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MINES ParisTech, PSL Research University

Abstract. New many-core architectures such as the Kalray MPPA-256
provide energy-efficiency and high performance for embedded systems.
However, to take advantage of these opportunities, careful manual op-
timizations are required. We investigate the automatic streamization of
image processing applications, implemented in C on top of a dedicated
API, onto this target accessed through the ΣC dataflow language. We
discuss compiler and runtime design choices and their impact on perfor-
mance. Our compilation techniques are implemented as source-to-source
transformations in the PIPS open-source compilation framework. Ex-
periments show lowest energy consumption on the Kalray MPPA target
compared to other hardware targets for a range of 8 test applications.

1 Introduction

As predicted by Moore’s law, billions of transistors can be integrated today into
a single chip, enabling multi-core or even many-core architectures, with hundreds
of cores on a chip. The low energy consumption Kalray MPPA-256 processor [17],
released in 2013, offers 256 computing VLIW-cores for 10 W. Task and/or data
parallel approaches can be used to take advantage of such parallel processing
power for a given application domain.

We show how to use this innovative hardware to run image processing appli-
cations in embedded systems such as video cameras. In order to enable fast time-
to-market developments of new products, applications must be ported quickly
and run efficiently on these targets, a daunting task when done manually. To
alleviate this issue, we have built a compiler chain to automatically map an im-
age processing application developed on top of a dedicated software interface,
FREIA [14], considered as a domain specific language, onto the MPPA processor
using the ΣC dataflow language and runtime. Images are streamed line-by-line
into a task graph whose vertices are image operators.

Streaming languages [31] have been studied for a long time, and have re-
cently received more attention [28] for exposing pipelining, data parallelism and
task paralellism, as well as hiding memory management. The Kahn Process Net-
works [22] are one of the first streaming model, relying on FIFOs for interprocess
communication. As subclasses of this model, Synchronous DataFlow [25,26] lan-
guages are statically determined in order to avoid deadlocks and to ensure safety.
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Common SDF languages include LUSTRE [20], Signal [24] or StreamIt[1]. The
latter shares some ground concepts with the ΣC dataflow language such as de-
composing programs in a graph of basic interconnected units which consume and
produce data or focusing on easing programming onto multi-core and manycore
targets. In particular, some optimizations of StreamIt applications (operator
replication to enable data parallelism, operator fusion to reduce communication
overheads [18]) are close to those presented in this paper. Other projects such as
DAGuE [9] or FlumeJava [10] propose frameworks for managing and optimizing
tasks targetting current multi-core architectures.

Optimization of image processing applications on massively parallel architec-
tures have been the subject of multiple studies. Ragan-Kelley [29] proposes an
image processing Domain Specific Language and an associated compiler for op-
timizing parallelism onto standard CPUs or GPUs. Clienti [12] presents several
dataflow architectures for specific image analysis applications. Stencil operators
are the most limitating operators in our implementation. Several alternative
techniques for optimizing this class of operators have been proposed [16,6].

This paper focusses on the design of a compiler and a runtime using the
MPPA chip as an accelerator, including: (1) domain specific transformations on
the input code to expose larger image expressions; (2) code generation for a
dataflow language; (3) automatic operator aggregation to achieve a better task
balance; (4) a small runtime to provide streaming image operators; (5) data-
parallel agents for slower operators. We also demonstrate the effectiveness of our
approach with a source-to-source implementation in PIPS [21,15] by reporting
the time and energy consumption on a sample of image applications.

We first describe the overall compilation chain in Section 2, then in Section 3
we focus on our hardware and software targets. Section 4 presents our key con-
tributions about the compiler and runtime designs. Section 5 reports our time
and energy performance results.

2 Compilation Chain Overview

The starting point of our compilation chain (Figure 1) is an image processing
application, built on top of the FREIA C language API. This provides a 2D image
type and dozens of functions to perform basic image operations (arithmetics,
logical, morphological, reductions), as well as composed operators which combine
several basic ones. Typical applications locate text in an image, smooth visible
blocks from JPEG decoding, or detect movements in an infra-red surveillance
video. An example of FREIA code is shown in Figure 3. Our test case applications
typically include up to hundreds of basic image operations, with 42 as a median.
These operations are grouped in few (1-3, up to 8) independent static image
expressions that can be accelerated, stuck together with control code.

