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Abstract

In [3] Feron presents how Lyapunov-theoretic proofs of stability can be migrated toward computer-
readable and verifiable certificates of control software behavior by relying of Floyd’s and Hoare’s
proof system.
However, Feron’s proofs are addressed towards exact, real arithmetic and do not accurately repre-
sent the behavior of realistic programs run with machine arithmetic. We address the issue of errors
resulting from the use of floating-point arithmetic: we present an approach to translate Feron’s
proof invariants on real arithmetic to similar invariants on floating-point numbers and show how
our methodology applies to prove stability, thus allowing to verify whether the stability invariant
still holds when the controller is implemented.
We study in details the open-loop system of Feron’s paper. We also use the same approach for
Feron’s closed-loop system, but the constraints are too tights to show stability in this second case:
more leeway should be introduced in the proof on real numbers, otherwise the resulting system
might be unstable.

1 Introduction

Provable stability constitutes an essential attribute of control systems, espe-
cially when human safety is involved, as in medical or aeronautical domains.
Motivated by such applications, there exist many theorems to support system
stability and performance under various assumptions and in various settings.

Stability criteria apply to a class of dynamical systems for which a stability
proof is needed. Modern systems developments, such as adaptative control
technologies, rely on robust stability and performance criteria as the primary
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justification for their relevance to safety-critical control applications. Lyapu-
nov’s stability theory plays a critical role in that regard.

The low-level software implementation of a control law can be inspected by
analysis tools available to support the development of safety-critical computer
programs. The simplest program analysis techniques consist of performing sev-
eral simulations, sometimes including a software or hardware representation of
the controlled system in the loop. However, simulations provide information
about a large but only finite number of system behaviors. More advanced
methods include model checking and abstract interpretation, e.g. using As-

trée [2]. In these methods, inputs are computer programs and outputs are
certificates of proper program behavior along the chosen criterion. Another
possibility is to use theorem-proving techniques, supported by computer tools
such as Coq, Isabelle or PVS [7,10,9]. These proof assistants can be used to
establish properties of programs and more general mathematical constructs.
Model checking, abstract interpretation, and theorem-proving tools are all
used to verify safety-critical applications.

In [3], Feron investigates how control-system domain knowledge and, in
particular, Lyapunov-theoretic proofs of stability and performance, can be
migrated toward computer-readable and verifiable certificates of control soft-
ware behavior by relying on Floyd’s and Hoare’s proof system [11], applied
to MATLAB pseudocode (Sections 2 and 3). His article focuses on using this
framework to support such properties, namely, bounded-input, bounded-state
stability, as they apply to control-system code implementations. But errors
resulting from the use of floating-point arithmetic are not addressed. Feron
presents both open-loop and closed-loop implementations of his controller, i.e.
depending whether the system action on the environment and its feedback are
modeled or not.

In this paper, we present an approach to translate Lyapunov-theoretic
stability proof invariants on pseudocode with real arithmetic, as provided in
Feron’s article, to similar invariants on machine code that take into account
rounding errors introduced by floating-point arithmetic. We use them to verify
whether stability conditions still hold, in which case system stability with
floating-point numbers can be established.

This document is organized as follows. The next section describes the
second-order dynamical system example used by Feron in [3], with the corre-
sponding controller. Next, Feron’s analysis of the open-loop controller with
real numbers is presented, followed by its rewriting with floating-point arith-
metic. Then we discuss the case of the closed-loop system. The document
concludes with a discussion of the generality of this successful approach.

2



Maisonneuve

2 Motivating Example by Feron

We consider the first system described in the article of Feron [3]. It is a
dynamical system composed of a single mass and a single spring shown in
Figure 1.

y yd

u

Fig. 1. Mass-spring system

The position input y of the mass is available for feedback control. The
signal yd is the reference signal, that is, the desired position to be followed by
the mass.

