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ABSTRACT. We consider a finite element approximation of frictional contact problem between
deformable bodies undergoing large deformations. The fully 3D mechanical coupling problem
is expressed with a mixed velocity-pressure formulation. The multi-bodies contact problemis
set as a linear complementary problem solved by a penalty method. The corresponding non-
penetration condition is approximated using a finite element meshes which do not necessarily
fit on the contact zone. The local approach used to take into account unilateral contact on
non-matching meshesis an extension of the master-slave algorithm. The mechanical systemis
solved using iterative methods. The associated model and algorithmareimplemented insidethe
3D software Forge3®, The selected application is the processof viscoplastic metal forging.

RESUME. On considéreune approximation é émentsfinis du probléme de contact avec frottement
entre deux cor ps déformables en grandes déformations. Le modél e de couplage mécanique fort
en 3D est décrit avec une formulation mixte vitesse pression. Le contact entre corps défor-
mables est posé comme un probléme complémentaire résolu par une méthode de pénalisation.
La condition de non pénétration correspondante est appliquée, sur des maillages élémentsfinis
non coincidents, au niveau local par un algorithme maitre esclave. Le systéme mécanique est
résolu par une méthode itérative. Le modéle et I’ algorithme associé sont implémentés dans le
logiciel Forge3® L’ application présentée est le procédé de forgeage de métaux de rhéologie
viscoplastique

KEYWORDS: contact, friction, master-slave algorithm, finite element, deformable bodies, penalty
formulation.
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1. Introduction

In continuum mechanics, the contact problems between deformable bodies occur
in many applications. Here, we are interested in metal forming process. Numerical
simulations of forming processes require a correct numerical interpretation of the finite
kinematics involved in the mechanical problem.

Numerical methods for discrete or discretized contact problems, as classically
done in constrained problems, are usually divided into two main families: the first one
is based on penalty methods, the other one on the duality problem associated to the
non-penetration condition. In the bibliography below, we try to present the advantages
and the drawbacks of each of them in a general contact case. A better presentation of
the state of art in contact problem is synthesized in [CHA 98, WRI 95].

In penalty method [CES 93, PAV 96], the higher the chosen penalty coefficient,
the less the interpenetration between the different bodies in contact. On one hand,
large penalty coefficient lead to ill-conditionned stiffness matrix and then to bad con-
vergence. On the other hand, small value lead to poor precision. From the numerical
standpoint, this method has the advantage to avoid introducing additional variables
and therefore leads to solve a system which size is the same as the problem without
contact.

A straightforward way to handle the non-penetration condition [FIS 95, PAN 97]
consists in checking whether the contact condition is satisfied or not according to the
sign of Lagrange multipliers. The Lagrange multipliers have the physical meaning of
contact forces. They become additional variables and increase the size of the system.
But, theoretically, this contact treatment is exact.

Mixed approaches based on methods such as augmented Lagrange multipliers in-
tegrate the two previous methods [ZAV 95, SIM 92]. It amounts to “penalize the La-
grange multipliers”. In this case, the penalty coefficient can be small.

In finite element procedures solving contact problems between deformable bodies,
each body is often discretized independently. So, the finite element meshes do not
coincide on the contact surface. When the meshes do not coincide, the difficulty is
to properly impose the contact conditions without over-constraining the numerical
problem [FOU 99].

For this purpose, the approximation using the master-slave technique is considered
here. One of the antagonistic body is assumed to be the slave body, the other one being
the master. The basic idea of this approach was introduced by [BAT 85, HAL 85] and
is mainly developed in structural mechanics. Our goal is to extend this model to 3D
metal forming simulation. In such application, one body, the part, undergoes large
deformations.

The paper is organized as follows. In section 2, we introduce the model describing
the mechanical problem for viscoplastic bodies. The mechanical problem is presented
in a non-linear kinematic framework (material and geometric non-linearities). It is



based on a mixed velocity-pressure formulation coming from the virtual energy prin-
ciple that controls the geometric evolution within each time step. In addition, we deal
with the treatment of unsteady contact conditions between the material and the dies.
We describe the developments to integrate the boundary contact condition in a mixed
formulation. The corresponding inequality condition is set as a linear complementary
problem. The mechanical problem is also rewritten under the non-penetration con-
straint using the penalty method. In section 3, we consider a finite element method to
approximate the problem using independent meshes within each body. In section 4,
we implement the master-slave algorithm for bodies discretized by linear tetrahedra.
Then we focus on iterative methods used to solve the coupled mechanical problem.
The next section is devoted to the studies of two academic examples. With these
examples, we study convergence and numerical behavior of the algorithm.