The ANR FREIA [7] project developed a source-to-source compilation chain [14]
from such inputs to various hardware and software targets: the SPoC image pro-
cessing FPGA accelerator [13], the TERAPIX 128 processing elements SIMD
array FPGA accelerator [8], and multi-cores and GPUs using OpenCL [23]. This
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Fig. 2. Summary of our runtime environment

new development adds Kalray’s MPPA-256 chip as a target hardware by pro-
viding a new code generation phase and its corresponding runtime.

The FREIA compiler chain is made of three phases. The first two phases are
generic, and the last one is the target specific code generation. Phase 1 builds
sequences of basic image operations, out of which large image expressions can
be extracted. For this purpose, inlining of composed and user operators, partial
evaluation, loop unrolling, code simplifications and dead code suppression are
performed. An important preliminary transformation for a dataflow hardware
target such as SPoC and MPPA is while-loop unrolling. Phase 2 extracts and
optimizes image expressions, as a directed acyclic graph (DAG) of basic image
operations. Optimizations include detecting common subexpressions, removing
unused image computations, and propagating copies forwards and backwards.

The target execution model depicted in Figure 2 uses the parallel hardware
as an accelerator for heavy image computation, while the host processor runs



1 freia_aipo_erode_8c (im1 , im0 , kernel ); // morphological
2 freia_aipo_dilate_8c (im2 , im1 , kernel ); // morphological
3 freia_aipo_and (im3 , im2 , im0 ); // arithmetic

Fig. 3. Example FREIA code with a sequence of 3 operations

the control code and I/Os. The runtime environment includes functions for ma-
nipulating images such as allocate, receive, emit, and the various operators. The
accelerated version has to manage the transfers between the host and the device
used for operator computations. For our MPPA target, this is achieved by us-
ing named pipes to send images to agents on the host. Theses images are first
streamed to the device for computation, then streamed back on a host agent,
then back to the main program.

3 Hardware and Software Target

We are targetting the Kalray MPPA-256 many-core architecture through the ΣC
dataflow language, compiler and runtime, which allows us to build a runtime for
streaming image operators that can be connected to process large expressions.

3.1 MPPA-256 Architecture

Kalray MPPA-256 [17] is a high-efficiency 28 nm System-on-Chip featuring 256
compute cores providing 500 GOPs with a typical power consumption of 10 W.
Competing MPPA architectures include the Tilera TILEPro64 [3], the Adapteva
Epiphany [4], or the TSAR Project [2]. This massively parallel processor aims
at a wide range of embedded applications and boasts a fast time-to-market for
complex systems.

Figure 4 shows MPPA-256’s computes cores divided into sixteen compute
clusters. Each one of these clusters includes a 2 MB non-coherent shared L2
cache. The compute cores are 32 bits multithreaded Very Long Instruction Word

cores, thus offering instruction parallelism. SIMD instructions operating on pairs
of fixed-point or floating-point instructions are also supported. Every compute
cluster also runs a minimalistic real-time Operating System (NodeOS) on a sep-
arate and dedicated core. This OS manages the 16 compute cores of one cluster
by executing multithreaded binary programs onto them. The compute clusters
communicate with each other through a high-speed toroidal Network-on-Chip.

The MPPA-256 chip also includes four additional clusters for managing ex-
ternal communications. These input/output clusters provide several interfaces,
such as PCI-Express for connecting to a host machine, DDR interface to access
local RAM, Ethernet or Interlaken for directly connecting several chips together.

For our work, the MPPA-256 served as hardware accelerator. The chip was
placed aside a 4 GB dedicated RAM onto a PCI-Express extension card. This
card was then accessed through the PCI-Express bus of a typical computer
workstation.
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Fig. 5. A ΣC agent with two inputs and one output (see code in Figure 6)

3.2 The ΣC programming language

To ease the programming on their manycore chip [5], Kalray offers the classic
parallel libraries PThread and OpenMP [27] as well as a specific dataflow pro-
gramming language called ΣC [19]. ΣC is a superset of the C which provides
a dataflow programming model and relies on the concept of agents, which are
basic compute blocks similar to Kahn Processes [22]. These blocks receive and
consume a fixed amount of data from input channels, and produce data on their
output channels. The agent represented in Figure 5 has two input channels and
one output channel. When two pieces of data are available on the first input
channel and one on the second, the agent produces three pieces of data on its
sole output. Corresponding ΣC code is shown in Figure 6.



