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Abstract-- This paper presents a novel approach of an 

electric load curve simulator using a set of grey box models that 
results to an efficient trade-off between complete and complex 
physical models and fast simplified statistical models. 

The input parameters are macroscopic data coming from 
large databases such as national census, DSO’s client 
information and meteorological data such as temperature or 
irradiation data. The problem of matching between the 
different databases is investigated to assess comparable load 
curves. Validation is performed using load measurements at the 
medium voltage level. Once the model is calibrated it can be 
turned into a good prediction tool useful for planning studies 
since it permits easily to incorporate the evolution of usages, the 
characteristics of consumption devices, as well as the evolution 
of the building’s characteristics.  
 

Index Terms— automatic calibration, DSO, electric load 
curve modelling, electric load curve comparison, grey box 
models, large databases, power system planning, smartgrids, 
statistical modelling. 

I.  INTRODUCTION 

A.  Context of the Study and General Issues 

HE majority of power systems actors today face 
important challenges related to climate change, fossil 

fuel price increase, security of supply, deregulation and 
other factors that characterize a changing environment. The 
need to take into account the ternary causes: sobriety, 
efficiency and renewable energy is here. In this context it is 
important to be able to understand actual electricity 
consumption and possible ways for saving electricity, not 
only in terms of energy but also in terms of instantaneous 
power, at different scales on the grid. 

In this context it is important to be able to understand 
actual electricity consumption; first to target possible ways 
for saving energy, but also to understand temporal and 
spatial variation of instantaneous power. 

Indeed, sizing the electricity grid, particularly the public 
distribution network, by predicting the electricity 
consumption spatially in term of maximum power is 
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becoming a challenge. The Distribution System Operators 
(DSO), have to find trade-offs between security of supply 
even under the worst scenario conditions and minimization 
of investments. For that purpose they have sized distribution 
networks by considering principally statistical parameters 
and past measurements (temperature, electrical 
consumption…) linked to the peak power consumption. 
However, this approach is becoming less and less adapted, 
with the ongoing evolution of the context: 
-new uses and technical innovations leading to huge changes 
in electricity consumption (e.g. electric vehicles, passive 
houses); 
-new possibilities of smart load control with a massive 
deployment of information and communication technology 
devices including smart meters. 
-more and more decentralized production (e.g. photovoltaic 
panels, cogeneration); 

Hence, the DSO looks for a development of electric loads 
models at different spatial scales able to account for the 
above mentioned evolutions. The spatial scales of interest 
range from the substation that gathers thousands of 
electricity customers down to single or small groups of 
individual customers. On the other hand it is important to 
have models with a fine temporal scale (down to the minute 
resolution), in order to be able to simulate as realistically as 
possible peak electricity consumption in the different 
scenarios of future demand. 

This improved knowledge of the electricity demand 
concerns also other actors ranging from district and state 
policy makers, down to the electricity customers. For 
instance, a fine modeling of electricity demand can be an 
advisor for politicians to choose which suburb has to be 
renovated in terms of energy needs in priority and how (e.g. 
heat network or individual heat pumps). 

This research topic is not recent: for decades several 
authors have looked into forecasting models for short and 
long term electric demand, this later being of interest here. 
Historically, there are two mainstream approaches for 
modelling the electric energy demand: top-down and 
bottom-up models. This classification is based on the data 
used as input to the models, according to Swan and Ugursal 
[1]. If this data is “macroscopic”, dealing with a housing 
stock for instance, it will be a top-down model. However, if 
input is “microscopic”, and the calculation is done consumer 
by consumer and then there is an extrapolation to a total 
consumer stock, the model is bottom-up. In order to have a 
physical sense, and a high level of detail, even in the absence 
of energy demand measurements, the bottom-up models are 
preferentially used, but their requirement for high 
computation time can be an issue. On contrary, top-down 
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models are useful when the need is to generate rapidly a 
trend evolution function of some general information (i.e. 
unemployment rate, Gross Domestic Product) on a large 
scale stock of electricity consumer, but they cannot simulate 
well the impacts of technical breaks or new consumption 
devices which have not been measured [2]. Yet, some 
authors have tried to take advantage of both models, 
developing hybrid models. 

