N
N

N

HAL

open science

Optimal spatial design for air quality measurement
surveys

Thomas Romary, Laure Malherbe, Chantal de Fouquet

» To cite this version:

Thomas Romary, Laure Malherbe, Chantal de Fouquet. Optimal spatial design for air quality mea-
surement surveys. Environmetrics, 2014, 25, pp.16 - 28. 10.1002/env.2253 . hal-01089309

HAL Id: hal-01089309
https://minesparis-psl.hal.science /hal-01089309

Submitted on 2 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://minesparis-psl.hal.science/hal-01089309
https://hal.archives-ouvertes.fr

Optimal spatial design for air quality
measurement surveys

Thomas Romary *  Laure Malherbe Chantal de Fouquet
December 1, 2013

Abstract

Measurement surveys using passive diffusion tubes are regularly car-
ried out to elaborate atmospheric concentration maps over various areas.
Sampling schemes must be designed to characterize both contaminant
concentrations (of benzene or nitrogen dioxide for example) and their re-
lations to environmental variables so as to obtain pollution maps as precise
as possible. Here, a spatial statistical methodology to design benzene air
concentration measurement surveys on the urban scale is exposed. In a
first step, an a priori modeling is conducted that is based on the analysis
of data coming from previous campaigns on two different agglomerations.
More precisely, we retain a modeling with an external drift which consists
of a drift plus a spatially correlated residual. The statistical analysis per-
formed on available data leads to choose the most relevant auxiliary vari-
ables and to determine an a priori variogram model for the residual. An
a priori distribution is also defined for the variogram parameters, whose
values appear to vary from a campaign to another. In a second step, we
optimize the positioning of the measuring devices on a third agglomera-
tion according to a Bayesian criterion. Practically, we aim at finding the
design that minimizes the mean over the urban domain of the universal
kriging variance, whose parameters are based on the a priori modeling,
while accounting for the prior distribution over the variogram parameters.
Two global optimization algorithms are compared: simulated annealing
and a particle filter based algorithm.

keywords Optimal Design, Geostatistics, External Drift Kriging, Air
Quality
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1 Introduction

Mapping air pollution as precisely as possible is a major issue for French Local
Air Quality Monitoring Agencies (AASQAs) both for regulatory and informa-
tion purposes and for public health concerns. Seasonal or annual average con-
centration maps can be obtained from passive sampling data collected at a large
number of sites across the area of interest. In addition to continuous monitor-
ing performed by automatic stations, sampling surveys are useful to evaluate
the spatial distribution of atmospheric concentrations more precisely and pro-
vide information about air quality in any part of the territory, as required by
the European legislation. Furthermore, spatial information provided by pas-
sive sampling surveys may be very helpful in addressing the question of the
spatial representativeness of monitoring stations. This issue has been receiving
increasing attention during those last years due to exposure concerns, cost con-
straints and air quality modeling considerations. Those reflections highlight the
necessity of developing efficient sampling design methodologies which are able
to integrate various data about the environment characteristics and so that the
resulting concentration maps fulfill precision criteria.

With its internal quantification of spatial variability through the covariance
function (or variogram), kriging methodology can produce maps of optimal pre-
dictions and associated prediction error variance from incomplete and possibly
noisy spatial data, see e.g. Chiles and Delfiner (2012) and de Fouquet et al.
(2007) for an application in atmospheric sciences. Through external drift (or
universal) kriging, relevant environmental covariates can be taken into account
to improve the prediction accuracy.

Various methods have been proposed in the literature for the problem of col-
lecting spatial data, see Miiller (2007) or De Gruijter et al. (2006) for a review.
Specifically, several competing goals can be considered when sampling spatial
data. The main interest can be in the quality of the resulting kriging map,
in the sense of the prediction variance under known values of the covariance
parameters, as in Van Groenigen et al. (1999) or Brus and Heuvelink (2007).
Otherwise, we may want to estimate the covariance parameters accurately, as
in Zhu and Stein (2005), or both covariance and drift parameters as proposed
in [Miiller and Stehlik (2010). Information matrix based criteria have there-
fore been proposed. Providing sampling designs that satisfy both criteria is
a particularly challenging task however. The key issue is how to incorporate
the parameter uncertainty into design criteria to correctly represent the uncer-
tainty in prediction. Several approaches have been proposed. Zhu and Stein
(2006) consider to split the sample into two parts, each of them satisfying one
of the criteria. Zimmerman (2006) proposes to minimize the empirical kriging
variance, a criterion that endorses both aspects.

