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A novel approach for electric load curve holis
modelling and simulation

Thibaut Barbier, Robin Girard, FrancoiagealNeirac, Nicolas Kong and Georges Kariniotakis

becoming a challenge. The Distribution System Operators

Abstract-- This paper presents a novel approach of an (DSO), have to find trade-offs between security of supply
electric load curve simulatorusing a set of grey box models that even under the worst scenario conditions and minimization
results to an efficient trade-off between complete and complex of jnyestments. For that purpose they have sized distribution

phys'cal_mOdels and fast simplified Stat'sm_:al models. ) networks by considering principally statistical parameters
The input parameters are macroscopic data coming from

large databases such as national census, DSOclient ard pQSt measurements (temperature, glectrlcal
information and meteorological data such as temperature or consumption...) linked to the peak power consumption.
iradiation data. The problem of matching between the However, this approach is becoming less and less adapted,
different databases is investigated to assess comparable loadvith the ongoing evolution of the context:

curves. Validation is performed using load measurements at the _new yses and technical innovations leading to hugegesa

medium voltage level. Once the model is calibrated it can bej, electricity consumption (e.g. electric vehicles, passive
turned into a good prediction tool useful for planning studies houses):

since it permits easily to incorporate the evolution of usages, the . ) )
characteristics of consumption devices, as well as the evolution-N€W possibilities of smart load control with a massive
of the building’s characteristics. deployment 6 information and communication technology
devices including smart meters.
Index Terms— automatic calibration, DSO, electric load -more and more decentralized production (e.g. photovoltaic
curve modelling, electric load curve comparis_on, grey box panels, cogeneratiyn
models, large databases, power system planningmartgrids,

statistical modelling. Hence, the DSO looks for a development of electric loads

models at different spatial scales able to account for the

I. INTRODUCTION above mentioned evolutions. The spatial scales of interest
range from the substation that gathers thousands of
A. Context of the Sudy and General |ssues electricity customers down to single or small groups of

THE majority of power systems actors today facigdividual customers. On the other hand it is important to
important challenges related to climate change, fosBave models with a fine temporal scale (down to the minute
fuel price increase, security of supply, deregulation af@solution), in order to be able to simulate as realistically as
other factors that characterize a changing environment. Tgssible peak electricity consumption in the different
need to take into account the ternary causes: sobrignarios of future demand.
efficiency and renewable energy is here. In this context it isThiS improved knowledge of the electricity demand
important to be able to understand actual electricifPnCcerns also other actors ranging from district and state
consumption and possible ways for saving electricity, nBplicy makers, down to the electricity customers. For
only in terms of energy but also in terms of instantaneoli$tance, a fine modeling of electricity demand can be an
power, at different scales on the grid. advisor for politicians to choose which suburb has to be
In this context it is important to be able to understari@novated in terms of energy needs in priority and how (e.g.
actual electricity consumption; first to target possible waj¥¢at network or individual heat pumps
for saving energy, but also to understand temporal andlhis research topic is not recent: for decades several
spatial variation of instantaneous power. authors have looked into forecasting models for short and
Indeed, sizing the electricity grid, particularly the publilpng term electric demand, this later being of interest.here
distribution network, by predicting the e|ectricityHistorically, there are two mainstream approaches for

consumption spatially in term of maximum power i§'0delling the electric energy demand: top-down and
bottom-up models. This classification is based on the data
used as input to the models, according to Swan and Ugursal
[1]. If this data is “macroscopic”, dealing with a housing