Indeed, macroscopic data is becoming more and more 
precise and available: population census are in many 
countries public data going down to a scale lower than cities, 
including detailed databases of buildings supported by 
satellite images. Also, the DSOs are instrumenting more and 
more their grid especially with the large-scale deployment of 
smart meters. They can have history of several years of 
electric power measurements of the major part of their 
feeders (representing around 1000-10000 low voltage 
electricity customers), and some low-voltage lines (around 
100-1000 low voltage electricity customers). 

B.  Objectives of the Simulator 

 
 To benefit from this huge amount of data as input to an 
electric load curve simulator, models must be able to 
consider both microscopic and macroscopic types of data as 
input; in this sense we denote that a model has to be 
“holistic”. The data has to be accessible and understandable 
by every actor linked to the electricity grid (district manager, 
DSO, electric consumer…). When it comes to the 
microscopic data where information can be available at the 
level of a client or a device, each contributing element 
(consumption device) of the electric load curve must be 

 
identified spatially and its temporal profile should be known. 
The level of details of the physical models for each 
consumer has to be though the best compromise between 
representation of reality and impact on the simulation time 
when this model is considered within the overall load 
simulator. All electric consumers, from residential to tertiary 
and industries have to be taken into account to benefit from 
the DSO’s electric power measurements. As models have 
many parameters, a calibration from the input data and 
literature results is necessary. Finally, the simulator and the 
involved models have to be as generic and open as possible 
to account for evolutions in the context and be able to 
integrate new models (i.e. for consumption devices etc). 

The technical objective we have set for the load curve 

simulator we propose in this paper is to be able to simulate 
with very short computation time (i.e. a few tens of seconds 
for a year at one hour time step resolution) the individual 
electric consumption of thousands of customers (both in 
residential and tertiary sectors). This involves simulating 
whole cities. At the same time we should be able to modify 
inputs and perform sensitivity analysis quite rapidly. The 
simulation has to be done with a variable time step for a 
maximum flexibility to deal with different actors, and with 
possibilities of access to large databases for the input data. 
Microscopic inputs have to be considered, like local 
specificities on climate or buildings.  

The simulator must include a physical modelling of the 
different electric consumption devices and buildings, 
gathering both efficient calculation time, physical sense, and 
enabling the development of an automatic, fast and adaptive 
statistical method in big dimensions to benefit from the 
different databases.  

To answer these objectives and requirements, was have 
proposed to split the study into four parts illustrated Fig.1.  
This figure is a summary of the view of our electric load 
curve simulator, each square block will be detailed in the 
following sections. 

We have proposed a structure of a load curve simulator 
which is presented in detail in Section II.  Section III shows 
how the outputs are evaluated, by comparison with a 
reference load curve.  Section IV presents the way the 
different databases are matched in order to compare load 
curves with same inputs. Section V investigates possible 
answers to make an automatic calibration of models 
parameters.  Finally in Section VI  are presented the 
conclusions of this work. 

 

II.  STRUCTURE OF THE SIMULATOR 

A.  Introduction 

The developed simulator implements the following 
models for devices of the residential sector: TV, washing 
machine, dishwasher, computer, light, swimming pool, 
dryer, oven, cooktop, refrigerator, freezer, water heater, 
electric heating, heat pump, air conditioner and 
miscellaneous (standby). 

The consumption devices are modeled by elementary 
models such as block profiles of power. Figure 2 depicts the 
example of the model proposed for a washing machine: the 
first power block corresponds to heating the water with a 
resistance, the second block models the washing cycle with a 

Fig.1. Illustration of the approach used for electric load curve simulation 
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constant power of motor, and the third block models the 
spinning with a constant power of motor.  

 
Fig.2. Example of load curve of a washing machine modeled by a constant 
block of power. 
 

The simulator simulates the residential electrical load 
curve consumer by consumer. A consumer in the residential 
sector can be a house or an apartment, with usual occupation 
conditions or used as secondary residence.  

For simulating residential load, the inputs listed below are 
required: 

- the building characteristics such as its surface, height, 
age, thermal inertia and resistance, type (apartment, 
house…); 

- the household characteristics: number of people living 
in the housing of the consumer, ownership rate of the 
different consumption devices; 

- the devices characteristics (e.g. power of the washing 
machine). 

 
The simulator also implements tertiary sector electricity 

consumers, with the categories: offices, teaching/research, 
shops, shops with food, restaurants, hotels and charging 
stations for electric vehicles (EV). 