A discrete-time MATLAB implementation of the controller, using real num-
bers, is provided in [3]. The source code is shown below:

1 Ac = [0.4990, -0.0500; 0.0100, 1.0000];

2 Bc = [1; 0];

3 Cc = [564.48, 0];

4 Dc = -1280;

5 xc = zeros(2, 1);

6 receive(y, 2); receive(yd, 3);

7 while (1)

8 yc = max(min(y - yd, 1), -1);

9 skip;

10 u = Cc*xc + Dc*yc;

11 xc = Ac*xc + Bc*yc;

12 send(u, 1);

13 receive(y, 2);

14 receive(yd, 3);

15 skip;

16 end

Apart from the mechanical system state observation y and the desired
system output yd, variables in this code are:

• xc =
(

xc1
xc2

)

∈ R
2 is the discrete-time controller state;
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• yc ∈ [−1, 1] is the bounded output tracking error, i.e. the input y−yd passed
through a saturation function to avoid variable overflow in the controller;

• u ∈ R is the mechanical system input, i.e. the action to be performed
according to the controller.

Constants Ac, Bc, Cc and Dc are the discrete-time controller state, input,
output and feedthrough matrices. The commands send and receive are basi-
cally I/O: they respectively send and receive data given in the commands first
argument through a specific channel given by the commands second argument.

3 Open-Loop Stability Proof in Real by Feron

The stability proof of this system relies on Lyapunov theory. In simple terms,
a system is Lyapunov stable if all states xc reachable from an initial starting
state belonging to a bounded neighborhood V of an equilibrium point xe

remain in V .

Lyapunov theory provides constraints that must be satisfied by such a V .
On linear systems, they are equations that can be solved using linear matrix
inequalities [1]. Commonly, V is an ellipsoid.

In this case, to prove Lyapunov stability, we need to show that at any time,
xc belongs to the set EP chosen by Feron according to Lyapunov’s theory:

EP = {x ∈ R
2 | xT · P · x ≤ 1}, P = 10−3





0.6742 0.0428

0.0428 2.4651



 .

using EP as the stability neighborhood V .

This set is a full ellipse, centered around 0 and slightly slanted:

xc ∈ EP ⇐⇒ 0.6742x2

c1
+ 0.0856xc1xc2 + 2.4651x2

c2
≤ 1000.

EP is drawn in Figure 2.

A stability proof of the controller is provided in [3], using Floyd-Hoare
program annotation technique [11]: each program instruction comes with an
invariant. The program annotated by Feron is reproduced below.

5 xc = zeros(2,1);

% xc ∈ EP
6 receive(y, 2); receive(yd, 3);

% xc ∈ EP
7 while (1)

% xc ∈ EP
8 yc = max(min(y - yd, 1), -1);

% xc ∈ EP , y2c ≤ 1

4
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xc1
−40 −30 −20 −10 10 20 30

xc2

−20

−10

10

20

EP

Fig. 2. The stability domain EP

9 skip;

% ( xc
yc ) ∈ EQµ

, Qµ =
(

µP 02×1

01×2 1−µ

)

, µ = 0.9991

10 u = Cc*xc + Dc*yc;

% ( xc
yc ) ∈ EQµ

, u2 ≤ (Cc Dc) ·Q−1

µ · (Cc Dc)
−1

11 xc = Ac*xc + Bc*yc;

% xc ∈ EP̃ , P̃ =
[

(Ac Bc) ·Q−1

µ · (Ac Bc)
T
]−1

, u2 ≤ (Cc Dc) ·Q−1

µ · (Cc Dc)
−1

12 send(u, 1);

% xc ∈ EP̃
13 receive(y, 2);

% xc ∈ EP̃
14 receive(yd, 3);

% xc ∈ EP̃
15 skip;

% xc ∈ EP
16 end

Most of the proof relies on algebraic arguments. For example, the invariant
loosening on Line 9:

% xc ∈ EP , y2c ≤ 1
9 skip;

% ( xc
yc ) ∈ EQµ

, Qµ =
(

µP 02×1

01×2 1−µ

)

, µ = 0.9991

means

xc ∈ EP ∧ y2c ≤ 1 =⇒ ( xc
yc ) ∈ EQµ

with Qµ =
(

µP 02×1

01×2 1−µ

)

and µ = 0.9991.