T. Barbier, R. Girard, F-P. Neirac and G. Karinkitaare with MINES stock for instance, it will be a tOp-dOWﬂ model. However, if
ParisTech, PSL - Research University, PERSEEentre for Processes, input is “microscopic”, and the calculation is done consumer
Eenewable Energlllies and Ene_rgsll Syste?bs, OGSO?J_SOPN? W\mef by consumer and then there is an extrapolation to a total
O TS, eSpelieh b barer@mne st . consumer siock, the model is bottomup. In order o have a
paristech.fr, georges.kariniotakis@mines-paristech.fr). physical sense, and a high level of detail, even in the absence
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computation time can be an issue. On contrary, top-down
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models are useful when the need is to generate rapidlgimulator we propose in this paper is to be able to simulate
trend evolution function of some general information (i.evith very short computation time (i.e. a few tens of seconds
unemployment rate, Gross Domestic Product) on a larige a year at one hour time step resolution) the individual
scale stock of electiity consumer, but they cannot simulatelectric consumption of thousands of customers (both in
well the impacts of technical breaks or new consumptioesidential and tertiary sectors). This involves simulating
devices which have not been measured [2]. Yet, sombole cities. At the same time we should be able to modify
authors have tried to take advantage of both modealguts and perform sensitivity analysis quite rapidly. The
developing hybrid models. simulation has to be done with a variable time step for a
Indeed, macroscopic data is becoming more and manaximum flexibility to deal with different actors, and with
precise and available: population census are in mamyssibilities of access to large databases for the input data.
countries public data going down to a scale lower than citidéicroscopic inputs have to be considered, like local
including detailed databases of buildings supported bpecificities on climate or buildings.
satellite images. Also, the DSOs are instrumenting more andThe simulator must include a physical modelling of the
more their grid especially with the large-scale deployment different electric consumption devices and buildings,
smart meters. They can have history of several yearsgathering both efficient calculation time, physical sense, and
electric power measurements of the major part of th&nabling the development of an automatic, fast and adaptive
feeders (representing around 1Q0WB00 low voltage statistical method in big dimensions to benefit from the
electricity customers), and some low-voltage lines (arouddferent databases.
100-1000low voltage electricity customers). To answer these objectives and requiremenés have
proposed to split the studytinfour parts illustrated Fig.1
This figure is a summary of the view of our electric load
) ) curve simulator, each square block will be detailed in the
To benefit from tis huge amount of data as input to afpliowing sections.

electric load curve simulator, models must be able to\ye pave proposed a structure of a load curve simulato
consider both microscopic and macroscopic types of data@fich is presented in detail in Sectitin Sectionlll shows
input; in this sense we denote that a model has to &y the outputs are evaluated, by comparison with a
“holistic”. The data has to be accessible and understandaBierence load curve. Section IV presents the way the
by every actor linked to the electricity grid (district managegifferent databases are matched in order to compare load
DSO, electric consner...). When it comes to the curves with same inputs. Sectidn investigates possible
microscopic data where information can be available at theswers to make an automatic calibration of models
level of a client or a device, each contributing elemepérameters.  Finally in SectioWl are preseed the
(consumption device) of the electric load curve must lsenclusions of this work.

B. Objectives of the Smulator

Database of Measurement ona

o group of DSO’s
DSO’s Clients Clients

Evaluation
i t Static characteristics inulation of E tati i
inputs device operation nergy computation |

Electrical Load Curve Simulator

—

Database of
Buildings

Database of
Households

Calibration

Meteorological
Data

Fig.1.lllustration of the approach used for electric loadve simulation

identified spatially and its temporal profile should be known.
The level of details of the physical models for each
consumer has to be though the best compromise betwgenniroduction

representation of reality and impact on the simulation time : . .
: ; ) - The developed simulator implements the following
when this model is considered within the overall load . . . ] .
. . : ) ._models for devices of the residential sector: TV, washing
simulator. All electric consumers, from residential to tert|ar|¥| . : . L
. . ) . achine, dishwasher, computer, light, swimming pool,
and industries hee to be taken into account to benefit from .
, . dryer, oven, cooktop, refrigerator, freezer, water heater,
the DSO’s electric power measurements. As models have

L . electric heating, heat pump, air conditioner and
many parameters, a calibration from the input data an
iscellaneous (standby).