2. Setting of the mechanical problem and weak formulation

We consider the deformation of two viscoplastic bodies occupying in the initial

configuration two subsets Q' of the space IR3, [ = 1,2. The boundary 99 of the
domain Q! is assumed to be smooth enough and consists of I}, ' and I'.. We as-
sumed that the body is submitted to surface forces on I'Y,. The inertia and body forces
are negligible. On T'!, the velocity fields v' are prescribed. T'. denotes contact sur-
faces with a rigid or a deformable body. The mathematical model of the mechanical
problem is based on the constitutive law and the contact condition with friction. In
continuum mechanics, viscoplastic flows, involved for instance in hot metal forging,
are well modelled by a velocity formulation [SUR 864a].

2.1. Constitutive equation

For a viscoplastic constitutive law, the stress deviator s can be derived from a
potential ¢,., itself a convex function of the strain rate &:

d¢

= 1
FE [1]
The strain rate tensor £ is derived from the velocity field in the usual way:
C 1 .
£ = §(Vv +° V) [2]

where the superscript “7™ indicates a transposition.
The most popular isotropic viscoplastic law is the Norton-Hoff one. It is well suited



for modelling the metal behavior under hot conditions. The function ¢, is then given
by the following expression:

K
m+1

5:(6) = o (VERymh g

where K is the material consistency, which can be function of the total strain and the
temperature, m is the strain rate sensitivity index and ¢ is the generalized strain rate:

- 2 .
€= lglzj:afj [4]

The stress deviator can be deduced from (1) and (3):

s = 2K (V3g)m1é [5]

If we consider only dense materials, we must take into account the incompressibil-
ity condition and write:

dive = 0 [6]
where the symbol "div" denotes the divergence operator.
Both inertia and gravity effects can be neglected, thus the equilibrium equation is
simply:

dive = 0 [7]

where o is the stress tensor which can be decomposed into its spheric (hydrostatic
pressure), p, and deviatoric, s, parts:

oc=s—pl [8]

2.2. Boundary conditions

Boundary conditions in metal forming processes are important [SOY 92]as they
govern the material flow. To the equilibrium equations (6—7) must be added, for any



point z of the boundary I'., the conditions resulting from the contact between the
bodies sharing I'. and between deformable bodie and rigid tools.

The constitutive equations for contact and friction must express both the non-
penetration and the possibility of relative sliding associated with a tangential friction
shear stress.

2.2.1. Non-penetration condition

The unilateral contact condition is decomposed into a geometric condition and a
stress condition. In fluid mechanic, this corresponds to no-miscible and no-adhesion
conditions. The first one prevents the body Q! to penetrate through the other one Q2:

(v' —v?) - n <0 [9]

where ' and »? are the velocity fields of the bodies Q! and Q2 respectively at any
point on the interface I'.., n is the outward unit normal to the body 22 at the considered
point. (see figure 1).

contact release forbidden

Figure 1. Unilateral contact condition

The second condition expresses that, on the contact boundary, the normal stress
must be compressive:

(on)-n<0 onT, [10]

In other words, there is no adhesion between the two bodies.

The unilateral contact condition is summarized, on I, by:

{ if (on) -n <0 then (vt —v?).-n=0
1

if(on) -n=0 then (v [11]



2.2.2. Frictionlaw

For a contact point, the viscoplastic friction behavior can be described by a non-
linear relation between the shear stress = at the bodies interface and the tangential
sliding velocity v,,. The sliding velocity is defined by:

vy = (v —v?) = [(v} —v?) n]n [12]
The shear stress 7 is derived from a convex friction potential ¢ :

_ 99
T= avg (Ug) [13]

