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Abstract—In a paper, Feron presents how Lyapunov-
theoretic proofs of stability can be migrated toward
computer-readable and verifiable certificates of control
software behavior by relying of Floyd’s and Hoare’s
proof system.

However, Lyapunov-theoretic proofs are addressed
towards exact, real arithmetic and do not accurately
represent the behavior of realistic programs run with
machine arithmetic. We address the issue of preserving
those proofs in presence of rounding errors resulting
from the use of floating-point arithmetic: we present
an automatic tool, based on a theoretical framework
the soundness of which is proved in Coq, that translates
Feron’s proof invariants on real arithmetic to similar
invariants on floating-point numbers, and preserves the
proof structure. We show how our methodology allows
to verify whether stability invariants still hold for the
concrete implementation of the controller.

We study in details the application of our tool to
the open-loop system of Feron’s paper and show that
stability is preserved out of the box. We also translate
Feron’s proof for the closed-loop system, and discuss
the conditions under which the system remains stable.

I. Introduction

Stability constitutes an essential attribute of control
systems, especially when human safety is involved, as in
medical or aeronautical domains. Modern system devel-
opments, such as adaptive control technologies, rely on
robust stability and performance criteria as the primary
justification for their relevance to safety-critical control
applications. Motivated by such applications, there exist
many theorems that ensure system stability and perfor-
mance under various assumptions and in various settings.
Lyapunov’s stability theory plays a critical role in that
regard.

The low-level software implementation of a control law
can be inspected by analysis tools available to support
the development of safety-critical computer programs. The
simplest program analysis technique consists of performing
several simulations, sometimes including a software or
hardware representation of the controlled system in the
loop. However, simulations provide information about only
a finite number of system behaviors. More advanced meth-
ods include model checking and abstract interpretation,
e.g. using Astrée [1]. In these methods, inputs are the very
computer programs and outputs are certificates of proper
program behavior along the chosen criterion. Another pos-
sibility is to use theorem-proving techniques, supported by

tools such as Coq, Isabelle or PVS [2], [3], [4]. These proof
assistants can be used to establish properties of programs
and more general mathematical constructs. Model check-
ing, abstract interpretation, and theorem-proving tools are
all used to verify safety-critical applications.

In [5], Feron investigates how control-system domain
knowledge and, in particular, Lyapunov-theoretic proofs
of stability for the high-level theoretical modelization, can
be migrated towards computer-readable and verifiable cer-
tificates of control software behavior by relying on Floyd’s
and Hoare’s proof system [6], applied to MATLAB pseudo-
code (see Sections II and III). Feron presents both open-
loop and closed-loop implementations of his controller, i.e.
depending whether the system action on the environment
and its feedback are modelized or not. But errors resulting
from the use of floating-point arithmetic are not consid-
ered.

In this paper, we address this issue by presenting an
automatic approach to translate Lyapunov-theoretic sta-
bility proof invariants on pseudo-code with real arithmetic,
as provided in Feron’s article, to similar invariants on
machine code that take into account rounding errors intro-
duced by floating-point arithmetic. We use them to verify
whether the stability conditions still hold, in which case
system stability with floating-point numbers is established.
This approach is based on a generic theoretical framework
which soundness is proved in Coq, described further in this
document, and is implemented as an automatic tool.

This document is organized as follows. First, we de-
scribe the second-order dynamical system example used
by Feron in [5], with the corresponding controller. Next,
Feron’s analysis of the open-loop controller with real num-
bers is presented. In the next sections, we introduce our
generic translation scheme and its implementation as a
Python library, and use it thereafter to rewrite Feron’s
analysis with floating-point arithmetic. Finally, the case
of the closed-loop system is handled. The document con-
cludes with a discussion on the generality of this approach.

II. Motivating Example by Feron

We consider the first system described in the article of
Feron [5]. It is a dynamical system composed of a single
mass and a single spring shown in Figure 1.

The position input y of the mass is available for feed-
back control. The signal yd is the reference signal, that is,
the desired position to be followed by the mass.
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Figure 1. Mass-spring system

A discrete-time MATLAB implementation of the con-
troller, using real numbers, is provided in [5]. The source
code is shown below. The process to produce this code from
the system modeling is covered in detail in Feron’s paper,
but in not necessary to understand this document.
1 Ac = [0.4990, -0.0500; 0.0100, 1.0000];
2 Bc = [1; 0];
3 Cc = [564.48, 0];
4 Dc = -1280;
5 xc = zeros(2, 1);
6 receive(y, 2); receive(yd, 3);
7 while (1)
8 yc = max(min(y - yd, 1), -1);
9 skip;

10 u = Cc*xc + Dc*yc;
11 xc = Ac*xc + Bc*yc;
12 send(u, 1);
13 receive(y, 2);
14 receive(yd, 3);
15 skip;
16 end

In this code, the skip statement is a null operation:
when it is executed, nothing happens. It is useful as a
placeholder when a statement is required syntactically to
be surrounded by invariants, but no code needs to be
executed.

Apart from the mechanical system state observation y
and the desired system output yd, variables in this code
are:

• xc =
(
xc1
xc2

)
∈ R

2 is the discrete-time controller
state;

• yc ∈ [−1, 1] is the bounded output tracking error,
i.e. the input (y − yd) is passed through a satu-
ration function to avoid variable overflow in the
controller;

• u ∈ R is the mechanical system input, i.e. the
action to be performed according to the controller.