The purpose of this work is to design a sampling scheme for a fixed number
of locations, taking into account the available information coming from previ-
ous surveys. The quality of the resulting kriging maps being our main goal,
we also would like to control the accuracy of the parameter estimation as a
small perturbation of a covariance parameter value may have a great impact on
the prediction variance. The methodology developed relies on the definition of
a quality criterion of the sampling design, based on the external drift kriging
variance (see e.g. Chiles and Delfiner (2012)). A general family of criteria is
proposed. In particular, a Bayesian criterion is introduced that allows to ac-



count for an a priori knowledge on the uncertainty of model parameters such as
covariance parameters. The a priori distribution is defined from an analysis of
the available data and our own knowledge about the phenomenon under study.
The uncertainty about the parameters is accounted for afterwards. First a pop-
ulation of candidates designs is generated, then they are classified according to
their performances in estimating the parameters of the covariance accurately.
Optimizing one of these criteria over a grid is a challenging combinatorial prob-
lem. Heuristic global optimization are needed and the adaptation of the simu-
lated annealing algorithm (Kirkpatrick et al. (1983)) to the problem of optimal
spatial design proposed by Van Groenigen et al. (1999) is generally used. In this
paper, we describe a proposal kernel that helps to better explore the space of
possible designs and hence to optimize the criterion faster. Besides the simulated
annealing algorithm using the aforementioned kernel, we propose an interact-
ing particles algorithm inspired by |Cappé et al| (2004). The latter allows to
generate a whole population of near optimal designs, whereas the simulated an-
nealing proposes only one solution. This population can then be used to build a
intensity map of the sampling process that can be used as a tool by the operator
to effectively install the passive samplers. Indeed, at the agglomeration scale,
downtown in particular, physical constraints may preclude from using exactly
the location proposed by one optimal sampling design.

In Section [2, the modeling of the pollutant concentration is exposed. Within
this settings different criteria are exposed and discussed. Section [3 presents
and discusses the two global optimization algorithms that are proposed. The
methodology is then applied in section/4 to the problem of designing a sampling
scheme for a survey of the benzene concentration over the agglomeration of Bor-
deaux. Data from previous surveys were available to conduct the modeling step.
Finally, we show how the proposed methodology can be used to dimension the
network of passive samplers. This work completes and extends Romary et al.
(2011).

2 Modeling and criterion definition

2.1 Modeling, prediction and inference

A classical spatial model is adopted for the pollutant concentration. The con-
centration is decomposed in a drift plus a spatially correlated residual:

Z(x) = fo +Y'(2)B + S(z), (1)

where Z is the pollutant concentration variable, x € X C R? is the spatial coor-
dinate, Y is the matrix of covariates exhaustively known on X, [ is a vector of
unknown parameters and S(z) is a centered, spatially correlated residual with
covariance Cy, with parameters #. No assumption is made over the distribution
of S for the moment.
Once the covariance model has been fitted and given Z = (Z(x1),...,Z(zy)),
Y = (Y(x1),...,Y (x,)) and the covariance matrix Cy of S at locations (z1, ..., Zn),
Z(xo) can be predicted by kriging with external drift (also called universal krig-
ing):

Z(x0) = (co+ Y(Y'Cp ™ Y) (Yo = Y'Cp ' c0)) Co ' Z, (2)



where ¢g = (Cy(xo,21),...,Co(x0,2,)) and Yo = Y(zo) is the vector of co-
variates at xg. The associated prediction error variance, given by:

V(Z(x0) — Z(x9)) = C(0) — ctCy o
+(Yo—Y'Coco) (Y Cy 'Y) (Yo - Y'Cy o), (3)

accounts for the prediction error variance of the residual (second term of (3))
and for the prediction error of the drift as well (third term of (3)). Addition-
ally, the prediction error variance depends on the sampling scheme 7 through
co, Cp and Y and not on the values of Z, when Cjy is known beforehand. It
can be shown that the universal kriging predictor and the associated predic-
tion variance corresponds to their Bayesian counterpart when Z is Gaussian,
Cy is known and an non informative prior is used for 3, see Handcock and Stein|
(1993).

Throughout the above exposition it has been assumed that the covariance func-
tion Cy(z,y) and its parameters are known. In practice, however, this is almost
never the case. There exists a wide range of different techniques for estimating
C from least squares based methods to maximum likelihood under Gaussian
hypothesis through Bayesian methods, see e.g. |Gelfand et al. (2011). We first
describe the classical least squares approach in the case of a stationary covari-
ance. This approach consists of different steps. First, the regression term is
estimated by ordinary least squares (OLS). Then the empirical semivariogram
of the residuals is computed by the following formula:

)= gy 2 B~ 8 @

|z;—x;|=h

where N (h) is the number of pair of points separated approximately by the dis-
tance h and the s(x;) are the residual from the fitted provisional mean function
at location x;. A parametric model y(h) is then fitted by weighted least squares
to the empirical variogram. Then, the covariance matrix of the residuals is built
upon the following formula: C(x,y) = C(0) —v(|x —y|), where C(0) is given by
the sill (max~y(h)) of the fitted semivariogram. The regression parameters are
consequently reestimated by generalized least squares (GLS) or EGLS (where
E stands for estimated). If desired, the GLS residuals may be computed and
the semivariogram reestimated from them. This procedure is necessary because
the residuals obtained from the OLS estimation do not belong to the correct
subspace, as the spatial correlation is not taken into account in OLS.

There exists two main problems with OLS estimation of covariance parameters
however : the need of tuning the window size for the computation of the empir-
ical variogram and the lack of uncertainty quantification of the estimates. The
empirical variogram remains a necessary tool however to choose the parametric
family of covariances that are to be used.