literature results is necessary. Finally, the simulator and {H : .
he consumption devices are modeled by elementary

involved models have to be as generic and open as possible ) : .
. i models such as block profiles of power. Figure 2 depicts the
to account for evolutions in the context and be able 1o

integrate new models (i.e. for consumption devices etc) example of the model proposed for a washing machine: the
9 g P " first power block corresponds to heating the water with a

The technical objective we have set for the load Cur\r/éasistance, the second block models the washing cycle with a

Il. STRUCTURE OF THE SIMULATOR



constant power of motor, and the third block models ti& Implementation of the Smulator

spinning with a constant power of motor. The technical objectives of simulator in mind, we have
o — chosen an architecture with a computation core as fast and
~ Load curve of a simple as possible implemented in a low level language:
washing machine . . .
w | C++. This core allows to run rapidly physical models of
% T consumption devices. A specificity is that the implemented
5 ° models of consumption devices are the base of all the
g 7 calculation, so fundamental models of power consumption of
& consumption devices (such as constant block of power seen
D previously) can be easily changed if needed.
S In order to deal with big data, artd be able to make
' ' ' ' ' statistical computation, the computation core has been
00:00 0500  10:00 1500  20:00 interfaced with R software, which is an open source
time numerical simulation platform.
Fig.2.Example of load curve of a washing machine modeleddmnatant
block of power. C. Different parts of the simulator

The simulator simulates the residential electrical load'€ electrical load curve simulator is implemented into three
B cks (static characteristics, simulation of device operation

curve consumer by consumer. A consumer in the residen . . . ST
. (fmd energy computation), which are illustrated in Fig.1 and
sector can be a house or an apartment, with usual occupalio

conditions or used as secondary residence. exglamed In the following sections.
For simulating residential load, the inputs listed below arel) Static Characteristics

required: . . _ This part of the simulator permits to populate the model of

- the building characteristics such its surface, height, g4ch consumption device with the necessary parameters. (i.e.
age, thermal inertia and resistance, type (apartmefbwer of the TV, repartition of duration (e.g. minimum and
house...); maximum duration for the daily use of a TV), etc. The

- the household characteristics: number of people liviRglues of the inputs are set as explained above either by
in the housing of the consumer, ownership rate of thiefault or by existing databases and measuring campaigns.

different consumption devices; Then, these consumption devices are grouped to simulate a
- the devices characteristics (e.g. power of the washiognsumer (e.g. a consumer has two TVs, a washing machine,
machine). some lights).

2) Simulation of Device Operation

The simulator also implements tertiary sector electricity At the beginning of this step, we consider that a consumer
consumers, with the categories: offices, teaching/researéhequipped with consumption devices that can be launched
shops, shops with food, restaurants, hotels and chargfjing @ chosen simulation period. To do this, a given
stations for electric vehicles (EV). profile of use for (_aach c_ons_umpnon de_zwcg is set _(see

Some examples of the input needed to simulate th&&@MPle Fig.3). This profile is a combination of daily,
tertiary consumers are: weekly _and monthly proflles_,_ and is. interpreted in the

- the building characteristics such as the surface, heig?ﬁlcmat'on coreé as a pTObab'“ty density for Igunch|_ng the
age, thermal inertia and resist ance: given consumption device. A Monte _Carl_o S|mul_at|on is

' . ' . erformed where the number of sampling in the simulation

- the consumer characteristics: e.g. number of clients o%g”od is chosen as an affine trend with number of
hotel or a restgurant, ownership rate of _the dlf_'fere thabitants in the housing of the consumer. Let us remark
consumption devices (e.g. presence of electric heating, @lf; the start date and duration sampled in this launch phase
conditioner...); o _ _ are always independent from any time step: here we just

- devices characteristics (e.g. installed power of light) memorize start dates, duration and power of operation