Constants Ac, Bc, Cc and Dc are the discrete-time con-
troller state, input, output and feedthrough matrices. The
commands send and receive are basically I/O: they
respectively send and receive data given in the commands
first argument through a specific channel given by the
commands second argument.

III. Open-Loop Stability Proof with Reals
The stability proof of this system relies on Lyapunov

theory. In simple terms, a system is Lyapunov stable if all
states xc reachable from an initial starting state belonging
to a bounded neighborhood V of an equilibrium point xe

remain in V .
Lyapunov theory provides constraints that must be

satisfied by such a V . On linear systems, they are equations
that can be solved using linear matrix inequalities [7].
Commonly, V is an ellipsoid.

In this case, to prove Lyapunov stability, we need to
show that at any time, xc belongs to the set EP chosen by
Feron according to Lyapunov’s theory:

EP = {x ∈ R
2 |xT ·P ·x ≤ 1}, P = 10−3

(
0.6742 0.0428
0.0428 2.4651

)

using EP as the stability neighborhood V .
This set is the full ellipse shown in Figure 2, centered

around 0 and slightly slanted:

xc ∈ EP ⇐⇒ 0.6742xc
2
1+0.0856xc1xc2+2.4651xc

2
2 ≤ 1000.
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Figure 2. The stability domain EP

A stability proof of the controller is provided in [5],
using Floyd-Hoare program annotation technique [6]: each
program instruction comes with an invariant. The program
annotated by Feron is reproduced below.
5 xc = zeros(2,1);

% xc ∈ EP
6 receive(y, 2); receive(yd, 3);

% xc ∈ EP
7 while (1)

% xc ∈ EP
8 yc = max(min(y - yd, 1), -1);

% xc ∈ EP , y
2
c ≤ 1

9 skip;
% ( xc

yc
) ∈ EQµ

, Qµ =
( µP 02×1

01×2 1−µ

)
, µ = 0.9991

10 u = Cc*xc + Dc*yc;
% ( xc

yc
) ∈ EQµ

, u2 ≤ (Cc Dc) ·Q
−1
µ · (Cc Dc)

−1

11 xc = Ac*xc + Bc*yc;
% xc ∈ ER, R =

[
(Ac Bc) ·Q

−1
µ · (Ac Bc)

T]−1
,

% u2 ≤ (Cc Dc) ·Q
−1
µ · (Cc Dc)

−1

12 send(u, 1);
% xc ∈ ER

13 receive(y, 2);
% xc ∈ ER



14 receive(yd, 3);
% xc ∈ ER

15 skip;
% xc ∈ EP

16 end

Most of the proof relies on algebraic arguments. For
example, the invariant loosening on Line 9:

% xc ∈ EP , y2c ≤ 1
9 skip;

% ( xc

yc
) ∈ EQµ

, Qµ =
( µP 02×1

01×2 1−µ

)
, µ = 0.9991

means
xc ∈ EP ∧ y2c ≤ 1 =⇒ ( xc

yc
) ∈ EQµ

,

with Qµ =
( µP 02×1

01×2 1−µ

)
and µ = 0.9991.

The correctness of this assertion stems from the fact
that, given any value of µ ∈ [0, 1], the domain EQµ

is a
solid ellipsoid, centered around 0, and whose intersection
with the planes yc = 1 and yc = −1 is equal to EP .
Consequently, the solid bounded cylinder C = {( xc

yc
) |xc ∈

EP ∧ y2c ≤ 1} is included within EQµ
(Figure 3).

EQµ
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C xc2

yc

1
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Figure 3. Inclusion of EP within EQµ

The next two invariants
% ( xc

yc
) ∈ EQµ

, Qµ =
( µP 02×1

01×2 1−µ

)
, µ = 0.9991

10 u = Cc*xc + Dc*yc;
% ( xc

yc
) ∈ EQµ

, u2 ≤ (Cc Dc) ·Q
−1
µ · (Cc Dc)

−1

11 xc = Ac*xc + Bc*yc;
% xc ∈ ER, R =

[
(Ac Bc) ·Q

−1
µ · (Ac Bc)

T]−1
,

% u2 ≤ (Cc Dc) ·Q
−1
µ · (Cc Dc)

−1

also rely on similar algebraic arguments and theorems.
Other invariants are trivial. Finally, only the very last
loosening

% xc ∈ ER
13 skip;

% xc ∈ EP

i.e. ER ⊂ EP , that closes the loop, is not purely alge-
braic since its validity relies on the numerical parameters
Ac, Bc, Cc, Dc. This assertion needs to be checked to
ensure the correctness of the proof statements. This can
be done either numerically, or algebraically for at most
two-dimensional systems like this one.

We have checked this proof using Mathematica [8]. Our
proof notebook is available online1.

IV. Proof Scheme with Limited-Precision
Numbers

We would like to check that the stability proof still
holds on a realistic controller device, using limited-
precision numbers (for instance, but not necessarily,
floating-point numbers). When using limited-precision
arithmetic, the values of constants are slightly altered and
calculations are likely to produce rounding errors.

In absolute terms, it is impossible to switch from real to
limited-precision numbers without affecting the behavior
of the controller. Thus, the stability proof cannot be
preserved in the general case. On the other hand, the
program still can be stable if rounding errors are small
enough and the final inclusion ER ⊂ EP leaves them enough
room. We study how proof invariants can be tweaked so
that they apply to a limited-precision semantic. Our goal
is to derive from the proof scheme for real numbers a
proof scheme suited for limited-precision arithmetic, whose
correctness, although not guaranteed, can be checked as
easily as in the original proof.