Under the Gaussian assumption and with particular assumption (Mardia and Marshall,
1984), the maximum likelihood approach allows to build an asymptotic esti-
mate of the variance of the estimated covariance parameters. Indeed, under
this model, the log-likelihood function of Z takes the form:

1(5,6) = 5 log(2m) — 5 log (det(Cy)) — 5(Z~ V') (Z~Y'B). (5



By maximizing (5)), we get the maximum likelihood estimators Bn and 9\” Then
the Fisher information matrix can be derived to provide an estimate of the
inverse covariance matrix of the estimated covariance parameters:

Iwrﬁm<gwam(§ﬂ@m)). )

Moreover, the (j, k)th element of Z(6) takes the following form:

| RS
140) = L (0 Chep0h). .
where €7 = %—(57‘_’. Even if this result is theoretically correct under particular

conditions and not in others, especially when the covariance parameters cannot
be estimated consistently (see e.g. Zhu and Stein (2006)), it provides a reason-
able indicator of the quality of the estimation of 8. We can see that (7) depends
on the locations of the points through Cy and its derivatives and not on the sam-
pled values. The problem however is that (7) depends on the unknown value
of #. Therefore, it can only be used locally, say around an initial guess 6, or
within a Bayesian framework when some prior information over the covariance
parameters is known.

The information matrix of the regression parameters can also be derived and is
obtained by a formula similar to (6). It is worth noticing that it is orthogonal
to (6), as the terms 85(9%’;) are null. Therefore, introducing the parameter es-
timation uncertainty in a design quality criterion can be done separately for 6
and S.

Finally, when 0 is estimated from the same dataset with which the prediction
is performed, an additional uncertainty enters the prediction variance (3). It is
generally approximated by

Mo\ -, 0N
G il s —_—
tr( (0) ((90) Cog | (8)
where g = C;lco, that is the kriging weights, see Zimmerman and Cressie

(1992). (8) accounts for the mean squared error of the difference between the
predictions performed with the estimated 6 and with the true value of 6.

2.2 Quality criteria of sampling designs

Equation leads to a straightforward quality criterion of the sampling scheme
when the aim of the study is to predict the pollutant concentration as accurately
as possible:

mmﬂ%Aywm—awm, (9)

where |X| is the area of X. Here, the prediction error variance is averaged over
the area under study. Therefore, sampling schemes obtained by minimizing
this criterion will lead to accurate mapping of the concentration, performing
a balance between the quality of the drift prediction and the spatial predic-
tion. However, as shown in Romary et al. (2011), it may be of interest to target



preferentially some areas, for instance to map more precisely the pollutant con-
centration where it is likely to be high. This weight function can be designed to
obtain a more accurate mapping in some areas, for instance as a function of the
covariates, especially where we expect to encounter extreme values. Note that
it will also be helpful for the subsequent variographic analysis once the survey
has been performed. Indeed, it will make it possible to correct the undesirable
effects of preferential sampling for the estimation of covariance parameters by
assigning a weight to each datapoint.

Finally, when some parameters of the model cannot be fitted accurately or when
their inference presents variations over the different available datasets, we can
associate them an a priori distribution. Then a Bayesian version of (9) can be
considered:

oBayesm):% /@ /X V(Z(x) - 2(2)|0)w(x)p(B)dzds,  (10)

where 6 € O is the set of uncertain parameters and p(6) is its a priori distri-
bution. It is worth noticing that (3) is proportional to the point variance of
Z and hence the optimal design (according to (9) or (10)) is independent of a
multiplicative factor of the covariance function.

The estimation uncertainty of € is not taken into account in (9) and (10). The
error term (8) can be added but will increase the computational burden. A cri-
terion based on the full Bayesian predictive distribution over X’ and (3, ) could
also be considered but remains infeasible, as each evaluation of such a criterion
would involve a long MCMC run. As an alternative, we propose to consider the
following criterion:

Oparam () = — / log det(Z(6]1))p(8)do, (11)

where Z(0|n) is the Fisher information matrix associated to the design 7. It
can be seen as an average of the log variance of the likelihood estimates of
the covariance parameters over the prior distribution. Minimizing this quantity
will lead to optimal designs for the estimation of the covariance parameters. It
seems therefore reasonable to think that a design that shows good performances
in will come along with a small value for (8) over X, while reducing the
computational burden as (11) do not involve an integral over X.

The remaining problem is how to minimize (10) and (II) simultaneously. One
could think about building a compound criteria as a weighted average or to split
the design into two populations and perform the optimization sequentially on
each. These solutions imply however to make arbitrary choices of the weights
or the proportion of the population, otherwise to test a wide range of tuning
parameters values and choose the one that produce the best results, assuming
that the computational burden is not to heavy. Splitting the sampling design
into two with varying proportion has been proposed in Zhu and Stein (2006). In
their conclusions, they highlighted the fact that the best results where obtained
when the proportion of additional points (added with respect to an estimation
criterion) was below 10% of the overall population. Therefore, we propose to
generate a population of candidate designs with good performances with respect
to (10) and then to assign them a weight given by (11). This will makes more
sense after the description of the interacting particles algorithm.



