
HAL Id: hal-01086917
https://minesparis-psl.hal.science/hal-01086917v1

Submitted on 25 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Seamless Multicore Parallelism in MATLAB
Claude Tadonki, Pierre-Louis Caruana

To cite this version:
Claude Tadonki, Pierre-Louis Caruana. Seamless Multicore Parallelism in MATLAB. Parallel
and Distributed Computing and Networks (PDCN 2014), Feb 2014, Innsbruck, Austria. pp 1-8,
�10.2316/P.2014.811-005�. �hal-01086917�

https://minesparis-psl.hal.science/hal-01086917v1
https://hal.archives-ouvertes.fr


SEAMLESS MULTICORE PARALLELISM IN MATLAB

Claude Tadonki1 and Pierre-Louis Caruana2

1Mines ParisTech - CRI - Mathématiques et Systèmes
35, rue Saint-Honoré, 77305, Fontainebleau Cedex (France)

claude.tadonki@mines-paristech.fr
2University of Paris-Sud Orsay

Faculty of Sciences - Bât. 301, 91405 Orsay Cedex (France)
pierre-louis.caruana@u-psud.fr

Abstract

MATLAB is a popular mathematical framework composed
of a built-in library implementing a significant set of com-
monly needed routines. It also provides a language which
allows the user to script macro calculations or to write com-
plete programs, hence called “the language of technical
computing”. So far, a noticeable effort is maintained in
order to keep MATLAB being able to cooperate with other
standard programming languages or tools. However, this
interoperability, which is essential in many circumstances
including performance and portability, is not always easy
to implement for ordinary scientists. The case of parallel
computing is illustrative and needs to be addressed as mul-
ticore machines are now standard. In this work, we report
our efforts to provide a framework that allow to intuitively
express and launch parallel executions within a classical
MATLAB code. We study two alternatives, one which is
a pure MATLAB solution based on the MATLAB parallel
computing toolbox, and another one which implies a sym-
metric cooperation between MATLAB and C, based on the
Pthread library. The later solution does not requires the
MATLAB parallel toolbox, thus clearly brings a portability
benefit and makes the move to parallel computing within
MATLAB less costly to standard users. Experimental re-
sults are provided and commented in order to illustrate the
use and the efficiency of our solution.

KEY WORDS
MATLAB; parallelism; multicore; threads; speedup; scala-
bility.

1 Introduction

MATLAB is more than amatrix computation laboratory, as
it covers many kinds of application and provides a well fea-
tured programming language. However, asMATLAB users
are likely to expect simplicity at all levels of usage, any
MATLAB related achievement should fulfill this guideline.
The current work related tomulticore parallel program-
ming is done in that spirit.

Multicore architecture is now the standard for mod-
ern processors. This pervasiveness of multiprocessing sys-

tems has put a severe pressure on software solutions that
can benefit from multicore CPUs [1, 3, 6]. Ordinary users
wish to seamlessly harvest the full power of the proces-
sor for their basic tasks. Software tools and libraries are
now designed accordingly. From the programmer side, its
appears that even experts are reluctant to pay so much ef-
fort to design multicore parallel codes. Relevant APIs like
OpenMP [12] or Cilk [13] were provided to alleviate the
programming pain and let the programmer focus on the ab-
straction model of his code.

MATLAB has earlier started to provide parallel com-
puting solution into its distributions, mainly through ad-
ditional packages (not provided by default) [5]. From the
technical point of view, a certain level of programming skill
is still required to implement parallelism within aMATLAB

program using native solutions. Therefore, any API de-
signed to hide the underlying effort would be appreciated.
This is what we propose in this paper. We first propose
a POSIX-threadbased solution, which thereby drops the
need of theMATLAB parallel toolbox. We also explore
two alternative APIs that connect the programmer to na-
tive MATLAB parallel programming routines. In all cases,
the whole process is seamless to the programmer, who just
needs to express his parallel execution in a quite intuitive
way.

The rest of the paper is organized as follows. The next
Section describe native parallelism solutions inMATLAB

. Section 3 motivates and provides a detailed description
of our contribution. Benchmark results are provided and
discussed in Section 5. Section 6 concludes the paper.