For hot metal forming application, the Norton law [MOR 70] is often used without
any plasticity criterion [CHE 92]. In this context, the function ¢ ; is:

ak
g+1

¢r(vg) = — vaHq-I—1 [14]

where « is a friction coefficient, ¢ is the sensitivity to the sliding velocity v, and X is
the consistency of the “softest” body. The interface shear stress is deduced from (13)
and (14):

T= —ozK||vg||q_1vg [15]

2.3. Variational formulation

2.3.1. Mechanical problem for viscoplastic body

Under the hypothesis made above, the weak form of the equilibrium equation (7)
can be obtained by the minimization of a dissipation function, with respect to velocity,
under the incompressibility condition, on each domain Q! for [ = 1, 2:

o= mm ([ orterae) [16]

dive =0

where V is the definition space of the velocity field [BAR 90]. In order to solve the
constrained problem (16), it is usual to introduce Lagrange multiplier and transform
the minimization problem (16) into the saddle point problem:



max  min ( (br(é)dx—/ pdinda:)
PELA(O) veV(Q) \Jqu Q!

where £2() is the classical Lebesgue space of square integrable functions.
We now have to find a pair (v, p') solution of the variation system:

/ shogr da:—/ pldive* de =0
Q! Q! [17]
—/ prdivel de =0

Ql

forall (v*,p*) € V(Q') x L2(Q).

It can be easily verified that the Lagrange multiplier is the hydrostatic pressure [BRE 91].
Obviously, the second equation of (17) expresses the weak form of the incompress-
ibility condition (6). The existence of a saddle point (v', p') is discussed in [BAR 90].

2.3.2. Coupled mechanical problem

In order to obtain the variational formulation of the coupled mechanical problem
between the bodies Q! et Q2, we denote v = (v', v?) a vector field of the product
space V = V(Q!) x V(Q?) and p = (p*, p?) a scalar of the product space Q =
L£2(QY) x £2(Q?). Then the appropriate closed convex set S of admissible velocity
fields is contained in V(') x V(Q2?) and incorporates the unilateral contact condition:

S={v=(v'v?) eV x V%), (v —v*) -n<0onT.}

Taking into account the friction condition (14), the virtual work principle is derived
from a convex function, similar to (16), forall v € S:

S(v) = /ﬂ(/)r(E) da:—i—/r dr(vg) ds [18]
S(v) = min O (v') [19]
v eS
dive’ =0

where Q@ = Q' U Q2 and the interface I'. = 9Q! N 902,

We must underline that we have assumed that the friction zone is fixed. According to
(15), the friction condition does not depend on the contact pressure but only on the
geometrical position of the material point.



Equation (19) is another minimization problem with now two constraints: the
first one is related to the incompressibility condition and the second one to the non-
penetration condition which is an inequality constraint. As mentioned before, a La-
grange multiplier, the hydrostatic pressure, is introduced to impose the incompress-
ibility condition.

Unilateral contact condition is an inequality constraint. We remark that inequality can
be converted into equality by:

(vl—v2)~n§0¢>[(vl—v2)~n]+:0 [20]

where [2]7 is the positive part of the quantity «:

+_Jox ifz>0
]" = { 0 otherwise [21]

This equality constraint is then imposed by a penalty formulation. Therefore, a new
function is defined to handle the different constraints of the problem:

L,(v,p) =®(v) — /ﬂpdin dr + g/r [(vl —v?) - n]+ ds

c

where p is the penalty coefficient. The solution (v, p) satisfies the saddle point condi-
tion:

Lolv:p) = max min Lo (v, 9 22]

It can be shown that, when p tends towards infinity, the term —p [(v! — v2) - n]*
tends to the contact pressure.

The optimal condition reproduces (weakly) the whole set of equations governing the
coupled mechanical problem with frictional unilateral contact:

/szé*dx—/pdin*dx—/ T-v ds
Q Q e

—|—p/ [(vl—v2)~n]+v*~nd5:0 [23]
re
—/ p*divedr =0

Q

forall (v*,p*) € V x Q.



3. Discretization
The material flow studied is an evolution problem. A double discretization must

be considered:

— a time discretization,
— a space discretization.