The correctness of this assertion stems from the fact that, given any value
of µ ∈ [0, 1], the domain EQµ

is a solid ellipsoid, centered around 0, and
whose intersection with the plane yc = 1 is equal to EP . Consequently, the
solid bounded cylinder C = {( xc

yc ) | xc ∈ EP ∧ y2c ≤ 1} is included within EQµ
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(Figure 3).

EQµ

EP

C xc2

yc

1

−1

xc1

Fig. 3. Inclusion of EP within EQµ

The following invariants

% ( xc
yc ) ∈ EQµ

, Qµ =
(

µP 02×1

01×2 1−µ

)

, µ = 0.9991

10 u = Cc*xc + Dc*yc;

% ( xc
yc ) ∈ EQµ

, u2 ≤ (Cc Dc) ·Q−1

µ · (Cc Dc)
−1

11 xc = Ac*xc + Bc*yc;

% xc ∈ EP̃ , P̃ =
[

(Ac Bc) ·Q−1

µ · (Ac Bc)
T
]−1

, u2 ≤ (Cc Dc) ·Q−1

µ · (Cc Dc)
−1

also rely on algebraic arguments and theorems.

Other invariants are trivial. Finally, only the very last loosening

% xc ∈ EP̃
15 skip;

% xc ∈ EP
i.e. EP̃ ⊂ EP , that “closes” the loop, is not purely algebraic since its validity
relies on the numerical parameters Ac, Bc, Cc, Dc. This assertion needs to be
checked to ensure the correctness of the proof statements. This can be done
either numerically, or algebraically for at most two-dimensional systems like
this one.

This stability proof has been checked with Mathematica [12] and is available
online 2 .

2 Mathematica source file is available at: http://www.cri.ensmp.fr/people/
maisonneuve/lyafloat/resources/lyafloat_stability.nb, and the corresponding
PDF file at: http://www.cri.ensmp.fr/people/maisonneuve/lyafloat/resources/
lyafloat_stability.pdf.
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4 Open-Loop Stability Proof Scheme with Floating-Point

Numbers

We would like to check that the stability proof still holds on a controller
implemented with floating-point numbers. When using floating-point arith-
metic, the values of constants are slightly altered and calculations are likely
to produce rounding errors.

In absolute terms, it is impossible to switch from real to floating-point
numbers without affecting the behavior of the controller. Thus, the stability
proof cannot be preserved in the general case. On the other hand, the program
still can be stable if rounding errors are small enough and the final inclusion
EP̃ ⊂ EP leaves them enough room. We study how proof invariants can be
tweaked so that they correspond to a floating-point semantic. Our goal is
to derive from the proof scheme for real numbers a proof scheme suited for
floating-point arithmetic, whose correctness, although not guaranteed, can be
checked as easily.

In this section, we use the IEEE 754 floating-point standard [6] encoded
on 64 bits 3 as most of today’s floating-point units do. In this standard, both
addition and multiplication are correctly rounded depending on the active
rounding mode, which allows to bound the rounding error depending on the
values of operands. The case of other numeric representations is discussed in
Section 6.

4.1 Translation Scheme

The general translation scheme is the following (Figure 4). Each instruction
instrR in the controller code with real numbers is turned into an equivalent
instruction instrF on floating points, where real constants and operators are
replaced by their floating-point counterparts. The post-condition post

F
on

the floating-point side is computed using the same proof argument T as in the
original code, enlarged to include the error term bound E that may occur in
floating-point arithmetics in instrF. The precondition pre

R
might have been

previously replaced by pre
F

as the postcondition of a preceding instruction.

The error term bound E depends on the instruction instrF and on the in-
formation on program variables given by pre

F
, hence the notation E(pre

F
, instrF).

The floating-point arithmetic error is not necessary bounded even when the
variables are, e.g. in a division. In this case, we are not able to compute a
suitable post

F
and the proof translation attempt fails.