2 Overview of existing solutions

First, note that parallelism is provided in recent distribu-
tions ofMATLAB through additional packages namelyPar-
allel Computing Toolbox(PCT) andMATLAB Distributed
Computing Server(MDCS). In this work, we only focus on
multicore parallelism using theParallel Computing Tool-
box [10]. This is justified by the fact that (personal) com-
puters are mostly equipped with multicore processor, thus
any MATLAB user might think of running tasks in parallel
in order to improve performance. We now describe how
this is natively provided in recentMATLAB distributions.



2.1 Using parallel built-in libraries

This is the easiest and most seamless method to deal with
parallel processing withinMATLAB . In fact, in recent (and
future) releases ofMATLAB , a number of built-in func-
tions are provided through their parallel implementation.
Thus, just running a given standard code under a recent
version ofMATLAB should be sufficient to benefit from the
power of parallel processing. While this is really a simple
and direct solution, the main drawback is a certain rigid-
ity on the global parallel scheduling. Indeed, the execution
model implemented by this approach is the so-calledLo-
cally Parallel Globally Sequential(LPGS), where parallel
execution occurs task by task, in a logical sequential order
specified by the programmer. For instance, a parallel ver-
sion of thedivide-and-conquerparadigm cannot be carried
on with this approach. In addition, not allMATLAB built-in
functions are provided with their parallel implementations,
the most interesting ones for a given application might be
missing. We now describe two ways of dealing with ex-
plicit parallelism inMATLAB . In any cases, the parallel
language features ofMATLAB is enabled through theMAT-
LAB pool. To open the pool, we have to issue the command
matlabpool open <configuration>
and to close the pool, which means switch off the parallel
features, we issue the command
matlabpool close

2.2 MATLAB tasks feature

With this solution, the programmer obtains a parallel exe-
cution by creating and submitting severalMATLAB tasks
to the scheduler. A typical sequence starts with the
createTask function, which has the following form
t = createTask(j, F, N, {inputargs}).
This function creates a new task object into jobj, and re-
turns a reference to the newly added task object. By this
way, several tasks can be added to the same job. Job object
j is created using the command
j = createJob(sched)
where the argumentsched can be omitted or set to
parcluster() to use the scheduler identified by the de-
fault profile. F is the name or handle of the function to be
executed within the task, with all its input arguments listed
in {inputargs} (a row cell array). The functionF is ex-
pected to returnN outputs that will be retrieved from the
job objectj using the command
taskoutput = fetchOutputs(j)
wheretaskoutput is also a row cell array. The program-
mer is expected to manually extract the outputs from the
cell array returns byfetchOutputs(j) and put them
into the corresponding variables or directly perform the
epilogue calculation from it. The example below computes
the sum of an arrayU with 8 elements.

% Create one job object
j = createJob();

% Create tasks for job j
createTask(j, @sum, 1, {U(1:4)});
createTask(j, @sum, 1, {U(5:8)});

% Submit job j to the scheduler
submit(j);

% Wait for job completion
wait(j);

% Get the outputs of job j
v = fetchOutputs(j);

% Aggregate the partial sums
s = v{1} + v{2};

% Delete job j
delete(j);

We now state some important facts:

• each task within a job is assigned to a uniqueMATLAB

worker, and is executed independently of the other
tasks

• the maximum number of workers is specified in the
local scheduler profile, and can be modified as desired,
up to a limit of twelve

• if a job has more tasks than allowed workers, the
scheduler waits for one of the active tasks to complete
before starting anotherMATLAB worker for the next
task. In some cases, such an overloading will prevent
the entire job from being executed.

