previous value. When considering
interior segments [Ik; Ik+1] (0 < k < M − 1), the flag is unchanged if the polyhedron is
already present, or set to “complete” if the polyhedron is new. When a polyheron with a
“complete” flag is updated or created, we additionally update its bounding box and set
of faces. The bounding box of a polyhedron is the smallest rectangular parallelepiped
circumscribed to the polyhedron. To simplify, only bounding boxes with faces parallel
to the reference axes are considered so that the faces equations are of the form x = xmin

and x = xmax (likewise for y and z). When iterating over a given segment [Ik; Ik+1]
we update the values of xmin by xmin ← min(xmin, xIk , xIk+1

) and similarly for and
xmax and the other coordinates. Finally, the set of faces are updated by adding (if not
already present) the planes Πi and Πj as well as the two planes that correspond to the
intersection points IK and IK+1.
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Figure 17: Labeling of polygons generated in a 2D Poisson tessellation. The algorithm
iterates over the Poisson straight lines. When iterating on the straight line ∆, ∆ is cut into
segments [IK ; IK+1] corresponding to edges of polygons in the tessellation. Among these
polygons, polygons that are represented in green are complete polygons, while polygons that
are represented in blue are cut polygons. Hashed green polygons are cut by the boundary of
the domain and will be, or have been placed in the list of cut polygons during iterations on
dotted straight lines.

A.1.3 Miles-Lantuéjoul correction

Discarding polyhedra that cross the boundary of the domain D favor smaller polyhedra.
The probability one polyhedron has to cross the domain boundary indeed decreases with
its volume. To correct this bias, the Miles-Lantuéjoul correction consists in assigning to
each polyhedron the weight 1/P [B ⊂ D], instead of equiprobability, where P [B ∈ D]
is the probability that the bounding box B of an object is fully enclosed in D (Serra,
1982). It is given by:

P [B ⊂ D] =
(L− Lx)(L− Ly)(L− Lz)

L3
, (26)

where L is the size of the cube D and Lx,y,z are the dimensions of B. This is schemat-
ically illustrated in Fig. (18).

A.1.4 Binarization of a polyhedron

We use the list of signs to binarize a given Poisson polyhedron on a 3D image grid. To
speed up computations, only signs related to planes that define the polyhedron faces
are checked. Furthermore, we make use of the convexity property of Poisson polyhedra,
as show in Fig. (19). Along a given segment in the bounding box, we determine the two
points at the intersection of the line and polyhedron. The interior of the polyhedron
are the points in-between these two points. Examples of some of the library polyhedra
are represented in Fig. (20).
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Figure 18: Miles-Lantueéjoul correction: probability for an object to have its bounding box
B entirely included in a cubic domain D.

A.2 Validation of the algorithm and polyhedra library

A.2.1 Geometrical covariogram

We recall the expression for the geometrical covariogram K(h) of a set A:

K(h) = µ3(A ∩A−h), (27)

where µ3 is the Lebesgue measure on R
3, and A−h is the translation of A by the vector

h, as shown in Fig. (21). For Poisson polyhedra of Poisson planes intensity λ:

K(h) = K(0)e−πλ‖h‖, K(0) =
6

π4λ3
. (28)

where K(0) is the volume expectation and ‖h‖ is the norm of h.
We now compute numerically the geometrical covariogram on polyhedra that were

produced by the method described in the previous section. Various values of the ex-
pected number of Poisson planes N = 80, 100, 150, 200, 300 are investigated, and
the geometrical covariograms are computed for vectors h in the x direction, after dis-
cretization of the domain D on a grid of size 2563 voxels. The geometric covariogram
is computed for Nt = 10000 realizations (resp. Nt = 5000) when N = 80 or 100
(resp. N = 150, 200, 300). For each value of N , a family of polyhedra (Ai)i≤Nt is thus
generated. The geometrical covariogram is estimated by averaging:

K(h) =
1

Nt

Nt
∑

i=1

µ3(A
i ∩Ai

−h). (29)

We also compute:

Kcorr(h) =
1

∑

i P [Bi ⊂ D]−1

Nt
∑

i=1

1

P [Bi ⊂ D]
µ3(A

i ∩Ai
−h). (30)
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Figure 19: Binarization of a polyhedron on a 3D grid, making use of the convexity of the
Poisson polyhedra. The polyhedron is described by a set of lines in a given direction. Along
each line, the interior points in the polyhedron (red) are determined using the points at the
intersection of the polyhedron faces and the line (red).