1 agent foo () {
2 interface { // define I/O channels
3 in <int > in0 , in1; // 2 input integer channels
4 out <int > out0; // 1 output integer channel
5 spec{in0 [2] , in1 , out0 [3]};
6 }
7 void start () exchange // DO SOMETHING !
8 (in0 i0 [2] , in1 i1 , out0 o[3]) {
9 o[0] = i0 [0] , o[1] = i1 , o[2] = i0 [1];

10 }
11 }

Fig. 6. ΣC example: a basic agent merging two integer streams (see Figure 5)
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Fig. 7. A ΣC subgraph composed of 4 agents and one subgraph (see code in Figure 8)

This model has two consequences. First, the scheduling of agents on avail-
able cores and the inter-agent buffer allocation requires the ΣC compiler to
know the number of input/output channels of an agent, and the number of data
items processed. This implies that image sizes must be known at compile time.
Then, when several independent graphs are mapped, the compiler assumes that
these graphs may be active at the same time, thus the mapping reserves non-
overlapping memory and cores for the tasks. If only one graph at a time is really
active, resources can be under-used.

The performance model implies that tasks must provide significant compu-
tations in order to amortize communication costs. In particular, communication
times include a constant overhead, which must be amortized with significant
data volumes. However, as memory is scarse, it is best to require small inter-
task buffers: a trade-off must be made. Another key point of the static dataflow
model is that the slowest task in the graph determines the overall performance.
Therefore, elementary tasks must be as fast and as balanced as possible.

Agents can be connected to each other in order to compose a ΣC subgraph

which can recursively compose upper-level subgraphs. A subgraph representation
and the corresponding ΣC code are respectively showed in Figure 7 and Figure 8.
The top-level subgraph is called root and corresponds to the classic C main

function. A ΣC agent can be executed either by one of MPPA-256’s compute
cores or by a core of an input/output cluster. Agents can also be executed by
the processor of the host machine, therefore providing access to a hard drive.



1 subgraph bar () {
2 interface { // define I/O channels
3 in <int > in0 [2];
4 out <int > out0 , out1;
5 spec{ { in0 [][3]; out0 }; { out1 [2] } };
6 }
7 map {
8 agent a1 = new Agent1 (); // instantiate agents
9 agent a2 = new Agent2 ();

10 agent a3 = new Subgraph3 ();
11 agent a4 = new Agent2 ();
12 agent a5 = new Agent4 ();
13 connect (in0 [0] , a1. input0 ); // I/O connections
14 connect (in0 [1] , a1. input1 );
15 connect (a4.output , out0 );
16 connect (a5.output , out1 );
17 connect (a1.output0 , a2. input ); // internal connections
18 connect (a1.output1 , a3. input );
19 connect (a2.output0 , a4. input );
20 connect (a2.output1 , a5. input0 );
21 connect (a3.output , a5. input1 );
22 }
23 }

Fig. 8. ΣC example: a basic subgraph (see graph in Figure 7)

Kalray provides also a ΣC compiler for MPPA-256, which handles the mapping
of ΣC agents on the compute cores of their chip.

The ΣC programming language provides an effective way to take advantage
of the MPPA-256, and serves as the main target language for demonstrating our
automatic streamization compiler and runtime.

4 Compiler and Runtime Design

A DAG produced by our compilation chain has a similar structure to streaming
programs. Indeed, image analysis operators can be directly transposed as ΣC
agents, and DAGs as ΣC subgraphs.

4.1 ΣC Image Processing Library

Aside from our compilation chain, we developed a ΣC library of elementary
image analysis operators. Each operator is implemented as one ΣC agent, such
as: (1) arithmetic operators performing elementary operations onto pixels of
input images; (2) morphological operators [30], which are the more compute
intensive operators; (3) reduction operators returning a scalar value.