(called “instance”) of all consumption device generated in

We can notice that the number of inputs of the developgf previous step.
simulator is very high rising up to around a thousand @
paameters. The values of many of these inputs are selg
default ones thanks to typical figures available at natior“a', =

level (e.g. ownership rate of consumption devices B

INEENE

residential sector), or in the literature (e.g. sizing of ¢m < ' T T T
electric heating with building assembly characteristics) al janv.02  janv.04  janv.06  janv. 08
finally through measurements campaigeg.(through the time

REMODECE project results for the power of consumption ) ) ) )
devices). Fig.3.Example of density of use of a washing machine enteredpas

. . o from R interface
Other inputs are set thanks to different existing databases

for buildings characteristics (e.g. BDTOPO database fromWe can note that consumption the devices, electric
IGN institute in France), households (e.g. from INSEReating, heat pumps and air conditioners are simulated
institute in France) or electricity customers (e.g. from tistifferently than what was previously described: they are
French DSO ERDF). linked to assembly thermal characteristics, outdoor
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temperature, solar irradiation and temperature set poirglevant for short term forecasting as this learning is to

modeled by a first order “RC” model. reproduce the past power demand profiles.

3) Computation of Energy of each Consumer on a chosen Courbe de charge horaire moyenne des lave-linge
Temporal Gl’ld ) Toutes saisons confondues

This step is the moment when the temporal resolution is | -
chosen: a temporal grid is created, with a given time step, o L

and all the “instances” previously described are integrated in
the chosen temporal grid (see Fig.4), making a final vector

40 HIHIHTH]

mmation (Whin)
]
I

of energy at the chosen temporal resolution. The energy is | § | == TN L —

simply calculated by multiplying the power time the duration B TR ——
of this power, at each time step. This specific approach ‘Z'[lm.u,[l,l]]ﬂ] et ﬂ]ﬂj
permits to change time step without making again all the PEF PR F P F PP I L E PP EF RSP
previous steps of simulation, as all the instances are [ R G G ] EnERIECH
memorized.

Fig.5.Example of a mean hourly load curve of washing machinesreut

POWEr  Result of intezration methad by measurements in hundreds of houses [5]

1 for Instance_1 at step number_i
Instance_1

o
~

Power_1 b
SRENEME . E—
[ T T T T

mean hourly power (Whh)
15 20 25 30 35 40

i _Startk'.date_l End date_1 Tim—e

] " T T T T
mporal erid Slep numoer. 0 5 10 15 20

time (h)
Fig.4.lllustration of the way the evaluation of energy inidn the Fig.6.Example of a mean hourly load curve obtained by sinariatiof
simulator 1000 laundries for one year.
[ll. EVALUATION OF RESULTS To our knowledge, the evaluation with large DSO’s load

For a specific test case the simulation is done in a bottophrve databases is new.
up way, Consumption device per Consumption device,When we want to compare simulated and real load curves
housing per housing, and tertiary consumer per tertidf:)‘eads to a problem in itself, which is tackled in the next
consumer. This leads to a considerable amount of outpg€tion. Also authors have focused on residential sector
results which are memorized and can be evaluated bynedeling and DSO’s load curve measurements are the
Comparison with a reference case that can come from';lggregation of residential, tertiary and industrial electricity

group of DSO’s customers as illustrated Fig.1. consumption. The latter is less frequent as usually industrial
) ) o customers are grouped in industrial zones, with their own
A. Partial evaluation on specific models electricity feeder. But at the scale of medium voltage

To our knowledge, often in the literature in electrical loafgeders, the load curve is always a mix of residential and
curve simulation using physical bottom-up modeling, thertiary consumption.
evaluation of the results is performed on some aspects of the
simulated load curves, which are compared to a limitedReference [4] proposes in its last part a review of the
number of measured load curves in specific cases afifferent mathematic tools used by authors to compare
locations, always in the residential sector [2]. electrical load curves.