2.3 The parfor construct

The parfor statement is used in place of afor statement
in order to specify that the corresponding loop should be
executed in parallel. The loop is therefore split into equal
chunks and the corresponding tasks are distributed among
the workers. By default,MATLAB uses as many workers as
it finds available, unless a more restrictive limit is specified.
A typical use of theparfor statement is illustrated by the
following example with at most 2 workers

matlabpool open 2
parfor i=1:10
U(i) = sqrt(i);

end
matlabpool close

The main requirement when usingparfor is the indepen-
dence between the iterations. However, if there is only a
virtual dependence, i.e. data dependences with no effect on
the final result, thenMATLAB seems to be able to handle
the case correctly. In this particular case, it is important to
have a loop which can be executed in any order, like those
implementing global reductions. The following script is an
example with virtually dependent iterations

matlabpool open 2
s = 0;
parfor i=1:10



s = s + U(i);
end
matlabpool close

Theparfor feature is more appropriate for “embarrassingly
parallel” applications on which some level of performance
can be expected. Although quite easy to use, there are num-
ber of important facts and restrictions that the programmer
should keep in mind when it comes to theparfor feature:

• execution ofparfor is not deterministic in terms of
block-iteration order. Thus, we emphasize on having
a loop with independent iterations.

• sequential execution might occur in caseMATLAB

cannot run theparfor loop on its pool. This occurs
when there is no worker available or if the program-
mer puts 0 for the parameter specifying the maximum
number of workers. Recall that the extended form of
theparfor construct is as follows
parfor(i=1:N,max workers)

• temporary variablesandloop variablesare treated as
local within each chunk of theparfor loop. Sliced
variables, broadcast variablesand reduction vari-
ablesare treated on a global basis according to the
semantic of the loop. Figure 1 illustrates the afore-
mentioned categories of variables.

Figure 1. Kinds of variables within a parfor loop

The reader may refer to [9, 2, 4] for more details about
MATLAB parfor and benchmark oriented discussions.

3 Description of our solutions

3.1 Overview and motivations

Our main goal is to provide a function of the form
dopar(’I1’,’I2’,...,’In’);

where Ii, i = 1, · · · , n are the instructions to be executed
in parallel on a shared memory basis. Each instruction is
any valid MATLAB construct that will be executed in the
context of the caller, i.e. inputs (resp. outputs) have to be
read from (resp. stored to) the caller workspace, which is
either a plain script or a function. In future releases, we
plan to handle the case Ii is a portion of theMATLAB code,
exactly like an OpenMP section. This way of requesting
a parallel execution is rather intuitive for any programmer,
provided he is aware of the underlying integrity constraints.
Only for this reason, and later on for performance needs, it
is expected for the user to have some basic prerequisites in
multiprocessing, in order to express meaningful parallelism
and also to get better scalability. Anyway, the machinery
behind is completely seamless to the programmer, which,
as usual when it comes toMATLAB , remains focused on
the computation rather than programming details.

3.2 Common technical considerations

Since user instructions are provided asstrings, we use the
built-in MATLAB commandsevalin()[8] to execute the cor-
responding calculations andeval() [7] for assignments be-
tween intermediate and input/output variables.

eval(string) evaluates theMATLAB code ex-
pressed bystring. Note that this evaluation is performed
within the current context. Thus, if this is done within a
function, which is our case, we should not expect to directly
affect output variables. For input variables, they aren’t ac-
cessible too, unless passed as arguments to the called func-
tion. Let consider the following function to illustrate our
case.

function my_eval(string)
eval(string);

end

Now, if we issuemy eval(’B = A + 1’), none of the
variables betweenA andB will be accessible within the
scope ofmy eval. Instead, they will be treated as local
variables with the same names. This is becauseA (respB)
is not an input (resp. output) argument ofmy eval. We
will later explain how we address this in the context of the
Pthread-based solution.

evalin(ws, string) executes theMATLAB

code string in the context of workspacews, which
is either ’base’ for the MATLAB base workspace or
’caller’ for the workspace of the caller function. We
use this for pureMATLAB alternatives. The main advantage
of evalin is that we can directly execute the requested
command in the context of the caller program, thus avoid-
ing data import and export.

3.3 Common issues

Whatever the feature we choose to run in the background,
the main concern related to variables is that we move into
a new context. Consequently, we need to import input data



before executing the requested kernel, and afterward export
back output data into the caller context. This is one of the
things our framework performs seamlessly, at the price of a
certain delay that should be counted in the global time over-
head. Moreover, data coming from distinct tasks should
be gathered appropriately before updating output variables.
This is another postprocessing done by our framework de-
pending on the consideredMATLAB parallel feature as we
will explain in each of the following sections.

