R. Herring, A. Hofleitner, S. Amin, T. Nasr, A. Khalek et al., Using mobile phones to forecast arterial traffic through statistical learning, Proc. 89th Transportation Research Board Annual Meeting, 2010.

Y. Kinuta, S. Kitamura, T. Nakamura, K. Makimura, M. Takahashi et al., Examination of the Applicability of Probe Car Data to Assessment of the Effects of Road-Safety Projects, International Journal of Intelligent Transportation Systems Research, vol.8, issue.2, pp.67-76, 2010.
DOI : 10.1007/s13177-009-0003-z

D. Work, S. Blandin, O. Tossavainen, B. Piccoli, and A. Bayen, A Traffic Model for Velocity Data Assimilation, Applied Mathematics Research eXpress, vol.1, pp.1-35, 2010.
DOI : 10.1093/amrx/abq002

A. Thiagarajan, L. Sivalingam, K. Lacurts, S. Toledo, J. Eriksson et al., VTrack, Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, SenSys '09, pp.85-98, 2009.
DOI : 10.1145/1644038.1644048

A. Krause, E. Horvitz, A. Kansal, and F. Zhao, Toward Community Sensing, 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008), pp.481-492, 2008.
DOI : 10.1109/IPSN.2008.37

H. Liu and M. W. , A virtual vehicle probe model for time-dependent travel time estimation on signalized arterials, Transportation Research Part C: Emerging Technologies, vol.17, issue.1, pp.11-26, 2009.
DOI : 10.1016/j.trc.2008.05.002

A. Jaeger, N. Bibmeyer, H. Stubing, and A. S. Huss, A Novel Framework for Efficient Mobility Data Verification in Vehicular Ad-hoc Networks, International Journal of Intelligent Transportation Systems Research, vol.6, issue.2, pp.11-21, 2012.
DOI : 10.1007/s13177-011-0038-9

L. Vanajakshi, S. C. Subramanian, and R. Sivanandan, Travel time prediction under heterogeneous traffic conditions using global positioning system data from buses', IET Intelligence Transportation System, pp.1-9, 2009.

D. Chowdhury, L. Santen, and A. Schadschneider, Statistical physics of vehicular traffic and some related systems, Physics Reports, vol.329, issue.4-6, pp.199-329, 2000.
DOI : 10.1016/S0370-1573(99)00117-9

M. Herty, A. Klar, and L. Pareschi, General kinetic models for vehicular traffic flow and Monte Carlo methods', Computational methods in applied mathematics, pp.155-169, 2005.

H. Rakha, Validation of Van Aerde's Simplified Steady-state Car-following and Traffic Stream Model', Transportation Letters, The International Journal of Transportation Research, vol.1, issue.3, pp.227-244, 2009.

K. Nagel and M. Schreckenberg, A cellular automaton model for freeway traffic, Journal de Physique I, vol.2, issue.12, pp.2221-2229, 1992.
DOI : 10.1051/jp1:1992277

URL : https://hal.archives-ouvertes.fr/jpa-00246697

S. Blandin, D. Work, P. Goatin, B. Piccoli, and A. Bayen, A General Phase Transition Model for Vehicular Traffic, SIAM Journal on Applied Mathematics, vol.71, issue.1, 2011.
DOI : 10.1137/090754467

URL : https://hal.archives-ouvertes.fr/hal-00537268

Y. Wang and M. Papageorgiou, Real-time freeway traffic state estimation based on extended Kalman filter: a general approach, Transportation Research Part B: Methodological, vol.39, issue.2, pp.141-167, 2005.
DOI : 10.1016/j.trb.2004.03.003

A. Statthopoulos and K. M. , A multivariate state space approach for urban traffic flow modeling and predicting, Transportation Research Part C, issue.11, pp.121-135, 2003.