Figure 20: 3D visualizations of some Poisson polyhedra.

where Bi is the bounding box of the polyhedron Ai, as a corrected estimate of K(h), fol-
lowing the Miles-Lantuéjoul correction (appendix A.1.3). Estimates of the geometrical
covariograms K(h) and Kcorr(h) are compared to the theoretical geometrical covari-
ogram in Fig. (22) when N = 200. As expected, estimates are closer the theoretical
values at smaller values of h. The corrected estimate also significantly improves the
measure.

Relative errors using the corrected estimate for the average volume Kcorr(0) with
respect to the theoretical value are given in Tab. (4) for increasing values of N . The
average 〈L/Lx〉, which indicate the number of polyhedron along one dimension of D is
also given. At low values of N , the Poisson tessellation is not representative, resulting in
large errors for the estimate of Kcorr(0). The value N = 200 offers a good compromise
between computational costs and precision, with a relative error of 7%. For this value,
〈L/Lx〉 ≈ 50, which is consistent with measures in 2D with polygons, using the Miles-
Lantuéjoul correction (C. Lantuéjoul, private communication, 2011).
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Figure 21: Measure of the geometrical covariogram K(h) as the volume of A ∩ A−h, shown
in gray for a given vector h.

Figure 22: Theoretical value and numerical estimates of the geometrical covariogram K(h)
and Kcorr(h) versus h, in log-lin scale. In the numerical simulations, the number of Poisson
planes is N = 200 and 5, 000 realizations were averaged on.
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N 80 100 150 200 300
erel(K

corr(0)) 73% 43% 14% 7% 6%
〈L/Lx〉 19 23 35 47 70

Table 4: Relative errors on the measure Kcorr(0) of the average volume of Poisson polyhedra
with Miles-Lantuéjoul correction (row 2) for increasing values of the average number of planes
N (row 1) used in the simulations of the Poisson tessellation. The average number 〈L/Lx〉
is given on row 3.
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A.2.2 Covariance of a Poisson mosaic

We now validate the Poisson tessellation using a covariance function. A binary Poisson
mosaic is generated from a Poisson tessellation by selecting randomly each Poisson
polyhedron with probability f (Jeulin (1991)). We note A the resulting set. An example
of a 2D cross-section of A is shown in Fig. (23). Its covariance reads:

C(h) = fr(h) + f2 [1− r(h)] , (31)

where r(h) = K(h)/K(0) is the normalized geometrical covariogram given in Eqs. (27)
and (28). The volume fraction of the set A is equal to f . The covariance in (31) is
estimated in the x-direction as:

C∗(h) =
KA∩D(h)

KD(h)
, (32)

with KD(h) = L2(L−h). As many as NA = 5×104 random points uniformly distributed
in a domain D are used to estimate KA∩D(h) in vector images, without binarization.
It is estimated by:

KA∩D(h) =
1

NA

NA
∑

i=1

g(xi)g(xi + h), (33)

where h is a vector of norm h oriented along the direction x, and g(x) = 1 (resp.
g(x) = 0) if x ∈ A (resp. x ∈ A). Additionaly, we average the covariance on 12
configurations of 3D Poisson mosaic with N = 200 and f = 0.25. Results, shown in
Fig. (24), validate the generation of the tessellation of Poisson planes in our algorithm.

Figure 23: 2D cross-section of a 3D binary Poisson mosaic of size 2563 and parameters
N = 200 and f = 0.25.
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Figure 24: Comparison between the theoretical and numerical estimate of the covariance
C(h) of a 3D binary Poisson mosaic of parameters N = 200 and f = 0.25.

A.2.3 Poisson polyhedra library

We generate a library of 5 × 105 polyhedra using a Poisson intensity N = 200. The
equations of each polyhedron face and its bounding box are included for easier binariza-
tion, as well as its volume and weight for Miles-Lantuéjoul correction. Implantation of
Poisson polyhedra with arbitrary intensity λ requires the rescaling given in section (5.1).
This is computed analytically. For instance the plane Πi defined by aix+biy+ciz+di = 0
is implanted in point (xc, yc, zc) and rescaled by α by changing di into:

d′i = αdi − axc − byc − czc +
α

2
[a(xmin + xmax) + b(ymin + ymax) + c(zmin + zmax)] .

(34)
The labels (si) remain unchanged after geometric transformations on the planes.