The 2 MB per compute cluster memory limit implies that our ΣC agents
cannot operate on a whole image. Since the transition between two states of an
agent is rather slow, we cannot afford to operate on one pixel at a time. Thus our
agents process images line by line. Measuring per pixel execution time of several
applications for several input image sizes (see Figure 9) reveals that larger lines
are computed more efficiently than shorter ones, as communication times are
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Fig. 10. Analysed cases of data parallelism for morphological operators

better amortized. This also simplifies the implementation of stencil operators by
easing the access to neighboring pixels.

The morphological agents, the most complex operators, have a direct impact
on the performance of our applications. Consisting of an aggregate function (min,
max, average) on the value of a subset of the neighbor pixels, they are often used
in large pipelines in image analysis applications. We used several optimizations
during their implementation. Firstly, as stencil operators, they need to access
not only the current processed line, but also the previous and the next lines. As
a consequence, each agent has a 3-line internal buffer to store the input lines
needed for computation. Also, the incoming input lines are stored into this 3-
lines buffer and processed in a round-robin manner, avoiding time-consuming
copies. Finally, these agents benefitted from an optimized assembly kernel to
use guarded instructions not automatically generated by the compiler.

We also investigated data parallelism by splitting input lines and computing
each portion with several morphologic agents. This approach allows us to take
advantage of the MPPA-256 unused compute cores, since application DAGs are
usually much smaller than the number of available cores. Because morphological
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Fig. 11. Execution times with parallel morphological operators

operators are stencils, we use overlapping lines when splitting and joining. Our
measures showed that having several stages of computing agents in the (d) and
(e) cases of Figure 10 slows down the whole process, so we focused on comparing
the (a), (b) and (c) 1-stage cases represented in Figure 10. As shown in Figure 11,
the results are quite mixed and application-dependent. Replacing one morpho-
logical agent by four or more agents induces more inter-cluster communications,
leading to a loss in performance, even if computed data is reduced by half.

4.2 ΣC code generation

As stated in Section 2, our compilation chain produces DAGs of elementary
image analysis operators from which we generate ΣC subgraphs using our image
analysis agents. For example, Figure 12 shows an extract of the generated ΣC
code from the FREIA source code in Figure 3.

1 subgraph foo () {
2 int16_t kernel [9] = {0,1,0, 0,1,0, 0 ,1 ,0};
3 ...
4 agent ero = new img_erode ( kernel );
5 agent dil = new img_dilate ( kernel );
6 agent and = new img_and_img ();
7 ...
8 connect (ero.output , dil. input );
9 connect (dil.output , and. input );

10 ...
11 }

Fig. 12. Corresponding ΣC code to FREIA code in Figure 3

In order to be correctly transposed into a running dataflow program, we must
ensure that there is no scalar dependency between two agents of the same sub-
graph. Indeed, since images are processed on a per line basis, a scalar produced
from a whole image cannot be applied on the lines of the same image by an other
agent on the same subgraph without causing lines accumulation in inter-agent



buffers, and thus major performance loss. A split-on-scalar-dependencies pass is
used ahead of our ΣC generator to provide scalar-independent DAGs, which can
then be transposed directly to ΣC subgraphs.

Some complex image analysis operators involve a convergence loop over an
image-dependent parameter. Such operators, being idempotents, can be unrolled
with no consequences on the final result. However, this unrolling pass leads to
a greater number of generated ΣC agents, and thus an increase occupation of
the MPPA compute cores. We measured the influence of the unrolling factor of
these particular loops on the execution times of the relevant applications (see
Figure 13). Our results show that unrolling dramatically increases the perfor-
mance of our applications. For these applications, an unrolling factor of 8 leads
to a fair speedup while mobilizing a reasonable amount of compute cores.

Split and unrolled image expression DAGs are then encoded as ΣC sub-
graphs. Our implementation of the generation of ΣC subgraphs is pretty straigh-
forward: for each vertex of one image expression DAG, our compiler PIPS gen-
erates an ΣC instantiation statement for the corresponding ΣC agent first, then
connection statements between the agent instance and its predecessors or suc-
cessors in the DAG. Small differences between the input DAGs structure and the
ΣC dataflow model have been addressed during this implementation: (1) since
the number of inputs and outputs of our ΣC agents are predetermined, we have
to insert replication agents when required; (2) DAG inputs and outputs are spe-
cific cases and must be dealt with separately; (3) scalar dependencies must be
provided to the correct agents by a dedicated path. Similarly, scalar results must
be sent back to the host.

