

05 November 2014, Athens, Greece

A novel approach for electric load curve holistic modelling and simulation

Thibaut Barbier, R. Girard, F-P. Neirac, N. Kong, G. Kariniotakis

MINES ParisTech –PERSEE Centre
Ph. D. student - Renewable Energies & Smartgrids Group thibaut.barbier@mines-paristech.fr

I. Introduction and context

Changes in electric load in the distribution network

- decentralized production
- ☐ new uses, technical innovation, renovation...
- new possibilities of smart load control

I. Introduction and context

Issues about distribution network planning and future operation

- ☐ Technical innovation
- Active and smart devices

☐ Accurate power equilibrium

More and more data available

Objectives for an electricity consumption modelling

- □ Physical modeling of consumption devices and buildings
- ☐ Generic and easily modifiable implementation
- ☐ Simulation of individual electricity consumption of thousands of consumers at a variable time step
- Both macroscopic and microscopic inputs
- □ Rapidity of simulation to benefit automatically from large databases

I. Introduction and context

Structure of the electricity load curve simulator

Estimated electricity consumption $P(t) = f(x_i)_{i \in [1:N]}$

x_i input parameters, N ≈1000!

Formal description of the simulator

☐ Each device j is modeled by blocks of constant power

Formal description of the simulator

- ☐ Each device j is modeled by blocks of constant power
- □ Each device is launched

Formal description of the simulator

- □ Each device j is modeled by blocks of constant power
- □ Each device is launched
- ☐ The total power is the sum on each device and each electricity consumer

$$P(t) = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} \sum_{l=1}^{L} P_{ijkl} * \mathbb{1}_{d_{ijkl}} (t - T_{ijkl})$$

Launches

Block

Power

Consumer

- Residential
- ☐ Type of tertiary
 - Offices
 - Restaurant
 - •

- Device
- Electric heating
- Air conditionner
- Light
- Computer
- **...**

Duration

Start date

The inputs

☐ List of different inputs depending on the consumer type

Deterministic inputs

Statistical inputs

- Geometrical characteristics
- Assembly characteristics
- Number of people
- Ш ...

- Ownership rate of appliances
- Power distribution of appliances
- **...**

Example of uses of the inputs in the first steps of the simulation

Kind of inputs Step of simulation	Statistical inputs (Sample)	Deterministic inputs (Assignment)
Static characteristics	 Ownership rate of appliance Number of bulb per surface Power of TV 	 Type of consumer Geometry of building Thermal assembly characterisitcs Power of the electric heater
Simulation of device operation	 Density of probability of uses Duration of TV 	 Number of launch of consumption device Target temperature for electric heaters

Energy computation

□ The vector of launches is crossed by applying the chosen temporal grid (not necessarily regular)

Outputs of the simulator

☐ Possibility to display a global load curve, per appliance, per consumer, at different time steps...

Example of a load curve simulated of a futurist district (2030): 500 appartments, 6000m² tertiary, 1 EV charging station of 25 terminals Around 10 seconds to simulate at 1 hour time step one year

Load curve of a laundry machine modeled by Constant block of power

Example of a simulated load curve for a residential customer

Simulation of a 1000m² office without standby

Compare the results to a reference

Methodology for evaluation on the whole curve

- **□**Statistical indicators
 - Mean, min, max, RMS value etc.
- ☐ Temporal aspect
 - Peak correlation, frequency spectrum etc.
- ☐ Both spatial and temporal comparison
 - Dynamic Time Warping [1]

[1] A. Grandjean. "Introduction de non linéarités et non stationnarités dans les modèles de représentation de la demande électrique résidentielle". Ph. D. Thesis. January 2013.

jany, 06

Case study: the hourly load curve of an average day

Mean hourly load curve obtained with 1000 simulations during I year

janv. 08

Case study: comparison between a HV feeder of 2500 residential customers and the simulated

load curve

Case study: comparison between a HTA feeder of 2500 residential customers and the simulated load curve

□ Example: frequency spectrum comparison

How obtain comparable load curves?

The databases and their relationship

Mathematical formulation of the problem

☐ Aim to match each electricity customers with one housing

$$\min_{\left(\alpha_{ij}\right)_{(i,j)\in[1:n]\times[1:p]}} \left[\sum_{j=1}^{p} \left| \sum_{i=1}^{n} \alpha_{ij} x_{i} - y_{j} \right| \right]$$

St:

- $\alpha_{ij} \in \{0,1\}, \forall (i,j) \in \{1,2,...,n\} \mathbf{x} \{1,2,...,p\}$ (1)
- $\sum_{i=1}^{n} \alpha_{ij} \ge 1 \ \forall i \in \{1,2,...,n\}$ (2)
- $\sum_{i=1}^{n} \alpha_{ij} = 1 \ \forall j \in \{1, 2, ..., p\}$ (3)

Simplified solve of the algorithm

- ☐ Initial state with an heuristic
- ☐ Optimal re-affectation until convergence

By running the algorithm of matching on all the municipalities

- ☐ We know the housing characteristics of customers
- ☐ We set the inputs of the simulator
- We can obtain comparable load curves

load curve of an HTA feeder (red curve) and the simulated load curve (black curve), for a week, with as inputs the housing characteristics of the results of the matching problem

V. Automatic calibration

How to deal with the large amount of inputs and outputs?

V. Automatic calibration

Case study

0 2000 4000 6000 6000 mme (b)

☐ Evaluation criterion: thermosensitivity

$$\sum \left| \frac{\Delta E}{E} \right| = \left| \frac{a - a_{meas}}{a_{meas}} \right| + \left| \frac{b - b_{meas}}{b_{meas}} \right| + \left| \frac{R^2 - R^2_{meas}}{R^2_{meas}} \right|$$

- a: linear coefficient
- b: intercept coefficient
- R²: coefficient of determination
- Inputs
 - T_{target} : mean target temperature for electric heaters.
 - ΔR_a : variation of the mean thermal assembly resistance

Thermo-sensitivity plot for a Brittany HTA feeder measured (top) and simulated (down), with $R_{surf}=0.9~\rm W/^{\circ}C$ (medium) and $T_{target}=19^{\circ}C$

V. Automatic calibration

Case study

☐ Evaluation criterion: thermosensitivity

$$\sum \left| \frac{\Delta E}{E} \right| = \left| \frac{a - a_{meas}}{a_{meas}} \right| + \left| \frac{b - b_{meas}}{b_{meas}} \right| + \left| \frac{R^2 - R^2_{meas}}{R^2_{meas}} \right|$$

- a: linear coefficient
- b: intercept coefficient
- R²: coefficient of determination
- Inputs
 - T_{target}: mean target temperature for electric heaters.
 - ΔR_a : variation of the mean thermal assembly resistance

Couple (T_{target}, R_{surf}) which minimizes $\sum \left| \frac{\Delta E}{E} \right|$

VI. Conclusion

Load curve simulator

- ☐ Comprehensible, flexible tool for electricity consumption simulation
- Simple and generic implementation of an electric load curve simulator for residential and tertiary sector
- Physical sense and rapidity of simulation of models
- ➤ Both microscopic and macroscopic inputs

Novel kind of validation

- □ Promising matching algorithm to generate automatically inputs to assess comparable load curves
- □ Comparison and automatic calibration of parameters to benefit from large DSO's measurements

thibaut.barbier@mines-paristech.fr