A. Formalism
In this section, an abstract formalism is defined to

handle a program an its proof, with both real and limited-
precision arithmetic.

% d
i
% d′ = p(d, i)

Figure 4. Abstract scheme of invariant propagation on the original
program

Let X be the (finite) set of variables in the program.
1) Values: Let F ⊂ R be the targeted set of limited-

precision representations of real numbers (e.g., floating-
point numbers). We assume that each real number c ∈ R

has a finite-precision representation c̄ ∈ F and that the
property (1) is satisfied:

c ∈ F =⇒ c̄ = c. (1)

Throughout the rest of the document, we will use the
uniform notation K to refer to either the set R or F.

2) Functions Symbols: We consider a set of function
symbols FR on real numbers. Each real function symbol
f ∈ FR is associated to a finite-precision counterpart
f̄ ∈ FF. Functions symbols in FR and FF will be simply
referred as functions when there will be no ambiguity.

Each function symbol f in FR or FF has an arity n ∈ N

and can be evaluated on its domain:
f ∈ FK =⇒ eval(f) ∈ K

n → K. (2)
1Mathematica source file is available at: http://www.cri.ensmp.fr/

people/maisonneuve/lyafloat/resources/lyafloat_stability.nb, and
the corresponding PDF file at: http://www.cri.ensmp.fr/people/
maisonneuve/lyafloat/resources/lyafloat_stability.pdf.

http://www.cri.ensmp.fr/people/maisonneuve/lyafloat/resources/lyafloat_stability.nb
http://www.cri.ensmp.fr/people/maisonneuve/lyafloat/resources/lyafloat_stability.nb
http://www.cri.ensmp.fr/people/maisonneuve/lyafloat/resources/lyafloat_stability.pdf
http://www.cri.ensmp.fr/people/maisonneuve/lyafloat/resources/lyafloat_stability.pdf


Functions f and f̄ have the same arity:

arity f = arity f̄ .

As for now, no other assumption is made as to the behavior
of f̄ compared to f .

Notice that function symbols are not identified to their
evaluations. The reason is that functions with similar
evaluations on real arithmetic may behave differently on a
limited-precision paradigm, e.g. function x 7→ 2100 + x −
2100 compared to the identity function: x 7→ x.

3) Valuations: A valuation v on K is a function that
maps variables in X to values in K. The set of valuations
on K is noted VK.

VK ∋ v : X → K.

Notice that VF is a subset of VR.
Each valuation v in VR is associated to a valuation v̄

in VF, defined as follows:

v̄ : x ∈ X 7−→ v(x). (3)

Using this definition, it can easily be shown using (1) that
for any valuation v ∈ VR,

v ∈ VF =⇒ v̄ = v. (4)

Let v1 and v2 be two valuations in VR. The distance dist
between v1 and v2 is the valuation that maps a variable in
X to the distance in absolute value between its associated
values in v1 and v2:

VR ∋ dist(v1, v2) = x ∈ X 7−→ |v1(x)− v2(x)|. (5)

We say that v1 is lower than v2, and note v1 ≤ v2, if

∀x ∈ X, v1(x) ≤ v2(x). (6)

Finally, the sum of the two valuations, noted v1 + v2,
is the valuation defined as follows:

v1 + v2 : x ∈ X 7−→ v1(x) + v2(x). (7)

4) Domains: A domain d on K is a set of valuations
on K, i.e. d ⊂ VK. Domains are used to represent Floyd’s
and Hoare’s invariants seen in previous sections. The set
of domains on K is noted DK, with DF ⊂ DR.

A real domain d ∈ DR can be associated to a limited-
precision domain d̄ ∈ DF defined by:

d̄ = {v̄ | v ∈ d}. (8)

As for valuations in F, it can be shown that

d ∈ DF =⇒ d = d̄. (9)

We also define an operation to overapproximate a do-
main with respect to a valuation. The extension of domain
d ∈ DR using a positive valuation v ∈ VR, noted d ⊕ v, is
defined as follows:

d⊕ v = {v2 ∈ VR | v1 ∈ d ∧ dist(v1, v2) ≤ v}. (10)

5) Expressions: We consider a very simple language
with variables, constants and function calls. The expres-
sions EK of this language are constructed as follows:

EK ∋ e ::= x ∈ X variable
| c ∈ K constant
| f(e1, . . . , en) function call

with f ∈ FK, arity f = n

and ∀i ∈ [1, n], ei ∈ EK

An expression e ∈ K can be evaluated in the environ-
ment described by the valuation v ∈ VK. The result is a
value in K.

eval(e, v) =





v(x) if e = x ∈ X

c if e = c ∈ K

eval(f)(c1, . . . , cn) if e = f(e1, . . . , en)
with ∀i ∈ [1, n], ci = eval(ei, v)

where the notation eval is overloaded to handle expres-
sions.