This kind of evaluation is useful for us to check some Some of them are statistical indicators such as mean,
specific models and for setting by default the values of sommnimum, maximum values or root mean square values.
inputs. Some of these indicators such as the mean value can be

For example the annual energy consumed peseful to determine for example if the standby model is well
consumption device was measured at large scale thanksdlibrated.
the frame of the REMODECE project (2008). This allows us Other indicators take into account the temporal dimension
to set by default the number of launch of a consumptiimthe load curves, adding the phase difference aspect in the
device in order to get the same trend of yearly consumpticemparison. The aspect of the peak correlation and gap is
by the same park of devices as the campaign measuremenery important for DSOs which sizes its electric grid thanks

Another example is the measurement of hourly mean lo@dthe peak value.
curves per consumption device, and the comparison withAn interesting method developed in [4] consists in taking
simulated one, as depicted Fig.5 and Fig.6. into account both amplitude and temporal differences, using

B. Methodology for the evaluation on the whole load curves _the Dynamlc Time Wrapping; it can be a u_seful tO.OI to
investigate the models parameters influence in the distance

When results of simulation are obtained, they have to Bgnveen the real and the simulated load curve.
evaluated. Here are investigated evaluation methodologies. \ye can also compare the frequency spectrum of two load
. Some authors like [3] have developsd what [2] call§;rves depicted in Fig.10 in their temporal aspect. Fig.7 and
statistical adjusted engineeringnodels”. They use Fig g are the plot of their frequency spectrum, and it can be
automatic measured load curve learning, but it is onliéefy) to investigate if the different temporal repetition are

present: for instance the daily shape (24h) of the load curves
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leads to a peak more important in the simulated curve than inndeed much useful information that can be converted into
the measured one, whereas it is the opposite for the haffut in our simulator is found in various existing databases.
daily shape (12h). In Table | we provide information on the main databases
used in our electrical load simulator with their origin, the
entities they describe as well as the characteristics of these
entities.

1e+08

TABLE |
LIST OF THE DIFFERENT DATABASES USED WITH THEIR ORIS, ENTITY AND
= CORRESPONDING ENTITY CHARACTERISTICS

1e+07

g Origin of the | Database Useful characteristics of th
27 database entity entities for the simulator

INSEE Housing number of inhabitants, typé
3 | institute (flat, house), surface given
- ol o P roT (France) by intervals, number of

5 10 50 100 500 5000 I
rooms, age of the building

category (vacant, seconda
J residence, principal
residence), type of heating
(electric, fuel, gas, wood,

1 other), IRIS mesh.

1/frenquency [h]

1e+09

1e+07

= IGN Building Text address, geometry of
5 institute the building (polygon size)
H (France)

ERDF Electricity Subscribed power, annual
= company customers consumption, text address
® T T ' T (France) IRIS" mesh, type of

5 10 50 100 500 5000 . .
customer (e.g. residential,
hrenquency 1 tertiary artisan or
shopkeeper).

Fig.7.Spectrum of a load curve of a medium voltdgeder (upper gre
curve) and the simulated load curve (lower turquoiseveuirfor a . o . L
whole year. Below are given the definitions of the different entities in

H order to use precise vocabulary:

i -Housing: houses or dwelling places thought of as a group.
| A housing occupied as a principal residence has a

T household.

| il -Building: anything built on an area of land, having a roof
I I‘ '.(“,w-“‘”w.‘vf' and walls and intended to be kept at a well-identified

' ‘{ i location.

‘ -Electricity customer (or customer): materialize a unique

contract with the DSO who is paid in order to provide an

I 5'0 1['10 SAO ‘ 50‘00 ' electricity supply service at a point of common coupling

where the customer belongs.

-Electricity consumer (or consume): entity which is used

in the electric load curve simulator that tries to benefit from

all databases in order to simulate electrical load curve as

Finally, comparison of sensibility with inputs parameters, accurate as possible from the chosen inputs.

such as the thermo-sensitivity can be compared, and are

investigated in a further section. The different databases provide complementary information.