Also, post
F

will be used as a precondition in the next instruction. An
effort has to be made so that post

F
has a similar shape to post

R
, in order

3 The procedure that follows would be exactly the same with 32-bit floating-point numbers,
only with different numerical results.
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% pre
R

instrR
% post

R
= T(pre

R
, instrR)

% pre
F

instrF
% post

F
⊇ T(pre

F
, instrF)

+E(pre
F
, instrF)

Fig. 4. General translation scheme

to fit with the proof argument T′ used in this instruction, if possible. Thus,
post

F
is an overapproximation of T(pre

F
, instrF) + E(pre

F
, instrF) in the

domain of T′. Still, the analysis falls short if such a post
F

cannot be found.

4.2 Converting Constants

When translating Feron’s program, the first step is to convert real constants:

1 Ac = [0.4990, -0.0500; 0.0100, 1.0000];

2 Bc = [1; 0];

3 Cc = [564.48, 0];

4 Dc = -1280;

to floating-point constants, assuming rounding to nearest value:

1 Acf = [0.49899999999999999911182158029987476766109466552734375,

-0.05000000000000000277555756156289135105907917022705078125;

0.01000000000000000020816681711721685132943093776702880859375,

1.0000]

2 Bcf = [1; 0];

3 Ccf = [564.48000000000001818989403545856475830078125, 0]

4 Dcf = -1280

Theses matrices Af
c , B

f
c , Cf

c and Df
c will be used instead of Ac, Bc, Cc, Dc in

the sequel of the proof.

Apart from constants, the proof scheme for the first part of the program
is unchanged:

5 xc = zeros(2,1);

% xc ∈ EP
6 receive(y, 2); receive(yd, 3);

% xc ∈ EP
7 while (1)

% xc ∈ EP
8 yc = max(min(y - yd, 1), -1);

% xc ∈ EP , y2c ≤ 1
9 skip;

8
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% ( xc
yc ) ∈ EQµ

, Qµ =
(

µP 02×1

01×2 1−µ

)

, µ = 0.9991

10 u = Cc*xc + Dc*yc;

4.3 Invariant on u

Then, we consider the next instruction in the original proof scheme:

% ( xc
yc ) ∈ EQµ

, Qµ =
(

µP 02×1

01×2 1−µ

)

, µ = 0.9991

10 u = Cc*xc + Dc*yc;

% ( xc
yc ) ∈ EQµ

, u2 ≤ (Cc Dc) ·Q−1

µ · (Cc Dc)
−1

First of all, matrices Cc and Dc must be replaced by their floating-point
counterparts Cf

c and Df
c both in the program instruction Line 10 and the

ensuing invariant. This invariant relies only on algebraic arguments and does
not depend on the values in the matrices, it still holds considering exact arith-
metic operations. But this is not sufficient: indeed, this instruction is a sum of
matrix multiplications, i.e. a set of additions and multiplications on floating-
point numbers that yield rounding errors.

We can notice that entering this instruction, the values of matrices Cf
c ,

Df
c and EQµ

are known, and the values of xc and yc are bounded by the
precondition

( xc
yc ) =

(

xc
yc

)

∈ EQµ
,

that is

0.000673593x2

c1
+ 0.000085523xc1xc2 + 0.00246288x2

c2
+ 0.9991y2c ≤ 1. (1)

From (1), we deduce:






















|xc1 | ≤ 3 · 105
√

13 695

829 322 227 639
< 38.5515

|xc2 | ≤ 105
√

33 710

829 322 227 639
< 20.1614

|yc| ≤ 100√
9991

< 1.00046

(2)

Here we are able to find algebraic solutions, but this may be impossible with
ellipsoids of higher dimension. Still, we would be able to find bounds using
numerical methods.

In floating-point arithmetic, rounding errors created by addition and multi-
plication operators can be bounded when the operands are known or bounded
by (2), provided that overflow, underflow, and denormalized numbers do not
occur [4,5].