3 Optimization algorithms

Once the covariance model, the relevant auxiliary variables and the prior dis-
tribution for # have been identified, the criterion (10) has to be optimised with
respect to n. Its computation involves an integral over X that is evaluated on
a grid discretizing the domain. When considering a fine grid, it amounts to
choosing the best combination of n locations among all points of the grid. It is
therefore a hard combinatorial problem. Considering all possible combinations
is practically out of reach. Moreover, there is no closed-form expression of the
gradient of (10) and a steepest descent approach is not feasible. Therefore, we
have to rely on heuristic optimization algorithms to perform the global optimiza-
tion: the standard Simulated Annealing (SA, Kirkpatrick et al. (1983)) scheme
and an Interacting Particles Algorithm (IPA, inspired by Cappé et al. (2004))
are proposed. The variant of the SA algorithm proposed here is depicted in
algorithm [T]

Algorithm 1 Simulated annealing
Generate 7
fori=1...N do
Simulate ¢ from g, ,
Simulate u ~ U, 1
if u < oo = min(exp (M) 1) then
ni=¢
else
i = Ni—1
end if
Decrease T’
end for

Since the seminal work of Kirkpatrick et al. (1983), inspired itself by Metropolis et al.
(1953), SA has been widely used and is well documented, see e.g. [Miiller et al.
(2004) for an application to optimal design. The fundamental idea of this algo-
rithm is that a change of scale, named temperature (T in algorithm [I)) , allows
larger moves on the surface to optimize and therefore avoid theoretically to re-
main trapped in a local minimum.

Practically, SA is an iterative optimization algorithm in which a sequence of
states (7;) is generated by deriving a new solution from randomly modifying
the previous state by the inhomogeneous kernel ¢,, ,. Each time a new sam-
pling scheme is generated, the criterion is evaluated and compared with the
value of the previous state. If the criterion value has been improved by the
change, the new state is systematically accepted. Otherwise, the simulated an-
nealing algorithm may accept changes that worsen the criterion according to a
given probability, given in algorithm[1. This helps to avoid remaining trapped
in a local minimum.

The main shortcomings of simulated annealing are well known, particularly the
need of a tedious tuning of the parameters and the uncertainty of finding the
global optimum in practical applications. Indeed, theoretical results point out
that in most cases a logarithmic decrease of the temperature is necessary to
ensure the asymptotic convergence, a condition that is never met in practice.



One generally uses a geometric cooling schedule with a factor between 0.99 and
0.9. Furthermore, the propositional kernel needs also to be tuned as it may vary
with respect to the temperature: at high temperatures SA authorizes the sam-
pling scheme to vary widely while at low temperatures only slight modifications
of the current state will be accepted at a satisfactory rate.

Finally, because of its stochastic nature, SA will not produce the same results
from one run to another, especially if the objective function to optimize presents
several local minima. It may be the case in sampling scheme optimization where
the objective functions are generally flat with lots of local minima, see e.g.
Miiller et al. (2004) and [Amzal et al. (2006). Therefore, there should not be
one but a population of optimal designs, corresponding to different minima of
the criterion. Going further, this population of optimal designs can be seen as
the modes of a distribution over the space of the sampling designs. Simulating
from this distribution would make it possible to generate a population of op-
timum designs or even a density representing the probability of a location to
be chosen to position a sensor. Based on these tools, the practitioner can then
choose the design that best fits with practical constraints

This reflection leads us to propose the algorithm[2 whose goal is to simulate from
a distribution of sampling designs rather than to find one optimum design, while
simplifying the parametrization with respect to SA. Indeed, IPA will produce
a whole family of weighted solutions without using a temperature parameter.
Here, instead of modifying sequentially one sampling design, a whole population
of n particles (n sampling designs) is considered. At each iteration, each of the
n particles is modified. Then the n/2 best particles are selected and resampled
according to their weights. The weights used for the resampling are function
of the objective function value and of the global distance A(n()) between the
considered particle 79) and all the others. This distance is introduced so as to
hinder the degeneracy of the population and is defined as follows:

A(nD) = exp ZZI??(” D1,

z#]l 1

where © is a normalizing constant and | (1) = (1)| is the Euclidean distance
between the points [ of the designs j and i. This algorithm has the advan-
tage to produce a whole population of candidate designs without any tedious
parametrization. It is also straightforwardly parallelizable.

Algorithm 2 Interacting particles algorithm

Generate nol’“"n)

fori=1...N do
forj=1...ndo
Simulate 7;) from 4,0
end for

Select the n/2 best particles ; (Loreeo/2)

Generate 77(

A1)

end for

-m) by resampling 77 Leon/2) with weights exp ( O(?]zm)>




Once the population of candidate designs has been generated, the criterion for
the estimation parameters (11) can be computed for a carefully chosen subsam-
ple. By subsampling or reweighting the design population with respect to the
value of (11)), we can produce the intensity map of the sampling process by a
kernel density estimation.