Their matching is important in order to fill in the simulator

with the maximum of available input data. .

i
1e+05 1e+07

1e+03

Observation
— Simulation

1/frenquency [h]

Fig.8.Spectrum of a load curve of a medium voltdgeder (grey curye
and the simulated load curve (turquoise curve), fehale year.

IV. THE MATCHING PROBLEM Two cases are investigated: the case where there are no
common characteristics (third column of Table I) from a
A. Introduction database to another and the case where there is at least a

To assess comparable load curves, we must have the sg@femon characteristic.

characteristics between the electricity customers that caee where there are no common characteristics
effectively consume power in the measured load curve agg\veen two databases.

the simulated load curves. In general, the DSO knows the
of his customers that are connected to a feeder; it has
each customer their characteristics listed in Table
However, with this information we cannot fill out the input?
for the electric load curve simulator and we have to use

others databases. ! The IRIS mesh is a mesh lower that can be lower thaity:ait was
defined by INSEE Institute; each INSEE mesh has a uniquéigsires
identifier.

list . ) . .

\%i? will deal with this case with a concrete example: the
atching between the housing database and the residential
ectricity customer database. Indeed, the final objective is




6

to compare a measured load curve of a feeder andVe define below the list of parameters to be matched from

simulated load curve with the same housing characteristibe two considered database

as these of the residential electricity customers connected

the feeder. To do this, each housing can be matched

electric customers, and reciprocally. consumption of the housings,is the number of housings in

We can define a criterion to assess in what extend the tive considered IRIS mesk, is thei™ housing.

different lists of entities are correctly matched.

Simply, this is done by the definition of a certain distanc&i<12..p}

between comparable parameters linked to the entities. the electricity customerg.is the number of customers in the
considered IRIS mesty; is thej" electricity customer.

In our work we propose to express with a model the . .
- : . The problem of matching can be formulated as a distance
characteristics of an entity. This models has as parame@rs

%g{lz--n} represents the estimated electricity annual

: represents the residential annual consumption of

e ; ! re chosen t ratic) minimization problem between
the characteristics of another entity. A first case stu ere chosen o be quadratic) ation problem betwee

X . : e matched entities:
considered in our work concerns modelling the annual )
electricity consumption based on some specific housing () min
characteristics. Pipet 2. k1.2, p}
Figure 9 shows the obtained results using data coming from
ERDF’s and INSEE’s databases for the French Brittany
region and for year 2011. a;; € {0,1},V (i,§) € [1:n]x[1: p] (2)

In this case we know the list of housings and electricity Y e
customers per IRIS mesh, and we use this information to Y, >1Vie€ [1:n] (3)
investigate for example the behavior of the total residential U
electricity customer annual consumption per municipality Ya,; =1 € [1:p] (4)
versus the total surface of housing per municipality. The fit Ly
with a linear model has a mean error of 11.4%. If we adfiere:
another explicative variable such as the surface heated,by, . is the matching unknown;; =1 if
electric heaters and the age of the building, we can decrease ije{t2..ni*{12...p} ij
the mean error of a linear model down to 7%.

[XEF aijx; —v)™ (1)

S.t.:

X; is matched withYj y;, 0 else (2);

a=436
g e e (3) is the constraint that each housing is linked to at least
; an electricity customer;
e (4) is the constraint that each electricity customer is linked
an unigue housing.

2.0e+07
1

1.0e+07

A simplified resolution algorithm of this optimization
problem was tested on some data in order to obtain first
results depicted in Fig.10. This Figure shows that the two
o o e . —n o curves present similar characteristics especially in term of

olnidiinibiospemsiiodilii peak c_:orrelation, which is a promising result. We can remar.k

Fig.9.Fit of the residential electric customer annual consignpper especially the model of standby that has to be calibrated in
municipality versus the surface of housings per municipality order to have similar mean consumption, and that the peak

: - numbered 1 in the figure in the measurement is certainly due
C. Casewhere there exist common characteristics between to reorganization, meaning that temporarily another feeder

two databases. was connected to the measurfsbder, for maintenance
The approach here is to match the different entities amqigsons.

them, by minimizing the global distance of the samr
characteristics between the matched entities.