Here, we need to compute

Cf
c xc +Df

c yc = Cf
c(0,0)

xc1 +Df
c yc

9
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where all values in the right-hand term are known or bounded. Thus, a con-
stant can be computed that bounds the absolute rounding error created when
computing u. We used Rangelab [8], a static analysis tool to automatically val-
idate the accuracy of floating-point or fixed-point computations, to compute
an upper bound e for the error term 4 :

e = 5.90 · 10−12

This way, starting from the algebraic result obtained on real numbers

|u| ≤
√

(Cc Dc) ·Q−1
µ · (Cc Dc)T

we can ensure that with floating-point numbers, the inequality holds:

|u| ≤ Uf =
√

(Cf
c D

f
c ) ·Q−1

µ · (Cf
c D

f
c )T + e

which leads to the invariants:

% ( xc
yc ) ∈ EQµ

, Qµ =
(

µP 02×1

01×2 1−µ

)

, µ = 0.9991

10 u = Ccf*xc + Dcf*yc;

% ( xc
yc ) ∈ EQµ

, u2 ≤ U2

f

4.4 Invariant on xc

The next instruction, considering constant changes, is:

11 xc = Acf*xc + Bcf*yc;

% xc ∈ EP̃f
, P̃f =

[

(Af
c Bf

c ) ·Q−1

µ · (Af
c Bf

c )
T
]−1

, u2 ≤ (Cc Dc) ·Q−1

µ · (Cc Dc)
−1

where P̃f is defined the same way P̃ is, using floating-point terms Af
c , Bf

c

instead of the real-valued counterparts Ac, Bc. Again, this invariant holds
independently of matrices values.

Here, we compute







Af
c(0,0)

xc1 + Af
c(0,1)

xc2 + yc

Af
c(1,0)

xc1 + xc2

Using the same method as above, absolute rounding errors introduced by
floating-point operations can be bounded by constants

e1 = 7.42 · 10−15, e2 = 3.62 · 10−15

4 Rangelab source file is available at: http://www.cri.ensmp.fr/people/maisonneuve/
lyafloat/resources/lyafloat_fp.m.
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These constants must be taken into account in the postcondition. Also,
invariant on u must be replaced as previously. Then the postcondition can be
replaced by

% xc ∈ Ef

P̃f
, u2 ≤ U2

f

where Ef

P̃f
is an ellipse that includes EP̃f

plus the rounding error terms (see

Figure 5). Replacing the ellipse in the postcondition by another ellipse has the
advantage of introducing little change in the stability proof sketch (instead of
using a different domain, which would involve using different theorems), which
can greatly facilitate tweaking the rest of the proof in longer codes. Formally,
Ef

P̃f
must satisfy:

∀xc ∈ EP̃f
, ∀x′

c ∈ R
2, |x′

c1
− xc1 | ≤ e1 ∧ |x′

c2
− xc2 | ≤ e2 =⇒ x′

c ∈ Ef

P̃f
(3)

EP̃f
Ef

P̃f

xc1

xc2

e1

e2

Fig. 5. Relation between EP̃f
and E

f

P̃f

At the end of the proof scheme, the system is stable with floating-point
numbers if and only if the inclusion

Ef

P̃f
⊂ EP

holds. To succeed, Ef

P̃f
should be as narrow as possible with respect to Equa-

tion (3). This is not a clear criterion, as several shapes are possible for Ef

P̃f

with no clear winner. We propose to define Ef

P̃f
as the smallest homothety of

EP̃f
centered around 0 that satisfies (3). It can be computed rather easily, for

any number of dimension; we give details for two dimensions.

Let a, b, c be the coefficients of EP̃f
:

EP̃f
= {(xc1 , xc2) | ax2

c1
+ bx2

c2
+ cxc1xc2 ≤ 1}.

11
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a, b and c are known, positive values. Then there exists k ≥ 0 s.t.

Ef

P̃f
= {(xc1 , xc2) | ax2

c1
+ bx2

c2
+ cxc1xc2 ≤ k}.

As Ef

P̃f
is wider than EP̃f

, k ≥ 1. We need a condition on k that guarantees

(3).

We consider a point (xc1 , xc2) located on the border of EP̃f
:

ax2

c1
+ bx2

c2
+ cxc1xc2 = 1. (4)

By construction, for any values ǫ1, ǫ2 ∈ R s.t. |ǫ1| ≤ e1∧ |ǫ2| ≤ e2, the relation

(xc1 + ǫ1, xc2 + ǫ2) ∈ Ef

P̃f

must hold, that is to say:

a(xc1 + ǫ1)
2 + b(xc2 + ǫ2)

2 + c(xc1 + ǫ1)(xc2 + ǫ2) ≤ k.