3.1. Timeintegration

The material movement is discretized in time and approached by succession of
discretized configurations (see figure 2).

t=1t+ At

Qiy A

xr

Figure 2. Time discretization movement of a domain €2

This kinematic representation is modelled by an updated Lagrangian description.
Instead of locating the body in relation to the initial configuration €2, it is located in
relation to the configuration at time ¢, €2;, to determine the next configuration at time
t + At, 4 a¢. For each configuration, the equilibrium equations must be satisfied.

For purely viscoplastic materials, the most popular scheme is a finite difference
scheme: the explicit Euler scheme. Knowing the domain Q2 = Q! U Q? at time ¢, the
velocity v!, and pressure p!, fields are calculated by solving the discretized equations

<y



of the quasi-static problem (23) at time step ¢. The material update is then performed
according to:

2IHAY — ot 4 Ate? [24]

This scheme is simpler compared to a semi-implicitsecond order scheme [SUR 86b]
or an explicit second order Runge-Kutta scheme [BOY 99].

3.2. Incremental contact condition

The non-penetration condition (9) must also be discretized in time.

On a given configuration, at time ¢, in order to check the relative position of a
material point of coordinate vector z¢ with respect to a surface of another body, called
master surface, we define the following gap function g:

g(z' 1) = (' — n(z")) - n’ [25]

where (z) is the orthogonal projection of z* on the master surface, and n’ is the
outward unit normal to the current master body (see figure 3).

g(zt,t) =0 Qy g(zt,t) >0 g(zt,t) <0
Figure 3. Definition of the gap function

The non-penetration condition is equivalent to:

gz A 1+ At) > 0 [26]

With an explicit time integration scheme (24), a first order Taylor expansion of
(26) provides the explicit incremental contact condition:

9@+ Al) = g(a', 1) — (v! (2') = v*(7(2"))) - n' At



REMARK. — In this paper, we neglect the variation of the normal » during the incre-
mental time At, because, in our application, the master body undergoes small defor-
mation compared to the slave body.

The non-penetration condition is then rewritten as:

(01 (a) = 2 (n(at)) -0t - L0 < 27

Therefore, we can combine the velocity formulation with the incremental formulation.
For each configuration, the integral formulation (22) becomes:

L,(v,p) = <I>(v)—/ﬂpdindx

I RGO RES v [26]

3.3. Spacefinite element discretization

We suppose that ', [ = 1, 2, are domains with polygonal boundaries. With each
body ', we associate a mesh 7}, made of tetrahedra denoted ». Therefore, we can
write:

A spatial discretization is performed with isoparametric elements. The discrete ve-
locity field vy, is expressed in terms of the shape functions &V,, and the nodal velocity
vectors V,, as

vh =Y VaNa(€) [29]

with the parametric relation between the physical coordinate vector «;, and the natural
coordinate in the reference space &, using the nodal coordinate vector X,,:

Th= 3 XaNa(€) [30]



We can then write the strain rate tensor with the usual B operator:

En= VaBn(¢) [31]
where each component of the strain rate tensor is defined by, i, = 1,---,3:
. 1 ON, ON,,
6h,zy — 5; (Vn,za—gj‘i‘vn,] agl )
= Z Vn,an,k(g) [32]
n;k=1,j

In the mixed formulation of the mechanical problem (23), compatible shape functions
M., must be selected for the pressure field p, [BRE 74], which is expressed in terms
of the discrete pressure parameters F,,:

Ph :ZPmMm(g) [33]

In our case, a slight simplification of the so-called mini-element [COU 96], first intro-
duced by [ARN 84], is used and leads to a stable mixed finite element formulation.
Denoting by I = {i,i = 1,---,q} the set of indexes ¢ such that X; belongs to a
potential conatct zone, is a nodal point, the convex set S can be approximated by:

S, = {vh = (v,ll,vi) eV, = Vh(Ql) X Vh(Qz),

Xi .
hi = (V' = vi (X)) - n = % <0,iel}
where V! = v} (X;).

Considering a nodal contact formulation, a simple discrete form of (28) can be
written as:

q
L (vh, 1) :@(vh)—/phdinh det B3N] 3]
193

i=1

where |T';| is a weighting surface for the node :. It represents one third of the surface
of the triangles containing «.