3.4 Pthread based solution

This part is our major contribution as it provides a quite
original parallelism solution from the technical point of
view. Indeed, with this solution, the programmer does not
need any additional MATLAB package, even theParallel
Computing Toolbox. The main idea is to use a C code, com-
piled as a MATLABmex-file, which proceeds as follows:

1. Parse the associated stringof each input instruction in
order to get the list of all involved variables.

2. Load the data of each right-hand-side variablefrom
the caller context into the current one.

3. Launch as many POSIX threads as input instructions,
each thread executes its associatedMATLAB instruc-
tion using a call to theMATLAB engine [11].

4. Copy back the datacorresponding to each output vari-
able into the context of the caller.

Figure 2 is an overview of the system, which only requires
MATLAB , any C compiler, and thePthreadlibrary.

Figure 2. Pthread based architecture

Figure 3 summarizes the commands associated to the
MATLAB engine.

Figure 3. Main commands related to MATLAB engines

Let us now comment on each point of the mechanism.

1. Parsing for variables inventory. This step is very
important, as we need to discriminate betweeninput
variablesandoutput variables. Because the calcula-
tions are local, thus out of the context of the caller, we
create a local mirror for each variable, and the instruc-
tion string is transformed accordingly. For instance,
the instruction string’A = B + C’ is transformed
into ’A c = B c + C c’, whereA c, B c, and
C c are mirrors ofA, B, andC respectively.B and
C are considered as input variables, whileA is treated
as an output variable.

2. Importing input data. This is done using the
engGetVariable routine. The data for each input
variable is copied into the associated local mirror.

3. Threads and MATLAB engine. Each thread opens a
MATLAB engine and issues the execution of its asso-
ciated instruction string using theengEvalString
command. Unfortunately, things are not so simple. In-
deed,engOpen starts a newMATLAB session with a
new MATLAB environment. Thus, in addition to the
cost of launching a newMATLAB , we need again to
explicitly exchange data. One way to avoid this is
to use the/Automation mode (only available on
Windows platforms), which connects to the existing
MATLAB session instead of starting a new one. Un-
fortunately, since we are using a uniqueMATLAB en-
gine, the threads will have theirengEvalString
commands serialized. This creates avirtual par-
allelism, but not an effective one. We found that
the way to go is to use theengOpenSingleUse,
which starts a non sharedMATLAB session, even if
we are on theAutomation mode. The main ad-
vantage now, using theAutomation mode, is that
data exchanges can be done by direct assignments (i.e.
engEvalString(’A c = A’) for instance). On
a Linux platform, we simply useengOpen and ex-
plicitly exchange data between the different running
MATLAB sessions.



4. Exporting output data. This is done using the
engPutVariable routine. Each output variable is
assigned the data from its local mirror.

We now explore two alternatives based on native
MATLAB implementation of parallel executions.

3.5 MATLAB workers based solution

This solution is based onMATLAB tasks feature as de-
scribed in Section 2.2. Each instruction string is passed
to a worker through the corresponding argument of the
createTask routine. We start with aMATLAB func-
tion gen eval, which can execute any instruction string
through theeval command. For each instruction string
’I’, we executecreateTask(job, @gen eval,
1, ’I’);. Upon completion of all tasks, we retrieve the
(aggregated) output data and scatter it according to the set
of output variables identified by the parsing. In order to
avoid data import and export, due to the fact we are dealing
with different contexts, theMATLAB code that creates and
runs the tasks is generated on the fly as a string and then ex-
ecuted through theevalin routine directly in the context
of the caller.

3.6 MATLAB parfor based solution

We link any parallel execution to theparfor construct as
described in Figure 4. The rest of the mechanism is similar
to theMATLAB workers based solution.

Figure 4. The bridge to theparfor

The user should be aware of the restrictions that apply
to the use of theparfor. One of them is the strong limitation
of the number of parallel blocks. Another one is the strict
independence between the iterations.