Some examples of the input needed to simulate these 
tertiary consumers are: 

- the building characteristics such as the surface, height, 
age, thermal inertia and resist ance; 

- the consumer characteristics: e.g. number of clients of a 
hotel or a restaurant, ownership rate of the different 
consumption devices (e.g. presence of electric heating, air 
conditioner…); 

- devices characteristics (e.g. installed power of light) 
 
We can notice that the number of inputs of the developed 

simulator is very high rising up to around a thousand of 
parameters. The values of many of these inputs are set to 
default ones thanks to typical figures available at national 
level (e.g. ownership rate of consumption devices in 
residential sector), or in the literature (e.g. sizing of an 
electric heating with building assembly characteristics) and 
finally through measurements campaigns (e.g. through the 
REMODECE project results for the power of consumption 
devices). 

Other inputs are set thanks to different existing databases 
for buildings characteristics (e.g. BDTOPO database from 
IGN institute in France), households (e.g. from INSEE 
institute in France) or electricity customers (e.g. from the 
French DSO ERDF). 

B.  Implementation of the Simulator 

The technical objectives of simulator in mind, we have 
chosen an architecture with a computation core as fast and 
simple as possible implemented in a low level language: 
C++. This core allows to run rapidly physical models of 
consumption devices.  A specificity is that the implemented 
models of consumption devices are the base of all the 
calculation, so fundamental models of power consumption of 
consumption devices (such as constant block of power seen 
previously) can be easily changed if needed. 

In order to deal with big data, and to be able to make 
statistical computation, the computation core has been 
interfaced with R software, which is an open source 
numerical simulation platform.  

C.  Different parts of the simulator 

The electrical load curve simulator is implemented into three 
blocks (static characteristics, simulation of device operation 
and energy computation), which are illustrated in Fig.1 and 
explained in the following sections. 
 
    1)  Static Characteristics  

This part of the simulator permits to populate the model of 
each consumption device with the necessary parameters. (i.e. 
power of the TV, repartition of duration (e.g. minimum and 
maximum duration for the daily use of a TV), etc. The 
values of the inputs are set as explained above either by 
default or by existing databases and measuring campaigns. 
Then, these consumption devices are grouped to simulate a 
consumer (e.g. a consumer has two TVs, a washing machine, 
some lights).  
    2)  Simulation of Device Operation  

At the beginning of this step, we consider that a consumer 
is equipped with consumption devices that can be launched 
during a chosen simulation period. To do this, a given 
profile of use for each consumption device is set (see 
example Fig.3). This profile is a combination of daily, 
weekly and monthly profiles, and is interpreted in the 
calculation core as a probability density for launching the 
given consumption device. A Monte Carlo simulation is 
performed where the number of sampling in the simulation 
period is chosen as an affine trend with number of 
inhabitants in the housing of the consumer. Let us remark 
that the start date and duration sampled in this launch phase 
are always independent from any time step: here we just 
memorize start dates, duration and power of operation 
(called “instance”) of all consumption device generated in 
the previous step. 

 
 
Fig.3. Example of density of use of a washing machine entered as input 

from R interface 
 

We can note that consumption the devices, electric 
heating, heat pumps and air conditioners are simulated 
differently than what was previously described: they are 
linked to assembly thermal characteristics, outdoor 
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temperature, solar irradiation and temperature set point, 
modeled by a first order “RC” model. 
    3)  Computation of Energy of each Consumer on a chosen 
Temporal Grid 

This step is the moment when the temporal resolution is 
chosen: a temporal grid is created, with a given time step, 
and all the “instances” previously described are integrated in 
the chosen temporal grid (see Fig.4), making a final vector 
of energy at the chosen temporal resolution. The energy is 
simply calculated by multiplying the power time the duration 
of this power, at each time step. This specific approach 
permits to change time step without making again all the 
previous steps of simulation, as all the instances are 
memorized. 

 
Fig.4. Illustration of the way the evaluation of energy is done in the 

simulator 

III.  EVALUATION OF RESULTS 

For a specific test case the simulation is done in a bottom-
up way, consumption device per consumption device, 
housing per housing, and tertiary consumer per tertiary 
consumer. This leads to a considerable amount of output 
results which are memorized and can be evaluated by a 
comparison with a reference case that can come from a 
group of DSO’s customers as illustrated Fig.1. 