6) Instructions: An instruction is the affectation of an
expression value to a variable. The set of instructions is
noted IK:

IK = X × EK

We note x := e the instruction (x, e) ∈ IK.
As for expressions, an instruction (x := e) ∈ IK can

be evaluated in an environment v ∈ VK. The result is a
valuation in VK.

eval(x := e, v) =

(
y ∈ X 7−→

{
eval(e, v) if x = y

v(y) if x 6= y

)

This definition can be extended to evaluate the image of
a domain d ∈ DK, the result being also a domain of DK.

eval(x := e, d) = {eval(x := e, v) | v ∈ d}

7) Invariant Propagation: An invariant propagator, or
simply propagator, is a function p that takes as input a
domain in DK, known as precondition, an instruction in
IK, and returns a domain in DK called postcondition.

p : DK ×IK −→ DK

A propagator is expected to return a valid postcondition
for a given precondition and instruction. Formally, this can
be described by the correctness condition:

∀(d, i) ∈ DK ×IK, eval(i, d) ⊂ p(d, i). (11)

The set of (correct) propagators is noted PK.
Propagators are an abstract representation of the argu-

ments used to propagate Floyd’s and Hoare’s invariant en
route to prove a program. Unlike these arguments, propa-
gators have to be defined on the whole domain DK ×IK,
that is, for any precondition and instruction. To make
propagators total functions, the universal postcondition
can always be returned if the domain is outside the scope
of the corresponding argument, for instance when the
hypothesis of some Lyapunov theorem is not verified.



B. Translation Scheme
The general translation scheme that is implemented

is the following (see Figure 5). Each instruction i in the
abstract controller code with real numbers is turned into
an corresponding instruction ı̄ on the concrete controller,
where real constants and operators are replaced by their
limited-precision counterparts. A post-condition d̄′ on the
limited-precision side is computed using the same proof ar-
gument p as in the original code, enlarged to include the
error term bound verr that may occur in limited-precision
arithmetics in ı̄. It is computed on an intermediate
instruction form ı̃ which meaning will be explained later.
The precondition d might have been previously replaced
by d̄ as the postcondition of a preceding instruction.

% d
i
% d′ = p(d, i)

% d̄
ı̄
% d̄′ ⊃ p(d̄, ı̃)⊕ verr

Figure 5. General translation scheme

The error term bound verr depends on the operators
of the instruction ı̄ and on the information on program
variables given by d̄. The limited-precision arithmetic error
is not necessarily bounded even when the variables are,
e.g. considering division. In this case, we are not able to
compute a suitable d̄′ and the proof translation attempt
fails.

Also, d̄′ will be used as a precondition in the next
instruction. An effort has to be made so that d̄′ has a
similar shape to d′, in order to fit with the proof argument
p′ used in this instruction, if possible. Thus, d̄′ is an
overapproximation of p(d̄, ı̄)⊕ verr in the domain of p′. In
consequence, the automated analysis falls short if such a
d̄′ cannot be found.

C. Translation Steps
In this section, we consider an instruction i = (x := e)

in IR, along with a precondition d and a postcondition d′

in DR. d, i and d′ are linked through a propagator p in PR:
d′ = p(d, i). (12)

As outlined in Section IV-B, we study how the instruction
i can be translated into an equivalent instruction ı̄ ∈ IF

on limited-precision arithmetic, while using information on
the precondition d and propagator p of i to compute an
interesting postcondition d̄′ for ı̄ (given a modification d̄
of d). This is a two-step process:

1) First, the program constants c ∈ R are converted
into their limited-precision representations c̄ ∈ F

while keeping absolute-precision functions, giving
an instruction ı̃ ∈ IR;

2) Second, the functions f ∈ FR that appear in
the code are changed into their limited-precision
counterparts f̄ ∈ FF.

The resulting code relies on limited-precision arithmetic
only, which is what is being sought. The translation scheme
is described in Figure 6.

% d
i
% d′ = p(d, i)

% d̄
ı̃
% d̃′ = p(d̄, ı̃)

% d̄
ı̄
% d̄′ ⊃ p(d̄, ı̃)⊕ verr

Figure 6. Refined translation scheme

1) Converting Constants: We construct an expression
ẽ ∈ ER, obtained from e by converting its constants from
R to F. Formally, ẽ is defined recursively as follows:

ẽ =





x if e = x ∈ X

c̄ if e = c ∈ R

f(ẽ1, . . . , ẽn) if e = f(e1, . . . , en)

(13)

We let ı̃ = (x := ẽ).
Let d̄ ∈ DF be the precondition corresponding to d after

converting both constants and functions in the preceding
instructions of the program. Let d̃′ = p(d̄, ı̃) ∈ DR.
According to Equation 11, d̃′ is a valid postcondition for
precondition d̄ and instruction ı̃.

2) Converting Functions: The next step is to con-
vert real functions f that appear in the expression into
their limited-precision counterparts f̄ , as defined in Sec-
tion IV-A2. The resulting expression ē ∈ EF is obtained
with:

ē =





x if e = x ∈ X

c̄ if e = c ∈ R

f̄(ē1, . . . , ēn) if e = f(e1, . . . , en)

(14)

Compared to the definition of ẽ (Equation 13), we just
have turned functions symbols f into f̄ . As previously, we
also let ı̄ = (x := ē).

Unlike ı̃, instruction ı̄ relies on different functions than
i (taken from FF instead of FR): the underlying invariant
propagation argument in propagator p is very likely not to
be applicable to it. In this case, p(d̄, ı̄) would fall back on
the universal domain, which of course is valid but prevents
us from doing any interesting proof further in the program.