4 Potential performance issues

With the Pthreadbased mechanism, we could reasonably
expect a noticeable time overhead because each thread
opens aMATLAB session. Data import/export is another
potential source of time delay. Other factors that are in-
herent to shared memory parallelism should be taken into

account too (false sharing, serialisation, bus contention,
to name a few). All these facts justify the common rec-
ommendation of considering parallel execution for perfor-
mance, only with heavy computing tasks. Table 1 and 2
provide an experimental measurement of the total overhead
for each of our three solutions on a 2 cores processor (Intel
Core2 Duo Processor E4500). For each solution, the mea-
surements are the costs of the mechanism without any com-
putation nor data transfer. We see form here that the time
overhead associated to thePthreadsolution is the lowest
(although the difference with thetaskbased solution looks
rather marginal).

run pthread(s) task(s) parfor(s)
1 6.8228 5.9950 9.4820
2 4.9977 5.9581 9.4874
3 5.9762 5.9286 9.0390
4 4.9950 5.9685 8.9879
5 4.9103 5.9410 9.0397

Table 1. Pure overhead of our mechanism

lvector pthread(s) task(s) parfor(s)
10

6 0.144 0.687 0.122
2 × 10

6 0.640 1.407 0.898
3 × 10

6 0.946 2.114 1.607
4 × 10

6 1.332 3.777 2.205
5 × 10

6 1.713 6.604 2.413

Table 2. Time costs for data import&export

We now provide and comment full benchmark results.

5 Illustration and benchmark results

We consider two applications for our benchmark,sorting
and matrix-product. The aim here is to show that our
framework is effective in the sense of providing a straight-
forward way to express and get parallelism underMATLAB

. Therefore, the reader should focus on speedup rather than
absolute performance. Another point to keep in mind is
that thePthread-based solution is our main contribution,
thus should be somehow compared with alternatives that
are based on pureMATLAB parallel solutions (i.e.tasks
andparfor), although we did the interfacing work for them
too.

Forsorting, we use aMATLAB implementation of the
quicksortalgorithm. On ap cores machine, we use our
framework to issuep quicksort in parallel, each of them
operating on the corresponding chunk of the global array.
We also test2p parallel executions whenhyperthreading
is available. For each test, the size provided is the size of
the parallel subtask, this should be multiplied by the num-
ber of parallel executions to get the global size of the main
problem.



For matrix-product, we apply the same methodology
as forsorting. We consider the product of two square ma-
trices of the same size. So, when we sayn, it means a
product of twon2 matrices. We usedouble precisiondata.

In both cases, we do perform the post-processing
(mergingfor sorting andmatrix additionfor matrix prod-
uct) that is needed to form the final solution. The reason is
that this does not provide any information about the ability
of our framework to implement parallelism.

Tables 3 and 4 provide the results obtained on a 2
cores machine (Intel Core 2 Duo Processor E8400). In Ta-
ble 3,n readsn × 10

6.

n seq pthread task parfor
t(s) t(s) σ t(s) σ t(s) σ

1 55 42 1.3 53 1.0 48 1.1
2 120 64 1.9 82 1.5 89 1.3
3 174 97 1.8 125 1.4 123 1.4
4 233 122 1.9 165 1.4 158 1.5
5 300 162 1.8 220 1.4 211 1.4

Table 3. Sorting with 2 cores

n seq pthread task parfor
t(s) t(s) σ t(s) σ t(s) σ

400 2 9 0.2 8 0.2 14 0.1
800 12 16 0.7 18 0.6 20 0.6

1200 43 32 1.3 41 1.0 43 1.0
1600 103 72 1.4 86 1.2 84 1.2
2000 208 135 1.5 166 1.2 158 1.3

Table 4. Matrix-product with 2 cores

We now show the performances on an Intel Core i7-
2600 Processor with 4 cores and up to 8 threads (Hyper-
Threading). Table 5 (resp. Table 6) provides the speedups
with sorting (resp. matrix-product), and Figure 5 (resp.
Figure 6) focuses on the biggest case to illustrate paral-
lelism.