It develops into

(ax2

c1
+bx2

c2
+cxc1xc2)+(2aǫ1+cǫ2)xc1+(2bǫ2+cǫ1)xc2+(aǫ2

1
+bǫ2

2
+cǫ1ǫ2) ≤ k,

that is

1 + (2aǫ1 + cǫ2)xc1 + (2bǫ2 + cǫ1)xc2 + (aǫ2
1
+ bǫ2

2
+ cǫ1ǫ2) ≤ k.

due to (4).

Greatest values for the left-hand term are reached with ǫ1 = |e1|∧ǫ2 = |e2|,
depending on the signs of xc1 and xc2 . As the ellipse EP̃f

is symmetric about

the origin point (0, 0), we can set ǫ1 = e1, which lets only two cases to study.
Finally, we numerically verify that greatest values of the term are reached
when ǫ2 = e2. This is the only case we detail here.

We can write:
1 + αxc1 + βxc2 + γ ≤ k

with values α = (2ae1 + ce2), β = (2be2 + ce1) and γ = (ae2
1
+ be2

2
+ ce1e2).

We known that xc1 and xc2 are bounded, thus so is the term αxc1 + βxc2 :
we can compute a minimum bound δ s.t. αxc1 + βxc2 ≤ δ. So it is sufficient
that k satisfies:

k ≥ 1 + γ + δ

Consequently, we define Ef

P̃f
as the smallest homothety of EP̃f

that satisfy

(3), obtained with k = 1 + γ + δ. The instruction becomes:

% ( xc
yc ) ∈ EQµ

, u2 ≤ U2

f

12
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11 xc = Ac*xc + Bc*yc;

% xc ∈ Ef

P̃f
, u2 ≤ U2

f

In our case, starting from the ellipse

EP̃f
= {(xc1 , xc2) | 0.00269007x2

c1
+ 0.000341414xc1xc2 + 0.00247323x2

c2
≤ 1}

we get the following values:

α = 1.03246 · 10−17, β = 1.84829 · 10−17, γ = 7.17582 · 10−32.

Using Mathematica, we found δ = 5.35754 · 10−16 ≫ γ and finally

k = 1 + 5.35754 · 10−16

that gives Ef

P̃f
.

4.5 End of Proof Scheme

Then, what remains of the stability proof scheme becomes:

% xc ∈ Ef

P̃
, u2 ≤ U2

f

12 send(u, 1);

% xc ∈ Ef

P̃

13 receive(y, 2);

% xc ∈ Ef

P̃

14 receive(yd, 3);

% xc ∈ Ef

P̃

15 skip;

% xc ∈ EP
16 end

As previously, the final assertion Ef

P̃f
⊂ EP must be checked. Two cases

are possible:

• either Ef

P̃f
⊂ EP , then we proved that the program is Lyapunov stable on a

floating-point architecture;

• or Ef

P̃f
6⊂ EP : as Ef

P̃f
was obtained through overapproximations, we cannot

conclude about the program behavior.

In this open-loop case, we are able to check that Ef

P̃f
⊂ EP (Mathematica

script is available online: see footnote 2). Thus, the stability of the open-loop
system with a 64-bit IEEE 754 compliant implementation is formally proven
to hold using our proof translation scheme.

13



Maisonneuve

5 Closed-Loop Stability Proof

We now show how the proof of state boundedness of the closed-loop system
specifications can be migrated to the level of the controller code and exe-
cutable model of the system. To be more precise, we exploit the invariance
of the ellipsoid EP to develop a proof of proper behavior, that is, stability
and variable boundedness, for the computer program that implements the
controller as it interacts with the physical system. Unlike the developments
related to open-loop controller, this proof necessarily involves the presence of
the physical system. In [3], Feron chooses to represent the physical system
and the computer program by two concurrent programs, as shown below.