In the dataflow model, the slowest task has the greatest impact on the global
execution. Since arithmetic operators do little computation compared to mor-
phologic ones, we investigated the fusion of connected arithmetic operators into
compound ΣC agents, thus freeing some under-used compute cores. We imple-
mented this pass on top of our ΣC generator. We tested our optimization pass
onto several applications with a variable number of merged operators. Execution
time results (Figure 14) show little to no difference in performance compared to
the reference one agent/operator application. These measures confirm that ag-
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gregated operators are not limiting the global execution while freeing computing
power, therefore validating our approach.

4.3 Runtime environment

ΣC code generated by our compilation chain often includes several independant
and non-connected subgraphs that are all mapped on the MPPA cores. In order
to launch the adequate subgraphs at the right time and to control the I/Os, we
developed a small runtime in C. It runs on top of the generated ΣC applications
and communicates with them through Unix named pipes, as depicted in Figure 2.
For each function of this runtime, we added a dedicated ΣC subgraph with agents
mapped on the host CPU and the I/O clusters cores to handle the task. This
runtime is also used for loading and saving images from the host hard drive. To
this end, we use a software implementation of FREIA, called Fulguro [11].

The other dedicated control functions allow us to allocate and free the ac-
celerator embedded RAM, to send or receive images to or from the MPPA, and
to launch a compute subgraph onto one or more images. On the ΣC side of
the application, several independant subgraphs manage the control signals sent
through the named pipes and transfer them to the chip.

The general design of our compilation chain, based on a source code gen-
erator, an elementary library and a small runtime environment, allowed us to
quickly get functionnal applications on the MPPA-256. With the implementation
of a set of specific optimizations (loop unrolling, fusion of fast tasks, splitting of
slow tasks, bypassing of the MPPA RAM), we were able to take better advan-
tage of the compute power of this processor. Once this was done, we compared
the MPPA-256 to a set of hardware accelerators running the same applications
generated by the same compiler.

5 Performance Results

We have evaluated our compilation chain with eight real image analysis applica-
tions covering a wide range of cases. Table 1 shows that our applications contain



Apps.
#operators

#subgraphs #clusters image size
arith morpho reduct total

anr999 0 20 3 23 1 2 224 × 288
antibio 8 41 25 74 8 6 256 × 256
burner 18 410 3 431 3 16 256 × 256
deblocking 23 9 2 34 2 10 512 × 512
licensePlate 4 65 0 69 1 5 640 × 383
oop 7 10 0 17 1 2 350 × 288
retina 15 38 3 56 3 4 256 × 256
toggle 8 6 1 15 1 1 512 × 512

Table 1. Characteristics of used image analysis applications

Software Hardware

Apps. FPGA OpenCL
Flgr iΣC MPPA SPoC TPX i2c a4c GTX Quadro Tesla

anr999 4.3 36.5 8.3 0.9 3.5 12.2 7.2 9.8 1.5 0.9

antibio 80.2 1026 670 41.9 88.5 254.1 135.3 204.3 57.4 93.4
burner 795.3 814.4 113 17.2 83.8 162.2 124.4 321.0 576.2 142.0
deblocking 141.4 121.0 84 30.7 11 25.1 16.7 11.1 3.5 1.3

licensePlate 483.9 152.7 20.2 13.3 36.8 32.2 21.9 36.6 7.3 2.3

oop 4.0 39.3 11.3 124.6 63.3 12.3 8.3 5.8 1.8 1.0

retina 149.0 222.5 95 7.4 32.4 93.5 55.4 75.5 60.8 33.9
toggle 6.2 69.8 22.6 12.6 4.3 15.0 9.0 6.3 1.4 0.7

AVG/MPPA 1.13 3.28 1.00 0.32 0.49 0.85 0.54 0.64 0.23 0.12
Table 2. Execution times (ms) of our applications on the different hardware targets

from 15 elementary operators (toggle) to more than 400 (burner), most of them
morphological operators. Table 1 also illustrates the number of ΣC subgraphs
generated by our compilation chain, and the number of occupied compute clus-
ters when running on the MPPA-256. These applications generally include less
than three independent image expressions DAGs.