A.  Partial evaluation on specific models 

To our knowledge, often in the literature in electrical load 
curve simulation using physical bottom-up modeling,  the 
evaluation of the results is performed on some aspects of the 
simulated load curves, which are compared to a limited 
number of measured load curves in specific cases and 
locations, always in the residential sector [2]. 

This kind of evaluation is useful for us to check some 
specific models and for setting by default the values of some 
inputs. 

For example the annual energy consumed per 
consumption device was measured at large scale thanks in 
the frame of the REMODECE project (2008). This allows us 
to set by default the number of launch of a consumption 
device in order to get the same trend of yearly consumption 
by the same park of devices as the campaign measurement. 

Another example is the measurement of hourly mean load 
curves per consumption device, and the comparison with 
simulated one, as depicted Fig.5 and Fig.6. 

B.  Methodology for the evaluation on the whole load curves 

When results of simulation are obtained, they have to be 
evaluated. Here are investigated evaluation methodologies. 

Some authors like [3] have developed what [2] calls 
“statistical adjusted engineering models”. They use 
automatic measured load curve learning, but it is only 

relevant for short term forecasting as this learning is to 
reproduce the past power demand profiles.  

 
Fig.5. Example of a mean hourly load curve of washing machines obtained 

by measurements in hundreds of houses [5] 

 
Fig.6. Example of a mean hourly load curve obtained by simulations of 

1000 laundries for one year. 

 
To our knowledge, the evaluation with large DSO’s load 

curve databases is new. 
When we want to compare simulated and real load curves 

it leads to a problem in itself, which is tackled in the next 
section. Also authors have focused on residential sector 
modeling and DSO’s load curve measurements are the 
aggregation of residential, tertiary and industrial electricity 
consumption. The latter is less frequent as usually industrial 
customers are grouped in industrial zones, with their own 
electricity feeder. But at the scale of medium voltage 
feeders, the load curve is always a mix of residential and 
tertiary consumption. 
 

Reference [4] proposes in its last part a review of the 
different mathematic tools used by authors to compare 
electrical load curves. 

Some of them are statistical indicators such as mean, 
minimum, maximum values or root mean square values. 
Some of these indicators such as the mean value can be 
useful to determine for example if the standby model is well 
calibrated.  

Other indicators take into account the temporal dimension 
in the load curves, adding the phase difference aspect in the 
comparison. The aspect of the peak correlation and gap is 
very important for DSOs which sizes its electric grid thanks 
to the peak value. 

An interesting method developed in [4] consists in taking 
into account both amplitude and temporal differences, using 
the Dynamic Time Wrapping; it can be a useful tool to 
investigate the models parameters influence in the distance 
between the real and the simulated load curve. 

We can also compare the frequency spectrum of two load 
curves depicted in Fig.10 in their temporal aspect. Fig.7 and 
Fig.8 are the plot of their frequency spectrum, and it can be 
useful to investigate if the different temporal repetition are 
present: for instance the daily shape (24h) of the load curves 
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leads to a peak more important in the simulated curve than in 
the measured one, whereas it is the opposite for the half 
daily shape (12h). 

 

 
 

Fig.7. Spectrum of a load curve of a medium voltage feeder (upper grey 
curve) and the simulated load curve (lower turquoise curve), for a 
whole year. 

 
Fig.8. Spectrum of a load curve of a medium voltage feeder (grey curve) 

and the simulated load curve (turquoise curve), for a whole year. 
 

Finally, comparison of sensibility with inputs parameters, 
such as the thermo-sensitivity can be compared, and are 
investigated in a further section. 
 

IV.  THE MATCHING PROBLEM 

A.  Introduction 

To assess comparable load curves, we must have the same 
characteristics between the electricity customers that 
effectively consume power in the measured load curve and 
the simulated load curves. In general, the DSO knows the list 
of his customers that are connected to a feeder; it has for 
each customer their characteristics listed in Table 1. 
However, with this information we cannot fill out the inputs 
for the electric load curve simulator and we have to use 
others databases. 

Indeed much useful information that can be converted into 
input in our simulator is found in various existing databases. 
In Table I we provide information on the main databases 
used in our electrical load simulator with their origin, the 
entities they describe as well as the characteristics of these 
entities. 