Functional Arithmetic Errors: To circumvent this issue,
we propose when it is possible to enlarge the invariant
d̃′ = p(d̄, ĩ) found in Section IV-C1 to take into account
arithmetic errors introduced when converting functions
from FR to FF. Such errors are called functional arithmetic
errors, but we will refer to them as arithmetic errors, or
simply errors, later in this document.

We define the arithmetic error on an expression ẽ ∈ ER

and a valuation v ∈ VF. The result is a value in R.

err(ẽ, v) = | eval(ē, v)− eval(ẽ, v)| (15)

This definition is extended to define the arithmetic
error of an instruction ı̃ = (x := ẽ) in IR on a valuation
v ∈ VF. The result is a valuation in VR defined as follows:

err(x := ẽ, v) =

(
y ∈ X 7−→

{
err(ẽ, v) if x = y

0 if x 6= y

)
.



Finally, a valuation verr ∈ VF is an upper bound of the
arithmetic error of instruction ı̃ on a domain d ∈ DF if:

∀v ∈ d, err(̃ı, v) ≤ verr.

Now, let us consider an instruction ı̃ in IR surrounded
by a precondition d̄ and a postcondition d̃′ = p(d̄, ı̃) in DR:

eval(̃ı, d̄) ⊂ d̃′

Let verr ∈ VF be an upper bound of the arithmetic error
of instruction ı̃ on domain d̄. Then, the implication

∀d̄′ ∈ DF, d̃
′ ⊕ verr ⊂ d̄′ =⇒ eval(̄ı, d̄) ⊂ d̄′ (16)

holds. In other words, if d̃′ is a postcondition for an
instruction ı̃ on real numbers, on a given precondition
domain d̄, and d̄′ is a superset of d̃′ loose enough to support
the arithmetic error verr, then d̄′ is a valid postcondition
for ı̄, the limited-precision counterpart of instruction ı̃.

Proving this relation raises no particular difficulty, but
is a bit too long to fit in this document. A proof in
Coq, limited to binary functions (which include all the
functions that we need in this paper), was implemented
and is available online.

V. Open-Loop Stability Proof Scheme with
Floating-Point Numbers

We would like to check whether the stability proof in
Feron’s program still holds on a controller implemented
with floating-point numbers. In this section, we use the
IEEE Standard for Floating-Point Arithmetic [9] encoded
on 64 bits2, as most of today’s floating-point units do.
In this standard, both addition and multiplication are
correctly rounded depending on the active rounding mode,
which allows to bound the rounding error depending on
the values of operands. The case of alternative numeric
representations is discussed in Section VII.

A. Automatic Translation

We have developed a program to automatically per-
form these computations, following the translation scheme
framework described in the previous section. It is a module
called LyaFloat, written in Python and built upon Python
libraries SymPy (to handle symbolic mathematics) and
Mpmath (for arbitrary-precision floating-point arithmetic).

Here is the listing of a script that automatically com-
putes the floating-point output invariant ellipsoid ER (in
variable ERbar) corresponding to ER in the original proof,
and tests whether ER ⊂ EP . Two cases are possible:

• either ER ⊂ EP , then the program is Lyapunov-
stable on a floating-point architecture;

• or ER 6⊂ EP : as ER was obtained through over-
approximations, we cannot conclude about the
program behavior.

2The procedure that follows would be exactly the same with 32-bit
floating-point numbers, only with different numerical results.

1 from lyafloat import *
2 # Parameters
3 setfloatify(constants=True, operators=True,
4 precision=53)
5

6 # Definition of EP
7 P = Rational("1e-3") * Matrix(rationals(
8 ["0.6742 0.0428", "0.0428 2.4651"]))
9 EP = Ellipsoid(P)

10

11 # Definition of EQµ

12 mu = Rational("0.9991")
13 Qmu = mu * P
14 Qmu = Qmu.col_insert(2, zeros(2, 1)).
15 row_insert(2, zeros(1, 3))
16 Qmu[2,2] = 1 - mu
17 EQmu = Ellipsoid(Qmu)
18

19 # Symbols
20 xc1, xc2, yc = symbols("xc1 xc2 yc")
21 Xc = Matrix([[xc1], [xc2]])
22 Yc = Matrix([[yc]])
23 Zc = Matrix([[xc1], [xc2], [yc]])
24

25 # Constant matrices
26 Ac = Matrix(constants(
27 ["0.4990 -0.0500", "0.0100 1.0000"]))
28 Bc = Matrix(constants(["1", "0"]))
29 Cc = Matrix(constants(["564.48 0"]))
30 Dc = Matrix(constants(["-1280"]))
31

32 # Definition and verification of ER
33 AcBc = Ac.col_insert(Ac.cols, Bc)
34 R = (AcBc * Qmu.inv() * AcBc.T).inv()
35 ER = Ellipsoid(R)
36 print("ER included in EP :", ER <= EP)
37

38 # Computation and verification of ER
39 i = Instruction({Xc: Ac * Xc + Bc * Yc},
40 pre=[Zc in EQmu], post=[Xc in ER])
41 ERbar = i.post()[Xc]
42 print("ERbar =", ERbar)
43 print("ERbar included in EP :", ER <= EP)

In this open-loop case, our program LyaFloat is able to
check the inclusion. Thus, the stability of the open-loop
system with a 64-bit IEEE 754 compliant implementation
is formally proven to hold using our proof translation
scheme.