In both algorithms, the following propositional kernel is used:

q=pq + (1 —p)g, pe[0,1], (12)

where ¢; replaces one or several uniformly selected points of the current design
by one of its neighbors on the grid that is distant from less than h;, and g re-
places one or several uniformly selected points by one of its n; nearest neighbours
in the covariates cloud. This kernel helps to explore faster the covariates cloud
and therefore accelerates the convergence, with respect to Van Groenigen et al.
(1999) and Brus and Heuvelink (2007) where only the kernel ¢; is used. In SA
and TPA, the search radius h;, the number of neighbors n; and the number of
points that are affected decrease along the algorithm.

4 Application

In this section, we apply the methodology described above to generate an opti-
mal sampling design for a monitoring survey of the atmospheric benzene con-
centration by passive diffusion tubes over the agglomeration of Bordeaux. In
our application, we would like to use all the information about the spatial be-
haviour of the air concentration of pollutants gathered in previous surveys, not
necessarily on the same agglomeration the sampling design has to be generated.
The estimation of 8 and 6 is performed on each available dataset. For the co-
variance estimation step, it can be useful to consider a single parametric family.
Indeed, in the approach described below, it will be easier to account for the
uncertainty of a parameter value than that of a covariance model. Then the
variation range of the estimated covariance parameters is considered to build
a (informative) uniform prior. To sum up, the study of the available datasets
makes it possible to select the auxiliary variables and to define an a priori dis-
tribution on the covariance parameters that will be used in the following. In
practice, the estimation value of the regression parameters vary largely from
one agglomeration to another, depending on the urban characteristics of each
one. Therefore it makes sense to consider a non informative prior on (3, which
is taken into account by the universal kriging based criterion. The estimation
step is described briefly prior to the results. For more information on the latter
step, we refer the interested reader to Romary et al. (2011).

4.1 Model estimation

A geostatistical analysis of the data collected during previous surveys is per-
formed in order to set up the model (covariates, covariance function and priors)
to use when applying the optimization method to another agglomeration. Data
from benzene concentration monitoring surveys conducted in two French cities
(Lille and Reims) are used to fit the geostatistical model (1). For each survey
of each agglomeration, a variable selection is performed among the translated
logarithm of land cover variables, population density and their cross products.



Among a preselection obtained by LASSO due to the large number of possible
predictors (see Tibshirani (1996) and Friedman et al) (2010) for the associated
R package), most relevant variables are identified by stepwise backward elimi-
nation (see e.g. Saporta (2006)).

For Lille surveys, a heteroscedastic variance is fitted, accounting for the in-
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Figure 1: Mean benzene concentration Figure 2: Experimental and fitted var-
as a function of the population density iogram of the residuals (Lille, average
(Lille). of two surveys).

crease of the benzene concentration variability as a function of the population
density: the intraclass variance appeared to be two times larger for population
density values higher than the median, see figure[I. Owing to this, weighted least
squares were used to estimate the associated linear regression models, where the
weights were chosen to be the inverse of the intraclass variance. Urban fabric
proportion and population density were finally retained as prior covariates as
they appeared relevant in most surveys. Then, for each survey, the variogram
of the residuals has been fitted with the automatic variogram fitting function
of the package Renard et al) (2010) for R. Note that the heteroscedasticity had
been previously filtered out from the residuals by the weighted least squares
estimation step. Therefore, a model consisting of an heteroscedastic nugget ef-
fect plus a linear spatial structure appeared to be the most adequate for all the
surveys. Finally, the following covariance model has been retained:

|z -y
R

C(xay) = 91(]— + ]l{Yl(x)>m1})]l{\ac—y|=0} + 02(]— - ) , T,y € X, (13)
where R = max(, ,)ex2(|z —y[), Y1 stands for the population density, m is its
median over the domain, 6, and 0, are two varying parameters. The spatially
varying nugget effect accounts for the heteroscedasticity related above. It has
been observed on Lille but not on Reims. It is retained in the prior modeling
as the typology of Bordeaux is closer to that of Lille than to that of Reims, in
terms of size, population density and urban fabric proportion. The second term
of corresponds to a linear spatial structure and was relevant for all surveys.
Hence, S(z) can be decomposed in two terms : the first one accounting for a

10



heteroscedastic punctual variance and the second one accounting for a linear
spatial structure.

Finally, note that (13) is a generalized covariance function: there is no covariance
model associated with the linear variogram, as it corresponds to a non stationary
model. However when considered on a bounded domain a generalized covari-
ance function can be built to simplify the computations, see Chiles and Delfiner
(2012) for more details on generalized covariances.

The estimates of 6; and 6y were found to vary among the different studied
datasets. Therefore, we chose to consider them as uncertain and to use the
Bayesian criterion (10). As noted in section 2.2] this criterion is proportional to
a multiplicative factor of the covariance function. This allows us to set C'(0) = 1,
where Y7 (z) < my, and 6; = 1 — 65, so that only one parameter varies. This
enables to simplify expression (13) to get:

|z -y
R

-y
Clr,y)=1- % + 01 (L gyy (@) >miy Lfje—y|=0} —

), my X (14)

The a priori distribution of this parameter has been set to the uniform distri-
bution over [0.2,0.8] so as to include all situations encountered in the model
estimation step.