D. Helbing, L. Rarita, C. D-'apice, P. B. Helbing, D. et al., Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following modelsOn the controversy around Daganzo's requiem for and Aw-Rascie's resurrection of second-order traffic flow modelsMultivariate short-term traffic flow forecasting using time-series analysisUrban traffic flow prediction using a fuzzy-neural approach', Transportation Research Part C: Emerging TechnologiesPOP- TRAFFIC: A Novel Fuzzy Neural Approach to Link Traffic Analysis and PredictionA belief propagation approach to traffic prediction using probe vehicles, 22] Vlahogianni E. I.: 'Enhancing Predictions in Signalized Arterials with Information on Short-Term Traffic Flow Dynamics Proc. 10th Int. Conf. Transportation Systems (ITSC) Urbanik T., and Kohis A.G.: 'Reinforcement learning-based multi-agent system for network traffic signal control', IET Intelligence Transportation System, pp.3110-3131539, 2002.

S. Z. Li, Y. Shoham, K. Leyton-brown, N. Geroliminis, C. F. Daganzo et al., Markov Random Field Modeling in Image AnalysisMultiagent Systems: Algorithmic, Game-Theoretic, and Logical FoundationsExistence of urban-scale macroscopic fundamental diagrams: Some experimental findingsProperties of a welldefined Macroscopic Fundamental Diagram for urban traffic, Transportation Research Part B: Methodological Transportation Research Part B Methodological, vol.27422845, issue.93, pp.759-770605, 2008.

Y. Ji and N. Geroliminis, On the spatial partitioning of urban transportation networks, Transportation Research Part B: Methodological, vol.46, issue.10, pp.1639-1656, 2012.
DOI : 10.1016/j.trb.2012.08.005

Y. Han and F. Moutarde, Statistical traffic state analysis in large-scale transportation networks using locality-preserving non-negative matrix factorisation, IET Intelligent Transport Systems, vol.7, issue.3, pp.283-295, 2013.
DOI : 10.1049/iet-its.2011.0157

T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, and A. Y. Wu, An efficient k-means clustering algorithm: analysis and implementation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.7, pp.881-892, 2002.
DOI : 10.1109/TPAMI.2002.1017616

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. E. Chi and T. G. Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIAM Journal on Matrix Analysis and Applications, vol.33, issue.4, pp.1272-1299, 2012.
DOI : 10.1137/110859063

URL : http://arxiv.org/abs/1112.2414

T. G. Kolda and B. W. Bader, Tensor Decompositions and Applications, SIAM Review, vol.51, issue.3, pp.455-500, 2009.
DOI : 10.1137/07070111X

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Liu, J. Liu, P. Wonka, and Y. J. , Sparse Nonnegative Tensor Factorization Using Columnwise Coordinate Decent, Pattern Recognition, vol.45, 2012.
DOI : 10.1016/j.patcog.2011.05.015

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Spiegel, J. Clausen, S. Albayrak, and K. J. , Link prediction on evolving data using tensor factorization', proc, 15th international conference on New Frontiers in Applied Data Mining, pp.100-110, 2011.

D. D. Lee and H. S. Seung, Algorithms for nonnegative matrix factorization, Proc. 13th Neural Information Processing Systems (NIPS), pp.556-562, 2000.

W. Xu, X. Liu, and Y. H. Gong, Document clustering based on non-negative matrix factorization, Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval , SIGIR '03, pp.267-273, 2003.
DOI : 10.1145/860435.860485

Y. Wang, Y. Jiang, Y. Wu, and Z. H. Zhou, Local and Structural Consistency for Multi-Manifold Clustering, Proc. 22nd International Joint Conference on Artificial Intelligence (IJCAI), pp.1559-1564, 2002.

G. L. Chen and G. Lerman, Spectral Curvature Clustering (SCC), International Journal of Computer Vision, vol.27, issue.12, pp.317-330, 2009.
DOI : 10.1007/s11263-008-0178-9

F. R. Chung, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, 1997.
DOI : 10.1090/cbms/092

R. Agrawal, J. Gehrke, and D. Gunopulos, Automatic Subspace Clustering of High Dimensional Data, Data Mining and Knowledge Discovery, vol.13, issue.2???3, pp.5-33, 2005.
DOI : 10.1007/s10618-005-1396-1

F. Marchal, Contribution to dynamic transportation models, 2001.

D. Palma, A. Marchal, and F. , Real cases applications of the fully dynamic METROPOLIS toolbox: an advocacy for large-scale macroscopic transportation systems', Networks and Spatial Economics, 45] Jolliffe I.T.: 'Principal Component Analysis, pp.347-369, 2002.