Notice that the precision of the floating-point arith-
metic can be set in setfloatify. This allows us to check
that the controller is still stable on a 32-bit only architec-
ture, or to compute that the minimum required precision
is 17 bits. This can be useful if, instead of adapting the
controller code and/or its proof to the hardware, we have
to select a controller device that suits the proof.

In the remainder of this section, we describe the opera-
tions performed by our tool to compute ER. It follows the
two-step scheme described in Section IV-C. Alternatively
to our program, an implementation of this proof using
Mathematica is available online: see Footnote 1.



B. Converting Constants

The first step when translating Feron’s program is to
convert real constants into floating-point numbers. The
first lines of code in the program:

1 Ac = [0.4990, -0.0500; 0.0100, 1.0000];
2 Bc = [1; 0];
3 Cc = [564.48, 0];
4 Dc = -1280;

become, assuming rounding to nearest value:

1 Ac = [0.4989999999...6552734375,
-0.0500000000...2705078125;
0.0100000000...2880859375,
1.0000];

2 Bc = [1; 0];
3 Cc = [564.4800000000...5830078125, 0];
4 Dc = -1280

Theses matrices Ac, Bc, Cc and Dc will be used instead of
the original matrices Ac, Bc, Cc and Dc in the sequel of
the proof.

Apart from constants, the proof scheme for the first
part of the program is unchanged:

5 xc = zeros(2,1);
% xc ∈ EP

6 receive(y, 2); receive(yd, 3);
% xc ∈ EP

7 while (1)
% xc ∈ EP

8 yc = max(min(y - yd, 1), -1);
% xc ∈ EP , y

2
c ≤ 1

9 skip;
% ( xc

yc
) ∈ EQµ

, Qµ =
( µP 02×1

01×2 1−µ

)
, µ = 0.9991

10 u = Cc*xc + Dc*yc;

C. Converting Functions

The second step of our proof translation scheme is to
convert function symbols from real to floating-point. We
show how it is done instruction by instruction.

1) Invariant on u: The next instruction in the original
proof scheme is:

% ( xc

yc
) ∈ EQµ

, Qµ =
( µP 02×1

01×2 1−µ

)
, µ = 0.9991

10 u = Cc*xc + Dc*yc;
% ( xc

yc
) ∈ EQµ

, u2 ≤ (Cc Dc) ·Q
−1
µ · (Cc Dc)

−1

First of all, matrices Cc and Dc must be replaced by
their floating-point counterparts Cc and Dc both in the
program instruction Line 10 and the ensuing invariant.
This invariant relies only on algebraic arguments and
does not depend on the values in the matrices, it still
holds considering exact arithmetic operations. But this is
not sufficient: indeed, this instruction is a sum of matrix
multiplications, i.e. a set of additions and multiplications
on floating-point numbers that yield rounding errors.

We can notice that entering this instruction, the values
of matrices Cc, Dc and EQµ

are known, and the values of
xc and yc are bounded by the precondition

( xc

yc
) ∈ EQµ

,

that is

0.000673593xc
2
1 + 0.000085523xc1xc2+

0.00246288xc
2
2 + 0.9991y2c ≤ 1. (17)

From (17), we deduce:




|xc1| ≤ 3 · 105
√

13 695
829 322 227 639 < 38.5515

|xc2| ≤ 105
√

33 710
829 322 227 639 < 20.1614

|yc| ≤ 100√
9991

< 1.00046

(18)

Here we are able to find algebraic solutions, but this may
be impossible with ellipsoids of higher dimension. Still, we
would be able to find bounds using numerical methods.

In floating-point arithmetic, rounding errors created
by addition and multiplication operators can be bounded
when the operands are known or bounded by (18), pro-
vided that overflow, underflow, and denormalized numbers
do not occur [10], [11].

Here, we need to compute

Ccxc +Dcyc = Cc(0,0)xc1 +Dcyc

where all values in the right-hand term are known or
bounded. Thus, a constant ε can be computed that bounds
the absolute rounding error created when computing u. We
obtain:

ε = 5.90 · 10−12

This way, starting from the algebraic result obtained
on real numbers

|u| ≤

√
(Cc Dc) ·Q

−1
µ · (Cc Dc)

T

we can ensure that with floating-point numbers, the in-
equality holds:

|u| ≤ Ū =

√
(Cc Dc) ·Q

−1
µ · (Cc Dc)

T
+ ε

which leads to the invariants:
% ( xc

yc
) ∈ EQµ

, Qµ =
( µP 02×1

01×2 1−µ

)
, µ = 0.9991

10 u = Cc*xc + Dc*yc;
% ( xc

yc
) ∈ EQµ

, u2 ≤ Ū2

2) Invariant on xc: The next instruction, considering
constant changes, is:
11 xc = Ac*xc + Bc*yc;

% xc ∈ ẼR, R̃ =
[
(Ac Bc) ·Q

−1
µ · (Ac Bc)

T]−1
,

where R̃ is defined the same way R is, using floating-
point terms Ac, Bc instead of the real-valued counterparts
Ac, Bc, and ẼR is the ellipsoid built upon R̃. Again, this
invariant holds independently of matrices values.



Here, we compute the values affected to xc =
(
xc1

xc2

)
:

{
Ac(0,0)xc1 +Ac(0,1)xc2 + yc
Ac(1,0)xc1 + xc2

Using the same method as above, absolute rounding errors
introduced by floating-point operations can be bounded on
dimensions xc1 and xc2 by constants

ε1 = 7.42 · 10−15 and ε2 = 3.62 · 10−15.