Concerning the regression parameters, they were find to vary widely from one
survey to another, even on the same agglomeration. Therefore, the choice of
a non informative prior, through the use of the universal kriging variance, is
justified.

4.2 Results

The French agglomeration of Bordeaux is taken as an application case. The
domain size is 38km x 45.5km, it is discretized on a 184 x 154 grid with a 250m
step. The criterion (10) is optimized with the following weight function

w(z) = 1+ 9y, (2)>min{Va(z)>ma} (T),

where mqy stands for the median of the urban fabric proportion. Such a cri-
terion assigns a relative weight of 10 to points belonging to areas where both
population density and urban fabric proportion exceed the respective median
observed on the domain. Furthermore, to speed up the calculation, a coarser
grid, with a 500m step, is used on areas where the weight function value is low.
The justification for this is that since a low number of points will lie in those
areas, it is unnecessary to offer a large choice of locations. This allows to reduce
the number of grid points from 28336 to 11940, hence to reduce the computa-
tional burden by a factor 2.4. The weight function is of course modified so as
to maintain the desired weights.

Moreover, the evaluation of the integral with respect to § = 6; in (10) can be
performed with a simple numerical integration scheme as the function that maps
61 to the mean universal kriging variance is linear over the interval [0.2,0.8], as
shown in figure (3] although it is not obvious from (14). This allows to evaluate
the integral by using solely the midpoint of the interval to evaluate it. It terms
to compute with p(01) = 1{g,—0.5}-

The determinant of the Fisher information matrix is not linear in 6; however.
This implies that the numerical integration scheme to evaluate (I11) requires

11



—log(det(1))

Figure 3: Mean universal kriging variance (a.) and -log determinant of the
Fisher information matrix as a function of 6,

more than one single point. We therefore decide to compute (11) by the trape-
zoid formula over [0.2,0.8] discretized with a 0.1 step. The performances of both
algorithms are compared, in terms of optimization quality and computing time
on the problem of placing 105 sampling points. Finally, the criterion (11) is
computed for the optimal designs generated. This number of samplers was cho-
sen as the number of samplers used for previous surveys on the agglomeration
of Bordeaux, taking into account the budget constraints.

The SA algorithm was run until no moves were accepted for 200 iterations, that
is until the acceptation rate became less than 0.005 over the last iterations. The
initial temperature was chosen such that the initial acceptation rate of wors-
ening proposition was greater than 0.9, following the rule of thumb given in
Kirkpatrick (1983). The temperature was lowered exponentially with a geomet-
rical rate of 0.95. The search neighbourhood radii, in the physical space and in
the covariates cloud, as well as the number of points moved, decreased along the
algorithm together with the temperature. The initial design was generated ran-
domly. The algorithm was implemented with R (R Development Core Team,
2010) and took about 4 hours to run on a desktop computer.

Figure [4] presents the results provided by the SA algorithm. It is made of 4
graphs. In the upper left corner is depicted the curve of the criterion value of
each accepted design along the algorithm. The profile of this curve is typical of a
SA algorithm: when the temperature is high, worsening states are more likely to
be accepted than when it is low. Indeed, this curve becomes more regular along
the iterations. In the upper right corner is plotted the empirical acceptation rate
over all iterations: it starts from values close to 1 and decreases gently towards
lower values. Note that over the last 200 iterations, its value is 1/200. The two
lower figures represent the optimal sampling design obtained by SA. We can
claim that the criterion (10) has been properly optimized. Indeed, the lower
left plot, where the sampling design is plotted together with the urban fabric
proportion, shows that most of the points of the resulting sampling scheme are
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placed in urban locations while the others cover uniformly the surroundings of
the agglomeration. This indicates that the weighting has been respected while
the infill effect of minimizing the average variance over the whole domain is
present. The lower right picture represents the sampling points in the covariates
cloud. Most of the points are located close to the bounds of each covariate and
close on the left to the limit defining the nonstationary nugget effect which is the
median. This behaviour was expected as it is well known that the best design
to estimate a linear regression by ordinary least squares is to have one point
at each extremity of the regression line. As the drift is implicitly estimated by
weighted least squares, due to the nonstationary covariance model used here,
additional points near the limits defining the non stationary variance have been
generated with a number of points on both sides that depends on the weighting
function, see Appendix [A for more details. Therefore, the occurrence of this
pattern indicates that the criterion has been properly optimized. Finally, SA
has produced an optimal sampling scheme that makes the balance between a
good spatial prediction over the domain and the estimation of the drift, while
respecting the weighting imposed for the densely populated and constructed
areas.

Finally, the computed value of (11) was found equal to 4.49, to be compared
with the results obtained by the designs generated by IPA.