TABLE I 
LIST OF THE DIFFERENT DATABASES USED WITH THEIR ORIGIN, ENTITY AND 

CORRESPONDING ENTITY CHARACTERISTICS 

Origin of the 
database  

Database 
entity 

Useful characteristics of the 
entities for the simulator 

INSEE 
institute   
(France) 

Housing number of inhabitants, type 
(flat, house), surface given 
by intervals, number of 
rooms, age of the building, 
category (vacant, secondary 
residence, principal 
residence), type of heating 
(electric, fuel, gas, wood, 
other), IRIS1 mesh. 

IGN 
institute 
(France) 

Building Text address, geometry of 
the building (polygon size). 

ERDF 
company 
(France) 

Electricity 
customers 

Subscribed power, annual 
consumption, text address, 
IRIS1 mesh, type of 
customer (e.g. residential, 
tertiary artisan or 
shopkeeper). 

 
 Below are given the definitions of the different entities in 
order to use precise vocabulary: 
-Housing: houses or dwelling places thought of as a group. 
A housing occupied as a principal residence has a 
household. 
-Building : anything built on an area of land, having a roof 
and walls and intended to be kept at a well-identified 
location. 
-Electricity customer (or customer): materialize a unique 
contract with the DSO who is paid in order to provide an 
electricity supply service at a point of common coupling 
where the customer belongs. 
-Electricity  consumer (or consumer): entity which is used 
in the electric load curve simulator that tries to benefit from 
all databases in order to simulate electrical load curve as 
accurate as possible from the chosen inputs. 
 
The different databases provide complementary information. 
Their matching is important in order to fill in the simulator 
with the maximum of available input data. . 
Two cases are investigated: the case where there are no 
common characteristics (third column of Table I) from a 
database to another and the case where there is at least a 
common characteristic. 

B.  Case where there are no common characteristics 
between two databases. 

We will deal with this case with a concrete example: the 
matching between the housing database and the residential 
electricity customer database. Indeed, the final objective is 

                                                           
1 The IRIS mesh is a mesh lower that can be lower than a city; it was 

defined by INSEE Institute; each INSEE mesh has a unique six figures 
identifier. 
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to compare a measured load curve of a feeder and a 
simulated load curve with the same housing characteristics 
as these of the residential electricity customers connected to 
the feeder. To do this, each housing can be matched to 
electric customers, and reciprocally. 
We can define a criterion to assess in what extend the two 
different lists of entities are correctly matched.  
Simply, this is done by the definition of a certain distance 
between comparable parameters linked to the entities.  
 

In our work we propose to express with a model the 
characteristics of an entity. This models has as parameters 
the characteristics of another entity. A first case study 
considered in our work concerns modelling the annual 
electricity consumption based on some specific housing 
characteristics. 
Figure 9 shows the obtained results using data coming from 
ERDF’s and INSEE’s databases for the French Brittany 
region and for year 2011. 

In this case we know the list of housings and electricity 
customers per IRIS mesh, and we use this information to 
investigate for example the behavior of the total residential 
electricity customer annual consumption per municipality 
versus the total surface of housing per municipality. The fit 
with a linear model has a mean error of 11.4%. If we add 
another explicative variable such as the surface heated by 
electric heaters and the age of the building, we can decrease 
the mean error of a linear model down to 7%. 

 
Fig.9. Fit of the residential electric customer annual consumption per 

municipality versus the surface of housings per municipality. 

C.  Case where there exist common characteristics between 
two databases. 

The approach here is to match the different entities among 
them, by minimizing the global distance of the same 
characteristics between the matched entities. 
 Like in the previous section, we will present some results 
based on specific cases, and namely the same example as in 
the previous section, to illustrate the matching problem and 
its challenges.  
 As a problem set, we want to match the housing database 
(INSEE database) and the residential electricity customer 
database (ERDF database). We consider that the annual 
electricity consumption is known for the two different 
entities. To simplify the problem we consider that there are 
more housings than electricity customers, thus, an electric 
customer can gather more than a housing. However, a 
housing must be linked to an electricity customer (we 
consider that all the housings have a contract with a DSO for 
electricity supply, which is very close to the reality in 
France). 