These constants must be taken into account in the
postcondition. Then the postcondition can be replaced by

% xc ∈ ER

where ER is an ellipse that includes ẼR plus the rounding
error terms (see Figure 7). As mentioned in Section IV-B,
replacing the ellipse in the postcondition by another ellipse
has the advantage of introducing little change in the
stability proof sketch (instead of using a different domain,
which would involve using different theorems), which can
greatly facilitate tweaking the rest of the proof in longer
codes. Formally, ER must satisfy:

∀xc ∈ ẼR, ∀xc
′ ∈ R

2,

|xc
′
1 − xc1| ≤ ε1 ∧ |xc

′
2 − xc2| ≤ ε2 =⇒ xc

′ ∈ ER (19)

ẼRER

xc1

xc2

ε1

ε2

Figure 7. Relation between ẼR and ER

At the end of the proof scheme, the system is stable
with floating-point numbers if and only if the inclusion

ER ⊂ EP

holds. To succeed, ER should be as narrow as possible with
respect to Equation (19). This is not a clear criterion, as
several shapes are possible for ER with no clear winner.
We propose to define ER as the smallest homothety of ẼR
centered around 0 that satisfies (19). It can be computed
rather easily, for any number of dimension; we give details
for two dimensions.

Let a, b, c be the coefficients of ẼR:

ẼR = {(xc1, xc2) | axc
2
1 + bxc

2
2 + cxc1xc2 ≤ 1}.

a, b and c are known, positive values. Then there exists
k ≥ 0 such that

ER = {(xc1, xc2) | axc
2
1 + bxc

2
2 + cxc1xc2 ≤ k}.

As ER is wider than ẼR, k ≥ 1. We need a condition on k
that guarantees (19).

We consider a point (xc1, xc2) located on the border of
ẼR:

axc
2
1 + bxc

2
2 + cxc1xc2 = 1. (20)

By construction, for any values e1, e2 ∈ R such that |e1| ≤
ε1 ∧ |e2| ≤ ε2 the relation

(xc1 + e1, xc2 + e2) ∈ ER

must hold, that is to say:
a(xc1 + e1)

2
+ b(xc2 + e2)

2
+ c(xc1 + e1)(xc2 + e2) ≤ k.

It develops into

(axc
2
1 + bxc

2
2 + cxc1xc2) + (2ae1 + ce2)xc1+

(2be2 + ce1)xc2 + (ae21 + be22 + ce1e2) ≤ k,

that is

1 + (2ae1 + ce2)xc1 + (2be2 + ce1)xc2+

(ae21 + be22 + ce1e2) ≤ k

due to (20).
Greatest values for the left-hand term are reached with

|e1| = ε1 ∧ |e2| = ε2, depending on the signs of xc1 and
xc2. As the ellipse ẼR is symmetric around the origin point
(0, 0), we can set e1 = ε1, which leaves only two cases to
study. Finally, we numerically verify that greatest values
of the term are reached when e2 = ε2. This is the only case
we detail here.

We can write:
1 + αxc1 + βxc2 + γ ≤ k

with values α = (2aε1 + cε2), β = (2bε2 + cε1) and γ =
(aε21 + bε22 + cε1ε2).

We know that xc1 and xc2 are bounded, thus so is the
term αxc1 + βxc2: we can compute a minimum bound δ
such that αxc1+βxc2 ≤ δ. So it is sufficient that k satisfies:

k ≥ 1 + γ + δ.

Consequently, the smallest homothety of ẼR that sat-
isfies (19) is obtained with k = 1+ γ+ δ; we take it as our
definition of ER. The instruction becomes:
11 xc = Ac*xc + Bc*yc;

% xc ∈ ER

In our case, starting from the ellipse

ẼR = {(xc1, xc2) | 0.00269007xc
2
1+

0.000341414xc1xc2 + 0.00247323xc
2
2 ≤ 1}

we get the following values:
α = 1.03246·10−17, β = 1.84829·10−17, γ = 7.17582·10−32.

Our program finds δ = 5.35754 · 10−16 ≫ γ and finally
k = 1 + 5.35754 · 10−16

that gives ER.



3) End of Proof Scheme: Then, what remains of the
stability proof scheme becomes:

% xc ∈ ER
12 send(u, 1);

% xc ∈ ER
13 receive(y, 2);

% xc ∈ ER
14 receive(yd, 3);

% xc ∈ ER
15 skip;

% xc ∈ EP
16 end

At this stage, the final assertion ER ⊂ EP holds and is
checked successfully.

VI. Closed-Loop Stability Proof Scheme with
Floating-Point Numbers

We now show how the proof of state boundedness of the
closed-loop system specifications can be migrated to the
level of the controller code and executable model of the
system. To be more precise, we exploit the invariance of
the ellipsoid EP to develop a proof of proper behavior, that
is, stability and variable boundedness, for the computer
program that implements the controller as it interacts with
the physical system. Unlike the developments related to
the open-loop controller, this proof necessarily involves the
presence of a model of the physical system. In [5], Feron
chooses to represent the physical system and the computer
program by two concurrent programs. The code for con-
troller dynamics is unchanged, same as in Section II. The
pseudo-code to represent the physical system dynamics is
shown below.
1 Ap = [1.0000, 0.0100; -0.0100, 1.0000];
2 Bp = [0.00005; 0.01];
3 Cp = [1, 0];
4 while (1)
5 yp = Cp * xp;
6 send(yp, 2);
7 receive(up, 1);
8 xp = Ap * xp + Bp * up;
9 end

In this scheme, the computer program representation of
the physical system is to remain unchanged, since it only
exists for modeling purposes and does not correspond to
any actual program, whereas the controller code is allowed
to evolve to reflect the various stages of its implementation.