Our compilation chain targets several software and hardware accelerators: a
reference software implementation, Fulguro [11], on an Intel Core i7-3820 quad-
core CPU running at 3.6 GHz with an average power consumption of 130 W; ΣC
code running directly on the same CPU (iΣC); the MPPA-256 processor (10 W)
using ΣC; SPoC [13] and Terapix (TPX) [8], two image processing accelerators
implemented on a FPGA (26 W); two CPUs using OpenCL [23]: an Intel dual-
core (i2c - 65 W) and an AMD quad-core CPU (a4c - 60W); and three NVIDIA
GPUs again with OpenCL [23]: a GeForce 8800 GTX (120 W), a Quadro 600
(40 W) and a Tesla C 2050 (240 W).

We compared the output of our compilation chain from the previously de-
scribed applications onto these 8 hardware targets, both in terms of execution
times and energy consumption. For the MPPA-256 chip, time and energy mea-
sures were obtained using Kalray’s k1-power utility software, ignoring transfers
and control CPU consumption. Time figures for the FPGAs, CPUs and GPUs



Software Hardware

Apps. MPPA FPGA OpenCL
Flgr iΣC real ideal SPoC TPX i2c a4c GTX Quadro Tesla

anr999 559 4745 50 6 23 91 793 432 1176 60 221
antibio 10425 133380 3500 1313 1089 2301 16517 8118 24516 2296 22883
burner 103390 105900 388 388 447 2179 10543 7464 38520 23048 34790
deblocking 18382 15730 431 269 798 286 1632 1002 1332 140 319
licensePlate 62907 24284 120 38 354 957 2093 1314 4392 292 564
oop 520 5110 59 7 3240 1646 800 498 696 72 245
retina 19370 28925 487 122 192 842 6078 3324 9060 2432 8306
toggle 806 9074 119 7 328 112 975 540 756 56 172
AVG/MPPA 28.78 83.38 1.00 0.25 1.65 2.52 10.81 6.33 15.01 1.79 5.45

Table 3. Energy (mJ) used by our test cases on different targets

were taken from [14]. Energy figures were derived from target power consump-
tion. Results are shown in Table 2 and Table 3, with best performances in bold.
Compared to the Fulguro monothreaded sofware implementation, ΣC on CPU
is relatively slow, due to the numerous threads communicating with each other.
To take individual MPPA-256 compute cluster power supply into account, we
added in Table 3 a column “MPPA ideal” representing the energy of clusters
actually used for the computations, according to Table 1. Disconnecting unused
compute cores would provide us an extra ×4 speedup.

These results show that although MPPA/ΣC is not faster than dedicated
hardware targets, it provides the lowest average energy consumption for tested
applications. The high degree of task parallelism induced by the use of the ΣC
dataflow language on the 256 cores of the MPPA-256 processor is thus a strength
facing dedicated hardware in low energy and embedded applications.

6 Conclusion and Future Work

We added a new hardware target to the FREIA ANR project: a 256 cores pro-
cessor with a power consumption of 10 W through the use of the ΣC dataflow
programming language. Using the PIPS source-to-source compiler, we generated
ΣC dataflow code based upon a small image analysis library written in ΣC. The
execution of the generated applications relies on a small runtime environment
controlling the execution of the different ΣC subgraphs mapped on the cores of
the MPPA-256 processor. We implemented a set of specific optimizations from
automatic fast operator aggregation to data-parallel slow operators to achieve
better performance. The performance of our approach is shown by comparing
the MPPA-256 results to other hardware accelerators using the same compi-
lation chain. MPPA/ΣC proves to be the most energy-efficient programmable
target, which competes in performance with specific image-processing dedicated
hardware such as the SPoC FPGA processor.

In the current approach, several subgraphs are mapped onto different com-
pute cores, meaning only a fraction of the chip is used at a given time. Future



work includes the investigation of dynamically mapping distinct ΣC subgraphs
on the same cores when they do not need to be run concurrently. Another way to
save energy, especially for small applications, would be the ability to disconnect
unused clusters within the chip, as shown in column “MPPA ideal” in Table 3.
More performance improvements could also be obtained on some applications
by generating automatically kernel-specific convolutions, which would reduce
execution time by skipping altogether null-weighted pixels.
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