Like in the previous section, we will present some resu
based on specific cases, and namely the same example i
the previous section, to illustrate the matching problem a
its challenges.

As a problem set, we want to match the housing datab
(INSEE database) and the residential electricity custon
database (ERDF database). We consider that the ant
electricity consumption is known for the two differen alle e ol g , .
entities. To simplify the problem we consider that there a ‘ o
more housings than electricity customers, thus, an elec
customer can gather more than a housing. However. 0 200 1000 6000 8000
housing must be linked to an electricity customer (w time (h)
consider that all the housings have a contract with a DSO fér10. Measured load curve of a medium voltdigeder (red plot) and
electricity supply, which is very close to the reality in the simulated load curve (black plot), for a wholaryeising as input

the housing characteristics of the results of the sireglifnatching
France). problem.

Residential electric customer
consumption per municipality (kWh)

0.0e+00
1

6000
|

5000
L

4000

3000

o

Electric power (kW)

M

2000

v
M“
‘I

1000

0
1




V. AUTOMATIC CALIBRATION
The automatic calibration step, depicted in Fig. 1,

then plot the sum of the relative errors between a, b and R2
gimulated and from the measurements, function of the

based on a comparison between the simulation ressigface thermal resistance and the target temperature to find

simulation and reference values for the specific inpufd!

chosen. This comparison permits to calibrate or re-adjust

different parameters of the simulator in order to minimize

the gap of its output and the reality.

A. Case study on Thermo-sensitivity

We present here an example of what can be an autom$’

calibration using the DSO’s load curve. We consider as
parameter the thermal resistance of buildings and
simulate the repartition of this parameter in the buildings

an area. The way this repartition is made, represents a le

of “thermo-sensitivity” for the ensemble of buildings. Then
using the thermo-sensitivity of the observed load curves
can calibrate the model.

Many definitions exist for thermo-sensitivity. We chos £
here a simple definition which is the linear fit ol 19 -

consumption points in ordinate and temperature points

the abscissa, by only selecting points whose temperats
are below a certain threshold of non-heating; we take in t%
example 15°C. We compare the thermo-sensitivity of ti£
simulated and measured load curves represented in Fic

10. The results are given in Figures 11 and 12. T

coefficients a and b are respectively the linear and interc

coefficients of the fit, R2 is the coefficient of determination.

o
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90 © 00 0
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|

Winter temperature (°C)
Fig.11. Thermo-sensitivity of the measured load curve of Figwh@re
the temperature is the temperature of the cities ofctieomers
weighted with the number of customers in the cities.
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Fig.12. Thermo-sensitivity of the simulated load curve of Fi§. dy
taking a medium level of thermal resistance per buildingere the
temperature is the temperature of the cities of themets weighted
with the number of customers in the cities.

For the thermal model of buildings we chose a thern?i 2009
| to

resistance which is in a very simple model proportional

tomatically the couple of inputs that minimizes the errors,
flllustrated in Fig.13
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Fig.13. Sum of the relative errors between a, b and R? franulsited
outputs of simulator and from the measurements, as a furddtitve
surface thermal resistance and the target temperature.

VI. CONCLUSION

With current challenges, available data and simulation
tools, we have shown that electiidoad curve modelling is
more than the objective of prediction of demand, to be an
accessible, understandable and accurate tool for every actor
around the electricity grid. To answer the previous
objectives, we have presented in this paper an electric load
curve simulator which aims to be as simple and generic as
possible to be able to deal with computation time and big
data available.

A novel kind of validation is proposed, which tries to
take into account results in the available literature and
DSO’s power measurements. The paper has presented the
approach proposed for matching different databases. The
qualitative and quantitative results presented are promising.
To benefit from these big databases, future work will focus
on the automatic calibration of parameters of the simulator.
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