We define below the list of parameters to be matched from 
the two considered databases: 

 nix ...,2,1  represents the estimated electricity annual 

consumption of the housings, n is the number of housings in 

the considered IRIS mesh. ix is the ith housing. 

 pjy ...,2,1 : represents the residential annual consumption of 

the electricity customers. p is the number of customers in the 

considered IRIS mesh. jy is the jth electricity customer. 

The problem of matching can be formulated as a distance 
(here chosen to be quadratic) minimization problem between 
the matched entities: 

 
where: 

    pnij ...,2,1*...,2,1 is the matching unknown : 1ij  if 

ix  is matched with jy , 0 else (2); 

 (3) is the constraint that each housing is linked to at least 

an electricity customer; 

 (4) is the constraint that each electricity customer is linked 

an unique housing. 

A simplified resolution algorithm of this optimization 
problem was tested on some data in order to obtain first 
results depicted in Fig.10. This Figure shows that the two 
curves present similar characteristics especially in term of 
peak correlation, which is a promising result. We can remark 
especially the model of standby that has to be calibrated in 
order to have similar mean consumption, and that the peak 
numbered 1 in the figure in the measurement is certainly due 
to reorganization, meaning that temporarily another feeder 
was connected to the measured feeder, for maintenance 
reasons.  

 
Fig.10. Measured load curve of a medium voltage feeder (red plot) and 

the simulated load curve (black plot), for a whole year, using as input 
the housing characteristics of the results of the simplified matching 
problem. 

1 
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V.  AUTOMATIC CALIBRATION  

The automatic calibration step, depicted in Fig. 1, is 
based on a comparison between the simulation results 
simulation and reference values for the specific inputs 
chosen. This comparison permits to calibrate or re-adjust the 
different parameters of the simulator in order to minimize 
the gap of its output and the reality.  

A.  Case study on Thermo-sensitivity  

We present here an example of what can be an automatic 
calibration using the DSO’s load curve. We consider as 
parameter the thermal resistance of buildings and we 
simulate the repartition of this parameter in the buildings of 
an area. The way this repartition is made, represents a level 
of “thermo-sensitivity” for the ensemble of buildings. Then 
using the thermo-sensitivity of the observed load curves we 
can calibrate the model.  
 Many definitions exist for thermo-sensitivity. We chose 
here a simple definition which is the linear fit of 
consumption points in ordinate and temperature points on 
the  abscissa, by only selecting points whose temperature 
are below a certain threshold of non-heating; we take in this 
example 15°C. We compare the thermo-sensitivity of the 
simulated and measured load curves represented in Figure 
10. The results are given in Figures 11 and 12. The 
coefficients a and b are respectively the linear and intercept 
coefficients of the fit, R² is the coefficient of determination. 

 
Fig.11. Thermo-sensitivity of the measured load curve of Fig. 10 where 

the temperature is the temperature of the cities of the customers 
weighted with the number of customers in the cities.  

 

 
Fig.12. Thermo-sensitivity of the simulated load curve of Fig. 10 by 

taking a medium level of thermal resistance per buildings, where the 
temperature is the temperature of the cities of the customers weighted 
with the number of customers in the cities. 

 
For the thermal model of buildings we chose a thermal 

resistance which is in a very simple model proportional to 
the surface of the consumer. We can look for the behavior of 
the different parameters a, b and R² when the surface thermal 
resistance or the target temperature are modified. We can 

then plot the sum of the relative errors between a, b and R² 
simulated and from the measurements, function of the   
surface thermal resistance and the target temperature to find 
automatically the couple of inputs that minimizes the errors, 
as illustrated in Fig.13.  

 

 
 

Fig.13. Sum of the relative errors between a, b and R² from simulated 
outputs of simulator and from the measurements, as a function of the 
surface thermal resistance and the target temperature. 

VI.  CONCLUSION 

With current challenges, available data and simulation 
tools, we have shown that electrical load curve modelling is 
more than the objective of prediction of demand, to be an 
accessible, understandable and accurate tool for every actor 
around the electricity grid. To answer the previous 
objectives, we have presented in this paper an electric load 
curve simulator which aims to be as simple and generic as 
possible to be able to deal with computation time and big 
data available.  

A novel kind of validation is proposed, which tries to 
take into account results in the available literature and 
DSO’s power measurements. The paper has presented the 
approach proposed for matching different databases. The 
qualitative and quantitative results presented are promising. 
To benefit from these big databases, future work will focus 
on the automatic calibration of parameters of the simulator. 
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