Then, the minimization problem is to find (v, pn) € Vi x Qp such that:

Ly p(vn, o) = [max UIfIéixﬁl,, Ly, (v, p) [35]

where Q, C L2(Q) x £L2(Q?).

From the continuous standpoint, the interface I'. represents the same surface for
both bodies, but they are not the same after discretization. If the meshes of the bod-
ies coincide, the calculation of the solution of the problem is relatively straightfor-
ward, using the same interface nodes and surface elements. The coupled mechanical
problem with frictional contact is then written as a non-linear system of equations
R(vn, pr) = 0, the components of which are expressed by:

2

Z{/ 2K (V3E,)" 1L ¢ By g da —/ pltraceB, dx}
Qf Qf

=1
—1—/ ozK||vg||q_1vgyan ds
r

§ , [36]
+p Y [Teil[hi]tni =0 Vn, Vk
i=1

2
=> | Mpydive,de=0  V¥m
1=1 7%

where n' is the normal at the node 2; potentially in contact and outward with respect
to the body Q2.

However, in general case, the meshes do not match on the contact surface. The
difficulty is to impose the friction and the non-penetration condition.

4. Master-slave algorithm

The friction and contact conditions are written in a discretized manner between the
velocity degrees of freedom of the coupled mechanical problem. With each body ¢,
we associate a family of triangulations 7/, made of tetrahedra «. The contact zone
[, inherits two independent families of discretizations arising from 7'} and 77. The
mesh 7., on T, is defined as the set of all the faces of « € 7} on the contact zone.
The set of nodes associated with 7;’7h is denoted . In general x} and x? are not
identical on account of the non-matching meshes.

In order to express the contact constraint, we need to define a new discrete set S,
of the kinematic admissible velocity fields.



We chose to use the so-called master-slave algorithm: one of the bodies is the slave
and the other one the master. In literature, a first approach consists in expressing the
local contact conditions as nodal contributions [CHA 86, WRI 90, VAU 98, CHE 98,
HIL ]. An other way is to consider the discrete contact conditions at the quadrature
points [CHA 88, LAU 93, PAN 00]. Here, we extend the nodal implementation to a
3D application with tetrahedric meshes. The contact algorithm will ensure that slave
nodes will not penetrate into master faces. The non-penetration condition will be
written between a slave node and a master triangular face in the current configuration.
At the beginning of each time increment, a search algorithm is performed to build

slave node * z;

Figure 4. Master-dave pair

the node-face contact pairs which determines for all slave boundary nodes the closest
master face. To speed up the search, the master faces are organized into a hierarchical
tree.

4.1. The contact term

A closest point projection is used to determine the gap between the slave node and
the master face. If the gap between the slave node and the master face is within a
given tolerance, the slave node is considered to be potentially in contact. Denoting
by I = {i : i = 1,---,q} the set of indexes such that X; € x; is a slave nodes
potentially in contact with a master face f € 7.%,, the nodal non-penetration kinematic
condition becomes:

3
i gi .
(v;— ngva(m)) =<0 Viel [37]
m=1

where (see figure 4):
- V;! is the velocity field at the slave node X; (on the boundary of the body 1),



— f(m) is the m*” node of the master face f,

- sz(m) is the velocity field at the m'” mode of the master face (on the boundary
of the body Q?),

— &, are the parametrical coordinates of the projection 7 ( X;) of the slave node X;
onto the master face,

- n' is the outward normal vector to the master face f at the projection node 7 (.X;),

— ¢, is the gap between the slave node X; and its projection onto the master face
at the beginning of the increment.

Vit and V7, are unknowns of the problem.

Therefore, the penalty term of the system (36) can be rewritten as:

+
nt Yk [38]

q
pZ |Fcz|
i=1

3
1 2 i 4i
(m - Zﬁmvﬂm)) Ry v
m=1

In the same way, the sliding velocity is redefined, for all slave node X;:

3
vg(w) = (Vf - €me2<m>) -
m=1

3
1 2 7 7
(Vz’ - ngvf(m)) ”] n
m=1

4.2. Thefriction term

The velocity is known for a node X; and for his projection on the master body.
In order to simplify the integral term associated to the friction law in the system, the
integral (36) is then approximated by a nodal contribution:

q

Y oK Ceilllvgla) I ug(wi)e Yk [39]

i=1

The friction term is considered constant on surface |T'.;| related to the node ¢ on the
boundary. In classical hot forging simulation this approximation has been validated
by comparing nodal and integral formulations.