Figure 5. Performance with thequicksort

Table 5. Performance of sorting with 4 cores

Figure 6. Performance withmatrix-product

Table 6. Matrix-product with 4 cores

We globally see that parallelism really occurs with a
good average speedup. ThePthreadbased solution seems
to outperformMATLAB based alternatives regardingscal-
ability andoverhead. Another important advantage using



the Pthread-based solution is that we are not limited in
the number of threads, thus we may benefit from Hyper-
Threading if available. We couldn’t do the same withMAT-
LAB bases solution, probably due to some limitations re-
lated the number of physical cores or the user profile. Thus,
we just double the load of each thread in other to com-
pare withPthread-bases solution in regard to the Hyper-
Threading feature.

Figures 7, 8, and 9 show the CPU occupancy rates
for each of the parallel solutions, considering the Hyper-
Threading feature as previously explained. We see that
the occupancy is maximal with thePthread-based solution.
With theMATLAB tasks solution, all the (virtual) cores are
participating, but under a moderate regime. For theparfor
based solution, we only have 4 cores participating.

Figure 7. CPU-cores load with Pthreads

Figure 8. CPU-cores load with MATLAB tasks

Figure 9. CPU-cores load withparfor

6 Conclusion

This paper present our contribution on multicore parallel
programming inMATLAB . Our main contribution is based
on the Pthread library, which is portable standard for
threads programming. ConnectingMATLAB to this library
through amex-file, where each thread launches aMATLAB

engine to execute its task, is technically sound. By doing
this, the user does not need any additionalMATLAB pack-
ages to move to parallelism, and our framework provides
a quite natural way to request a parallel execution of dif-
ferent MATLAB instructions. Having an intuitive way to
express calculations is the main wish ofMATLAB users.
Experimental results clearly illustrate the effectiveness of
our contribution. We think that going this way will boost
parallel programming considerations withMATLAB .

Among potential perspectives, we plan to extend the
argument of our parallel construct to cover a set of instruc-
tions instead of a single instruction, similar to OpenMP sec-
tions. The relevant effort is more on the parsing rather than
on the heart of the mechanism. Another aspect to study
is how to avoid explicit data exchanges between contexts,
the solution could be OS dependent because the underlying
MATLAB sessions are not always managed the same way.
Scalability on systems with larger number of cores should
be investigated too.

We plan to make our framework available very soon
on the web (code and documentation), likely under the
GNU General Public License (GNU GPL).

References

[1] E. Agullo, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, J.
Langou, H. Ltaief, P. Luszczek, and A. YarKhan,PLASMA:
Parallel Linear Algebra Software for Multicore Architec-
tures, Users Guide, http://icl.cs.utk.edu/plasma/, 2012.



[2] J. Burkardt and G. Cliff,Parallel MATLAB: Parallel For
Loops,
http://www.icam.vt.edu/Computing/
vt 2011 parfor.pdf, may 2011.

[3] M. Hill and M. Marty, Amdahl law in the multicore era,
Computer, vol. 41, no. 7, pp. 33 ?38, 2008.

[4] N. Oberg, B. Ruddell, Marcelo H. Garcia, and P. Kumar,
MATLAB Parallel Computing Toolbox Benchmark for an
Embarrassingly Parallel Application, University of Illi-
nois,
http://vtchl.illinois.edu/sites/
hydrolab.dev.engr.illinois.edu/
files/MATLAB Report.pdf, june 2008.

[5] G. Sharma, J. Martin,MATLAB: A Language for Parallel
Computing, International Journal of Parallel Programming,
Volume 37, Number 1, pages 3-36, February 2009.

[6] C. Tadonki,High Performance Computing as a Combina-
tion of Machines and Methods and Programming, HDR
book, University Paris-Sud Orsay, France, may 2013.

[7] http://www.mathworks.fr/fr/help/matlab/
ref/eval.html

[8] http://www.mathworks.fr/fr/help/matlab/
ref/evalin.html

[9] http://www.mathworks.fr/fr/help/
distcomp/parfor.html

[10] http://www.mathworks.com/help/pdfdoc/
distcomp/distcomp.pdf

[11] http://www.mathworks.fr/fr/help/matlab/
matlabexternal/using-matlab-engine.html

[12] http://openmp.org/

[13] http://supertech.csail.mit.edu/cilk/