Controller dynamics:

1c Ac = [0.4990, -0.0500;

0.0100, 1.0000];

2c Bc = [1; 0];

3c Cc = [564.48, 0];

4c Dc = -1280;

5c xc = zeros(2, 1);

6c receive(y, 2); receive(yd,

3);

7c while (1)

8c yc = max(min(y - yd, 1),

-1);

9c u = Cc*xc + Dc*yc;

10c xc = Ac*xc + Bc*yc;

11c send(u, 1);

12c receive(y, 2);

13c receive(yd, 3);

14c end

Physical system dynamics:

1p Ap = [1.0000, 0.0100;

-0.0100, 1.0000];

2p Bp = [0.00005; 0.01];

3p Cp = [1, 0];

4p while (1)

5p yp = Cp * xp;

6p send(yp, 2);

7p receive(up, 1);

8p xp = Ap * xp + Bp * up;

9p end

In this scheme, the computer program representation of the physical system
is to remain unchanged, since it only exists for modeling purposes and does
not correspond to any actual program, whereas the controller code is allowed
to evolve to reflect the various stages of its implementation.

Establishing proofs of stability of the closed-loop system at the code level
is necessarily tied to understanding the joint behavior of the controller and
the plant. The entire state space therefore consists of the direct sum of state
spaces of the controller and the physical system. The approach described
in the previous sections is used to document the corresponding system of
two processes. One interesting aspect of these processes is their concurrency,
which can complicate the structure of the state transitions. However, a close
inspection of the programs reveals that the transition structure of the processes

14
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does not need to rely on the extensions of Hoare’s logic to concurrent programs:
one program at a time is running, through the blocking nature of the receive
primitive.

Feron’s stability proof with real numbers is much longer than for the open-
loop system. We do not detail it, the interested reader is referred to [3]
for full information. To be noticed, the resulting comments are not much
more complex than those available from the study of the controller alone. On
the good side, as already mentioned, the Hoare formalism is not significantly
affected by the concurrent structure of the closed-loop system.

A floating-point representation of the closed-loop system consists of keep-
ing the right column of the listing above in its original settings, while replacing
the left column with the corresponding floating-point implementation, as we
did in Section 4. Using similar techniques to the study of the controller alone,
proof invariants can be tweaked to take into account constant changes and
rounding errors resulting from the use of floating-point arithmetic. Unfortu-
nately, using these invariants it cannot be shown that the stability condition
holds at the end of the loop body. In this case, we are unable to prove the
system stability on a floating-point architecture: either the system is not sta-
ble with the floating-point based controller, or the proof parameters (EP , µ,
. . . ) must be chosen more carefully by the controller designer.

6 Conclusion

The general idea is to replace some of the invariants in the original proof
scheme by wider ones that include rounding errors, with the hope that the
stability condition is strong enough and still holds. This approach is made
possible by the fact that rounding errors introduced by the operations used
in the code are bounded on bounded inputs and bounded controller state
variables.

In this document, we study the case of a floating-point representation
of real numbers. They are not available on all architectures, especially on
microcontrollers that are commonly used to implement control systems. We
quickly discuss the alternative real-number representations.

• We can deal with fixed-point arithmetic the same way we do with floating-
point, as long as we stand far enough from extremal values that can lead to
overflows.

• Another way to represent real numbers is to use two integers, a numerator
and a denominator. Considering that the input values are exact, the ele-
mentary operations do not introduce rounding errors but can easily lead to

15



Maisonneuve

overflows, e.g. when computing

p1

q1
+

p2

q2
=

p1q2 + p2q1

q1q2
.

A strategy must be used to prevent overflows by introducing approxima-
tions: in this case, the question is to quantify the errors introduced by
these approximations.

In our example, we exclusively used additions and multiplications: divi-
sions are not involved in linear control. Still, programs with divisions can also
be analyzed, if the numerator can be shown to be far enough from zero: it
is a supplementary constraint, but it is reasonable to assume that it should
be respected on a realistic control system that uses divisions. Differentiable,
periodic functions such as (sin) can be computed with an abacus and an in-
terpolation function, thus with bounded error. In the same way, functions not
periodic, but restricted to finite domains, can also be approximated. Other
functions, such as (tan) or

√
, should raise more issues.
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