Establishing proofs of stability of the closed-loop sys-
tem at the code level is necessarily tied to understanding
the joint behavior of the controller and the plant. The
entire state space therefore consists of the direct sum of
the state spaces of the controller and the physical system.
The approach described in the previous sections is used to
document the corresponding system of two processes. One
interesting aspect of these processes is their concurrency,
which can complicate the structure of the state transitions.
However, a close inspection of the programs reveals that
the transition structure of the processes does not need

to rely on the extensions of Hoare’s logic to concurrent
programs: one program at a time is running, through the
blocking nature of the receive primitive.

Feron’s stability proof with real numbers is much longer
than for the open-loop system. We do not detail it, the
interested reader is referred to [5] for full information.
To be noticed, the resulting comments are not much
more complex than those available from the study of the
controller alone. On the good side, as already mentioned,
the Hoare formalism is not significantly affected by the
concurrent structure of the closed-loop system.

A floating-point representation of the closed-loop sys-
tem consists of keeping the listing corresponding to the
physical system in its original settings, while replacing
the controller part with the corresponding floating-point
implementation, as we did in Section V. Using similar tech-
niques to the study of the controller alone, proof invariants
can be tweaked to take into account constant changes
and rounding errors resulting from the use of floating-
point arithmetic in the controller and real arithmetic in
the plant.

Unfortunately, these invariants are not sufficient to
show that the stability condition holds at the end of the
loop body in the case of 64-bit floating-point numbers. In
this case, our tool cannot prove the system stability on a
double-precision floating-point architecture: either the sys-
tem is not stable with the floating-point based controller,
and in this case the proof parameters (EP , µ, …) must be
chosen more carefully by the controller designer, or the
stability holds but we lost it by overapproximating the
errors. Tuning the precision of floating-point arithmetic,
as described in Section V-A, learns us that the controller
stability holds on a quadruple-precision platform (i.e., with
128 bits). Thus, an alternative solution might be to use a
microcontroller device with superior precision.

VII. Alternative Limited-Precision Arithmetics
Our general idea is to replace some of the invariants

in the original proof scheme by wider ones that include
rounding errors, with the hope that the stability condition
is strong enough and still holds. This approach is made
possible by the fact that the rounding errors introduced by
the operations used in the code are bounded on bounded
inputs and bounded state variables.

In previous sections, we mostly dealt with the case
of a floating-point representation of real numbers. They
are not available on all architectures, especially on micro-
controllers that are commonly used to implement control
systems. In this section, we quickly discuss alternative real-
number representations.

• We can deal with fixed-point arithmetic the same
way we do with floating-point, as long as we stand
far enough from extremal values that can lead to
overflows or extremely large error terms;

• Another way to represent real numbers is to use
two integers, a numerator and a denominator.
Considering that the input values are exact, the
elementary operations do not introduce rounding



errors but can easily lead to overflows, e.g. when
computing

p1

q1
+

p2

q2
=

p1q2 + p2q1

q1q2
.

A strategy must be used to prevent overflows
by introducing approximations: in this case, the
question is to quantify the errors introduced by
these approximations.

In our example, we exclusively used additions and
multiplications: divisions are not involved in linear control.
Still, programs with divisions can also be analyzed, if the
numerator can be shown to be far enough from zero: it is
a supplementary constraint, but it is reasonable to assume
that it should be respected on a realistic control system
that uses divisions. Differentiable, periodic functions such
as (sin) can be computed with an abacus and an interpo-
lation function, thus with bounded error. In the same way,
functions not periodic, but restricted to finite domains, can
also be approximated. Other functions, such as tangent or
square root, could raise more issues.

VIII. Conclusion
In this paper, we described a theoretical framework

to translate proof invariants on code with real arithmetic
to similar invariants on limited-precision numbers, while
preserving the overall proof structure. We focused on the
case of Lyapunov-theoretic proofs of stability with floating-
point numbers, for which we implemented LyaFloat, a
tool that automatically generates correct invariants for
floating-point arithmetic from the provided invariants on
real arithmetic, attempts to check whether stability holds
and computes the required amount of precision needed
for this. We used this tool to analyze Feron’s motivating
proof of stability, thus addressing the issue of arithmetic
accuracy when implementing high-level, proved code on a
microcontroller.

Many directions are open for future work. A first idea
would be to implement the translation program in Coq
rather than Python. This would grant an additional layer
of safety, at the price of a deeper formalizing of invariant
propagators — or even better proving them — and deal-
ing with the quirks of the formalization of floating-point
arithmetic, e.g. using the Flocq library [12]. Alternatively,
our tool could simply generate invariants in the form of
proof terms that could be checked with Coq or another
floating-point-compliant proof checker. We also plan to
extend the application scope of our tool, enabling it to
analyze a wider range of control programs (which means
handle more functions and propagation theorems), so that
we could apply it to some of those real-life controllers that
come with Lyapunov stability proofs [13]. Finally, it would
be interesting to be able to deal with different arithmetic
paradigms, as discussed in Section VII.
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