Figure[5 represents the results obtained with the IPA. It has been run for 1000
iterations with 50 particles and took about 8 hours to run on a dual proces-
sor computer. No acceptation rate is plotted since the transitions are always
accepted in this algorithm. The graph on the upper left shows the criterion
value curves (one for each of the 50 particles) as a function of the number of
iterations while that on the upper right represents the best (in the sense of the
Fisher information matrix based criterion (11) sampling scheme generated in
the physical space, together with the urban fabric proportion over the agglom-
eration. The decreasing profile of the criterion curves is absolutely different
from that observed with the SA (figure[4). It is very fast during the first 100
iterations, then less fast between 100 and 400 iterations and finally the curves
seem to attain a floor beyond 400 where they exhibit a stationary behaviour.
Moreover, the minimum value reached for the criterion is significantly greater
than the one found by SA.

The best design that is represented in both physical and covariates spaces has
a value of (10) of about 11.5. The corresponding value of (11) is slightly lower
however (4.48). The representation in the space of covariates is given in the
lower left corner. It is very similar to that of figure (4] except that the points are
less concentrated near the bounds of the auxiliary variables values. If we look
at the design that performs the best in terms of average kriging variance among
the whole population however, it is slightly higher than the one found by SA
(4.53). This value is actually one of the worse among the generated population.
Overall, the value of (11) is comprised between 4.48 and 4.54.

The graph in the lower right corner of figure[5 depicts the kernel density esti-
mate of the point locations computed with the best 1000 designs generated by
the TPA. They have been subsampled from the whole population by selecting
the best 1000 designs according to (11), with values between 4.48 and 4.50.
Although this density is estimated from only near optimal designs, it gives an
insight on the likely locations of design points. Indeed, the optimal design gen-
erated by SA shares some patterns with this density: the high concentration of
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points in the center of the city and the almost uniform location of the points
outside the urbanized areas. Some artifacts exist however: the mode situated on
the north edge of the agglomeration seems odd. This may be due to the small
size of the population used. A larger population may have given better results,
as it would have performed a better exploration of the set of the designs, but the
numerical burden would have been heavier. Nevertheless, this density estimate
illustrates that there is not a single optimal sampling design but a whole family
of near-optimal designs (as can be seen when running several times SA with
different random seed), which shares the patterns of this estimated density.
The fast decrease of the objective function during the first iterations of IPA
can be explained by the ability of the algorithm to explore quickly the space
of possible designs and to select the best design. Its inefficiency to optimise
the criterion properly however is certainly due to the fact that no constraint is
imposed on the decrease of the criterion value, contrarily to SA. Even if this
would drive away from the objective of simplifying the parametrization, the
good properties of this algorithm could be exploited in a combination with SA.
For instance, several near-optimal designs provided by IPA could be used as
starting points for SA.

4.3 Dimension of the sampling design

By running several times the SA (with different seeds) with an increasing num-
ber of points, a decision support for the size of the sampling design can be
determined. In figure [6] a., the criterion (10) is plotted as a function of the
number of points, in black, while the red curves are made of the maximum and
the minimum of the criterion among 10 different runs. The criterion decreases
quickly from 25 to 100 points then shows an almost linear decrease. Moreover,
the range of the variation interval of the criterion value decreases dramatically
as the number of points increases except when considering 500 points. This
illustrates a good stability of the results for this implementation of the SA. The
variability observed for the last case is certainly due to the incomplete conver-
gence of the algorithm: it reached the maximum number of iterations, set to
20000, prior to fulfill the stopping criterion. While adding points at the be-
ginning decreases drastically the mean prediction variance, there seems to be a
threshold (around 100) beyond which adding new points will only have a impact
on the prediction variance at a scale inferior to the discretization step. There-
fore, beyond this threshold, adding points does not affect so much the perceived
prediction quality, the criterion decrease being explained by the mechanistic
effect of subtracting one term to the sum that approximates (10). Finally, we
can conclude from figure[6 a. that a necessary number of sampling points is to
consider, which is about 100 in our case, to get high precision maps at a given
resolution. Note that adding more points is still useful if the budget allows it.
In that case, it may be interesting to reduce the discretization step. Three re-
sulting designs are depicted in figure[6 b.,c. and d., respectively for 50, 100 and
150 points. The evolution of the design when the number of points increases is
mainly characterized by two patterns: an improvement in the spatial coverage
of the low-weighted areas and an increased density of points in high-weighted
areas.

Drawing such a figure can be useful for future users. The size of the sampling
scheme can be decided as a function of the desired level of precision the forth-
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generated by SA.

coming map should meet. Particularly, the responsible of an AASQA can see the
level of precision that he can afford and decide to amend the budget devoted
to the survey accordingly, especially in order to reach the necessary number
of points defined above. The possible losses of sensors due to dysfunction or
vandalism (around 10% in average) can also be taken into account a priori.

