

Inondations dominées de Graphes Valués

Fernand Meyer, Claude Tadonki, François Irigoin

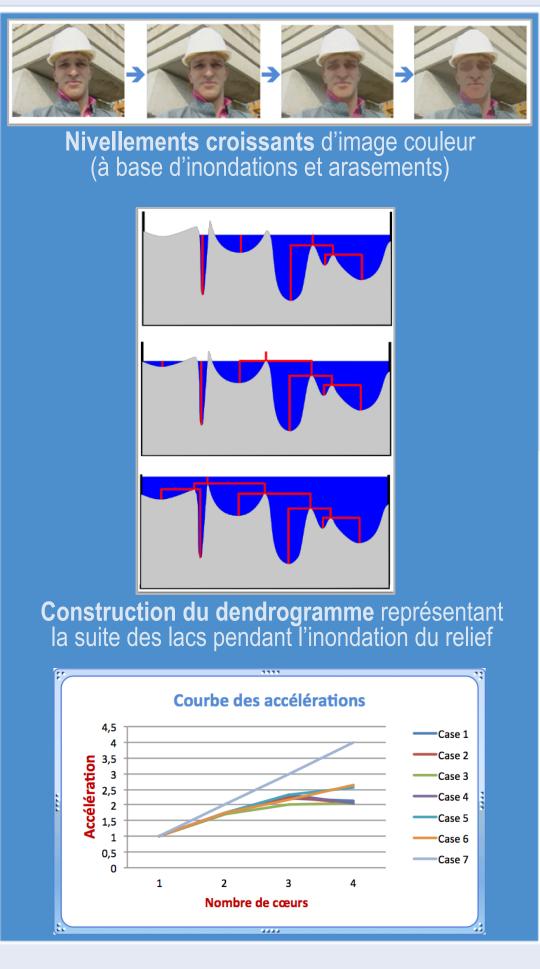
▶ To cite this version:

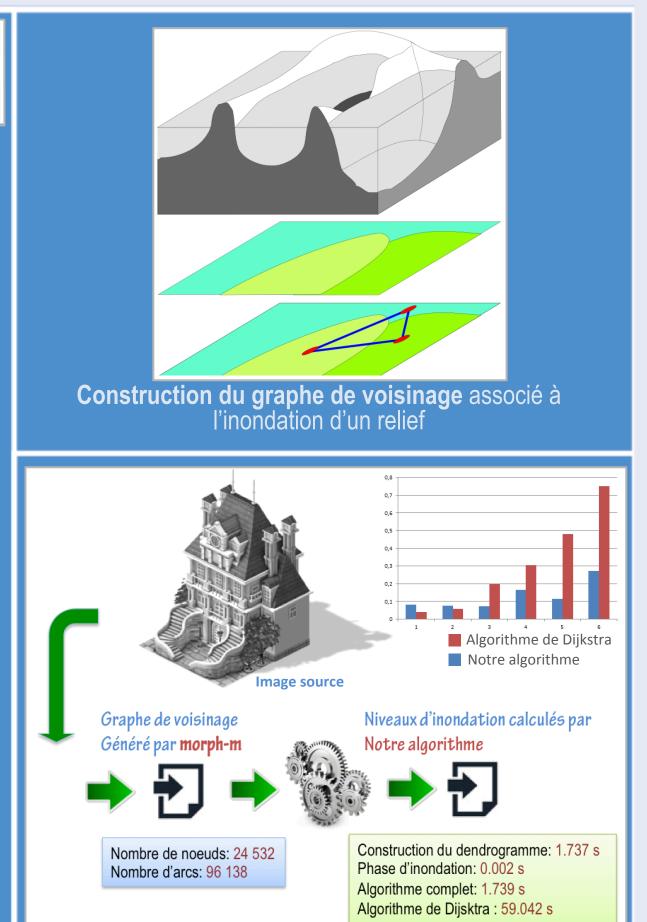
Fernand Meyer, Claude Tadonki, François Irigoin. Inondations dominées de Graphes Valués. Séminaire de l'Institut Carnot M.I.N.E.S, Jul 2014, Paris, France. 2014. hal-01093881

HAL Id: hal-01093881 https://minesparis-psl.hal.science/hal-01093881

Submitted on 11 Dec 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.


L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



Inondations dominées de Graphes Valués

Traitement d'Images Multi-Cible

Enjeux et verrous technologiques

Si on considère un niveau de gris comme une altitude, toute image à niveaux de gris peut être vue comme un relief topographique.

La morphologie mathématique a développé les nivellements, opérateurs puissants pour le filtrage de bruit ou la simplification d'images avant segmentation.

Les nivellements agissent localement comme des inondations, remplissant les cuvettes par des lacs ou comme des arasements, aplanissant les pics.

Ces opérations sont très coûteuses en temps de calcul et les images à traiter sont de plus en plus volumineuses

L'enjeu est de trouver des algorithmes rapides, parallélisables, et pouvant s'exécuter sur des architectures variées.

Résultats

- ✓ Mise au point et validation d'un nouvel algorithme
- ✓ Conception d'un simulateur interactif
- ✓ Mise en œuvre efficace (20 millions de nœuds en quelques secondes)
- ✓ Parallélisation de la phase du calcul des hauteurs finales
- ✓ Mise en œuvre parallèle efficace
- ✓ Publication et présentation dans une conférence internationale

HDR de Claude Tadonki le 16 mai 2013 à l'Université Paris-Sud

Compétences développées

Considérons un relief topographique dont l'inondation a un niveau uniforme. A mesure que ce niveau augmente, de nouveaux lacs se créent dans des minima et d'autres lacs fusionnent. La suite des lacs ainsi créée a une structure arborescente. Cette remarque est à la base de notre travail :

- ➤ Construction à partir d'une image 2D ou 3D de la structure arborescente
- Modélisation mathématique des inondations sur une telle structure (structure de treillis des inondations, inondation maximale sous un plafond)
- > Développement d'un algorithme d'inondation se factorisant en inondations multiples sur des sous-arbres beaucoup plus petits.
- > Retour à l'image pour visualiser le résultat.

Impacts et perspectives

Les algorithmes d'inondation sont l'ingrédient de base de nombreux filtres morphologiques, tels que les nivellements, indispensables pour traiter des problèmes complexes.

Pour une tâche donnée, de nombreux nivellements peuvent être nécessaires. Ils sont souvent utilisés en cascade pour une analyse multi-échelle de textures.

Ne trouveront leur place dans des applications industrielles ou médicales que les algorithmes suffisamment rapides et capables de traiter de gros volumes de données.

Il en va de même dans des applications interactives où le temps de réponse doit être immédiat.

PSL*

Centre de Morphologie Mathématique (CMM) Centre de Recherche en Informatique (CRI) Fernand Meyer • Claude Tadonki • François Irigoin