5. lterative solver

The mechanical problem of deformable bodies coupled by the frictional contact
problem is solve simultaneously in all domains. The material behavior (viscoplastic
and incompressible) and the unilateral contact condition lead to the solution of a highly
non-linear multi-variable problem. At each time step, the large non-linear system (36)
is solved by a quasi-Newton method:

1) (vf =1, Pyt given, find (Avf, Apk) such as:
OR

O(vn, pn)

2) Update velocity and pressure fields:

(i pi ) (A, Apf) = —R(v L pp Y [40]

vﬁ = vi_l + /\Avﬁ
Ph =P+ AN
where A is a linear search coefficient.
3) Check convergence:

if Jof —vp el =y < e
then STOP
else k « k+ landgotol.

k indicates the Newton iteration number.

An iterative solver is used for each linear sub-system (40). The solver [COU 97b]
has been first proposed for calculation of part deformations in forging process. It is
mainly based on preconditioned conjugate residual method as it has been suggested in
[WAT 93]. This solver was successfully improved in the global multi-bodies system
triggered by coupled mechanical formulation for part and dies deformations calcula-
tion.

The convergence rate of iterative solver depends strongly on the conditioning of
the stiffness matrix which is affected by penalty terms. The use of efficient precon-
ditioners can improve this shortcoming and provides a robust solver for the coupled
problem. Our formulations lead to block dominant stiffness matrix. Here, a block di-
agonal preconditioning [COU 97b] will be sufficient to capture the main matrix coeffi-
cients possibly augmented by the penalty terms and preserve the nice convergence rate
of the solver. To capture all potentially augmented terms, some of which are located
not near the diagonal of the matrix, incomplete Cholesky preconditioner [PER 00] can
be used instead.

This fully coupled approach is expensive in CPU time but provides a strong cou-
pling between the bodies via the contact and friction terms. The equilibrium equations
are solved for the whole system. Finally the main advantage of such an approach is
that the parallelization of the software is simpler than with an iterative coupling be-
cause the formulation is very similar to the mono-domain one. The main problem is
to manage with the different boundary through the processors.



6. Examples

In this section, we present some numerical examples to illustrate multi-bodies me-
chanical calculation. The proposed model has been implemented in the finite element
code Forge3®, which until now predicts only the part flow.

6.1. Block upsetting

The coupled mechanical algorithm has been first applied to the flattening of a block
in order to estimate the computational time. The symmetries of the problem allow us
to simulate one quarter of the process. The geometry of the problem is composed of
three bodies as shown in figure 5. A constant vertical velocity is imposed on the top
of the upper die €2;. No displacement is imposed to the bottom of the lower die 5.
At the interface of the bodies, the contact is supposed to be sliding with a viscoplastic
friction law defined by o« = 0.2 and ¢ = 0.139. Other boundaries are free surfaces.
We choose a consistency of 179.2 MPa and a strain rate sensitivity m = 0.139 for the
intermediate block. The lower and upper dies have a consistency one hundred times
higher. These values are representative of hot forging of steel.

master

Qs

slave
// - Q1
2 plans

of symmetry master

\ 2

S

Figure 5. Geometric description



The intermediate block is the slave body and the upper and lower dies are master
bodies. In our calculation, the slave mesh is always finer than the master one. This
choice is made according to observations in bi-dimensional cases [HIL , HAB 92,
HAB 97]. Furthermore, the interface meshes do not coincide.