5 Conclusions
The current work exposes an optimal design methodology for the problem of

generating sampling designs for measurement surveys of air quality, where the
objective is to map the concentration of pollutant as precisely as possible at
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the considered scale. This methodology allows to generate optimal sampling
schemes based on available information, including known relationships between
the pollutant and environmental variables as well as uncertainty about the co-
variance parameters. A discussion about the different possible criteria lead to
choose a pragmatic solution: first optimize the Bayesian weighted average krig-
ing variance over the field, then order several near optimal designs according
to their performance in terms of covariance parameters estimation quality. A
new proposal kernel for the global optimization algorithms and an adapted in-
teracting particles algorithm have also been introduced. The methodology has
been applied here to benzene sampling over urban areas but it is general and
can be straightforwardly extended to the study of other spatial phenomena and
to other spatial scales.

We considered the problem of the existence of possible multiple optima of the
objective function through the use of an interacting particle algorithm. Estimat-
ing the density of the sampling points generated gave an insight of the patterns
that a good sampling design should exhibit. It may also be more useful to the
end-user to have a indicative map of the locations rather than a single “opti-
mal” design, as practical installation of passive samplers requires flexibility due
to physical constraints.

In particular, this map can be obtained by subsampling the population of de-
signs according to different criteria. Here, we chose to select the design with
respect to the quality of the forthcoming covariance parameters estimation. It
is worth noticing however that the best design among the population produced
by the IPA, chosen according to the Fisher information matrix based criterion,
and the best design produced by the SA algorithm are very similar in terms of
criteria values and spatial patterns. It seems that the prominent patterns that
a good design (according to our criteria) should exhibit are: a domain covered
uniformly overall with a high concentration of points within the urban centers
with some close pairs, points well distributed in the covariates cloud, so as to
perform a good estimation of the regression part of the model. These results
recall those already shown in Diggle and Lophaven (2006). In that paper, the
authors computed a Bayesian criterion based on the predictive posterior distri-
bution for a selection of designs that were built upon geometrical considerations.
The results showed that the best performances were obtained for designs that
fills the space uniformly with additional close pairs. Optimizing such a criterion
remains intractable, as a MCMC run is required for each evaluation. A promis-
ing solution to speed up the calculations however would be to use the recently
developed SPDE-INLA methodology (see Lindgren et al. (2011) and Rue et al.
(2009)) that decreases drastically the computational burden. The theoretical
assumptions may be too restrictive for pollution however.

The main problem with the Bayesian approach indeed is that it relies on strong
assumptions about the distribution of the data that may not be fulfilled. The
data from the available surveys were indeed far from being normally distributed
with possible extreme values. It remains to define a more suitable probabilis-
tic model to the pollutant concentration distribution and to adapt the criteria
accordingly. In this work, we found it reasonable to consider that the larger
weight given to urban areas would force the points to better cover the areas
where extreme values can occur but this approach can seem insufficient.

We finally studied the effect of the dimension of the sampling design on the
quality criterion value of the optimal design generated by SA. The plot of the
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curve, that represents the optimal value (found by SA) of the criterion as a
function of the number of sampling points, leads us to define a necessary num-
ber of sampling points that corresponds to the number of points beyond which
this curve becomes almost linear, indicating that the effect of adding new points
becomes less important.

The proposed methodology has been developed with the aim of supplying scien-
tific and technical support to the French local air quality monitoring agencies.
For the moment it has been applied to benzene sampling over urban areas but
it can be extended to other pollutants such as NO2, to larger spatial domains
like regions or even other applications like soil sampling.
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A Optimal sampling for the linear regression
parameters estimation in presence of a het-
eroscedasctic variance

We examine here the simple case of building an optimal design for weighted
linear regression with one predictor assuming independent errors (residuals),
with two levels for the residual variance (below and above some threshold for
the predictor).

We consider the following model:

Y, =ax+e,, ze€]0,1],

where ¢, are independent, centered, random variables with V(e,) = 1 4 1,5,
0 < a < 1. We assume that we have n measures Y = (y1,...,y,) and we form
the vector X = (x1,...,2,). We also form the matrix 3 such that

Yij = (1 +14,54)05,

where §;; = 1 if ¢ = j, 0 otherwise.
In that framework, it is well known that the BLUE (best linear unbiased esti-
mator) of « knowing X is given by:

ax = (X's7'x) 7 XY,
and its variance by:
V(ax) = (X's7'x) 7",
We can write down the prediction variance as follows:
V(Ye - V2) = V((a - ax)r +<)
=V(ax)z® + 1+ Lysa
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Minimizing the averaged prediction variance over [0, 1] terms to minimize:

/;V(Ym—}//;)dm

| B

O(X)

Therefore, in that case, minimizing the averaged prediction variance over [0, 1]
terms to minimize V(ax).
We now give a closer look to this term. We have:

Z; X
SX)i = =i — Sl
( ) 1+ 1,,-, € o twi>
= X'sx =) (x? - 2’1lxi>a>
i=1

= V(ax) = (X'37'X)" =

2

n 2 Zv’
> i1 (931 - ?1]1%_”)

This quantity is not differentiable with respect to x; because of the indicators.
Using derivation in the sense of the distributions makes appear Dirac terms and
the quantity obtained is difficult to interpret. Nevertheless, it can be seen that
this quantity is minimized when the denominator takes large values, that is for
values close to 1 (the maximum of z) or values close to a (but inferior).
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