A.2.4 Granulometry of polyhedra of the library

We now validate the opening granulometry of Poisson polyhedra generated in the li-
brary. The radius of an object is the minimum value of R necessary to remove the
object by opening with a sphere of radius R. Equivalently, the radius of the object A
in the opening granulometry is the radius of the largest sphere inscribed therein. The
radius R and center xc of such a sphere are called the Chebyshev radius and center.
For a given polyhedron, they are analytically determined by the convex optimization
problem:

max
xc,R
{R ; V

T
i xc +R‖Vi‖ ≤ vi, i = 1, ...m}, (35)

where Vi is a vector of dimension 3 such as Vi = (−siai,−sibi,−sici) and with vi given
by vi = sidi. We solve the problem above numerically using the convex programming
software CVX (Grant & Boyd, 2011, 2008). We then compute the radii histogram over
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polyedra in the library. We weight the histogram using the volume, to obtain a granu-
lometry in volume, instead of a granulometry in number, and by the Miles-Lantuéjoul
correction. This granulometry is compared to the theoretical Poisson polyhedra gran-
ulometry given by (Matheron, 1972):

G(r) = 1−
(

1 + 4πλr +
π4

6
λ2r2 +

2

9
π5λ3r3

)

e
−4πλr. (36)

We emphasize that the expression above is the theoretical expression for a (classical)
opening granulometry, not an opening by reconstruction as computed by the Chebyshev
measure. Nevertheless, a comparison between the two granulometries, represented in
Fig. (25), show that the difference between the two granulometries is negligible. We
add the Chebyshev radius of each polyhedron to the polyhedra library.

0 0,1 0,2 0,3 0,4 0,5 0,6
r

0

0,2

0,4

0,6

0,8

1
G(r)

Library granulometry
Theoretical granulometry

Figure 25: Cumulative granulometry of Poisson polyhedra: theoretical opening granulometry
vs. numerical granulometry, computed by Chebyshev measures on the Poisson polyhedra
library.

A.2.5 Covariance of the Boolean model of Poisson polyhedra

In this appendix, we validate the algorithm for Poisson polyhedra generation by measur-
ing the covariance of Poisson polyhedra Boolean media. In the Boolean model consid-
ered here, polyhedra are implanted on primary grains following a Poisson point process
of density θ. Polyhedra are allowed to interpenetrate, as represented in Fig. (26). The
volume fraction f and the covariance Q(h) of the complementary set are given by,
respectively (Jeulin, 1991; Quenec’H et al., 1992):

f = 1− e
−θK0 , Q(h) = (1− f)2−r(h), (37)
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where K0 is the mean volume and r(h) is the normalized geometrical covariogram of
the Poisson polyhedra. We estimate the mean volume V0 of Polyhedra in the library,
after applying the Miles-Lantuéjoul correction:

V 0 =
1

∑

j P [Bj ⊂ D]−1

∑

j

1

P [Bj ⊂ D]
Vj , (38)

where Bj is the bounding box and Vj is the volume of the polyhedron j in the library.
The average volume of implanted polyhedra is then estimated as K0 = α3V 0, where
α is the rescaling factor. We do not use hereafter the theoretical average volume for
Poisson polyhedra (Eq. 28), because of the bias in the average volumes of generated
polyhedra, as explained in section (A.2.1). This bias is a consequence of the selection
of random intact polyhedra in a finite domain.

Figure 26: 2D cross-section of a Poisson polyhedra Boolean media with intensity λ = 0.045
and volume fraction f = 0.2. The image is discretized in a 5003 voxels grid.

We measure the covariance of the complementary set of a Poisson polyhedra Boolean
media with intensity λ = 0.045 and volume fraction f = 0.2. The 3D image is dis-
cretized on 5003 voxels. The measured covariance and theoretical expression are com-
pared in Fig. (27). Excellent agreement is found between the two. For values of λ
smaller than λ = 0.045, the 3D image is not representative and the measured covari-
ance does not follow the theoretical expression (not shown).

A.3 Conclusion

A library of Poisson polyhedra useful for generating random media has been introduced.
This library includes the planes defining the faces and edges of the polyhedra, the poly-
hedra bounding boxes, weights useful for the Miles-Lantuéjoul correction, the volume
and Chebyshev radius. We validated the algorithm for the vector simulation of Pois-
son polyhedra described in section (A.1) in section (A.2) using various morphological
measurements.
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Figure 27: Covariance Q(h) of the complementary set of a Poisson polyhedra Boolean model
with intensity λ = 0.045 and volume fraction f = 0.2: comparison between measurement
and theoretical expression.

The vector generation of polyhedra allows to obtain an algorithm with low memory
requirements. The CPU time T needed for running the algorithm scales as N3 log(N)
where N is the expected number of planes in the tessellation inside of the domain D
of generation. This scaling law is close to the average number of Poisson polyhedra in
the tessellation (equations 24 and 28):

Nt =
πN3

144
√
3
. (39)

The generation of a Poisson polyhedron typically requires 1min 30 s when N = 200.
on a computer using Intel Xeon X5650 (2.66 GHz) processors with one core.
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