In order to study the asymptotic convergence of the numerical calculation for one
time step, we build a family of finer and finer meshes for both bodies. We begin
with very coarse meshes. The edges length ratio between the coarsest and the finest
mesh is about ten. The iterative solver with a block diagonal preconditioner is used.
Figure 6 shows the computation times as a function of the total nodes number (part
nodes + dies nodes). The asymptotic behavior is proportional to (nb. nodes)'#® (the
asymptote equation is: 0.1167 + 4.0210~*x (nb. nodes)'*®). The convergence rate
is similar to the theoretical rate which is (nb. nodes)*-> [COU 97b]for a single body.
It is not affected by non diagonal penalty terms. That means that if we increase the
number of degrees of freedom by three, adding the mechanical computation in the
tool, we increase the CPU time of approximatively 5.2. This shows the robustness of
the method compared to other iterative methods where balance equations are solved
independently on each body.

o 5000 10000 s 15000 20000 25000
b, nodes

Figure 6. Asymptotic convergence

Figure 7 shows the end of the compression and the evolution of the contact area.
The convex form of the free surface is quite similar in multi-bodies calculation and
in single body calculation. We can observe that the non-penetration condition is well
respected during the process.

6.2. Hemispherical punching

The punching problem has been studied to qualify the contact algorithm. The sym-
metries of the problem allow us to simulate a sixteenth of the process. The geometry
of the problem are shown in figure 8. The upper plane of the punch is submitted to
a constant vertical velocity. We choose a consistency of 169.5 MPa and a strain rate
sensitivity rn = 0.139 for the part. The punch has a consistency one hundred times
higher. At the interface of the bodies, the contact is supposed to be sliding with a
viscoplastic friction law defined by « = 0.4 and ¢ = 0.139. The part is the slave body
and the punch the master one.
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Figure 7. Upper view of the intermediate block with multi-bodies calculation (lft)
and with single body calculation (right)

Figure 8. Geometric description

In this calculation, remeshing is allowed. Optimal topology method for tetrahedra
is used to generate automatically a better mesh, when degeneracy of elements occurs
[COU 97a, COU 00]. This is important for large-strain problems in which the mesh
degenerates long before the end of the simulation. The algorithm improves the mesh,
and the nodal velocity fields are interpolated from the old to the new mesh. In this
study only the slave body is remeshed, while the other remains unchanged throughout
a given simulation. Using the remeshing algorithm does not deteriorate the satisfaction
of the contact conditions because the possible penetrations of the slave domain into
the master ones are small enough to be corrected. The penetrations of the master
domain into the slave one are of the same magnitude as the ones dued to the master
slave approach.

The required number of Newton-Raphson iterations for convergence is seven on
average. The convergence test requires a relative convergence of 10-° on the resid-
ual norm. This residual obviously takes into account the contact terms described in
equation (38). The explicit contact algorithm however can produces artificial small



penetrations that have to be corrected at the next time increment. The order of mag-
nitude of the penetration is about 0.1 mm. The edges length near the contact zone for
the slave body is in order of 10 mm.

In this example, it is clearly shown that, due to constitutive or geometric non-
linearities, at each step, the updated finite element meshes cannot fit together on the
contact zone. In other words, mesh adaptivity procedures used lead to non-matching
meshes. The initial and deformed configurations are depicted in figure 9. Figure
10 represents the initial and the deformed meshes near the contact zone, and we ob-
serve a deformed configuration which seems quite satisfactory, particularly on the
contact part. The chosen algorithm solving discrete contact condition for non match-
ing meshes is quite efficient.
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Figure 10. Theinitial and deformed meshes near the contact zone



7. Conclusion

In order to solve the unilateral contact problem with friction between deformable
bodies, we have considered a finite element approximation able to treat non-matching
meshes on the contact zone. The basic equations in viscoplastic case and the contact
problem have been recalled.

The unilateral contact condition handled by a penalty method and associated with
a slave node-master face technique simulates accurately contact between deformable
bodies.

The coupled mechanical problem was approximated by a stable mixed velocity-
pressure formulation based on a tetrahedric mini-element. An iterative solver is used
to solve very large problems originating from the simultaneous resolution of the me-
chanical problem for all the bodies. The contact terms deteriorate the conditioning of
the stiffness matrix. However, the convergence is still verified and with the same rate.

The coupled calculation gives material informations within each body. Here, only
the slave body is submitted to large deformations and self-contact is not taken into
account. The calculations performed have shown that the contact algorithm is reliable
and accurate.

Finally, the extension of such a contact technique to hot forging simulation with
elastic tools will be investigated. The selected strategy is very important in view of an
easy extension of the present parallel computation approach based on mesh partition-

ing.
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