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In this paper, we present our work on clustering and prediction of temporal evolution of global 
congestion configurations in a large-scale urban transportation network. Instead of looking into 
temporal variations of traffic flow states of individual links, we focus on temporal evolution of the 
complete spatial configuration of congestions over the network. In our work, we pursue to describe 
the typical temporal patterns of the global traffic states and achieve long-term prediction of the 
large-scale traffic evolution in a unified data-mining framework. To this end, we formulate this joint 
task using regularized Non-negative Tensor Factorization, which has been shown to be a useful 
analysis tool for spatio-temporal data sequences. Clustering and prediction are performed based 
on the compact tensor factorization results. The validity of the proposed spatio-temporal traffic data 
analysis method is shown on experiments using simulated realistic traffic data. 
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1. Introduction 

Recent decades witnessed rapid progress of 

distributed sensor systems in large-scale urban 

transportation networks [1][2]. Mobile GPS, loop 

magnetic detectors, etc, provide reliable ways to collect 

plentiful records of traffic flow states in transportation 

networks everyday [2][3][4][5][6][7]. Availability of the 

big traffic data stimulates great interests of researchers, 

engineers and public departments to extract underlined 

traffic dynamics, in order to understand traffic state 

evolution for better management of urban transportation. 

Along this direction, most published works of traffic 

data analysis focus on mining temporal dynamics of 

individual or small groups of links (either in arterial 

network or express ways) using model-driven 

[8][9][10][11][12][16][17][18] and data-driven methods 

[13][14][15][19][20][21][22][23][24]. The model-driven 

methods, like Cellular Automata [12] and other 

underlying physical models [8][9][10][11][16][17][18], 

are usually calibrated with structural assumptions to 

simulate temporal evolution of traffic states. Excellent as 

they are, the model-driven methods present less 

efficiency in modeling urban traffic. Congestion in urban 

transportation is easily subject to fluctuations induced by 

intersections, traffic signals, pedestrian behaviors and 

accidents. These fluctuations lead to complex spatio-

temporal events, which makes it difficult to find a local 

stationary regime for the physical rule based traffic 

velocity models. In contrast, data-driven approaches 

describe spatio-temporal traffic flow patterns using 

statistical models based on historical observations. The 

latter are free from the structural constraints that are 

possibly biased from the real dynamics of traffic flows. 

Thus, they are more flexible to adjust and fit the 

underlined traffic state variations. In this branch, Kalman 

filter [14] and ARMA (Autoregressive Moving Average) 

[15], originated from state space theory, are popularly 

used to predict linear variation tendency of traffic flows 

[14][15][19]. In [20][21][22], neural networks [20][21] 

and hybrid non-linear dynamic systems [22] are used to 

approximate short-term non-linear fluctuations of traffic 

flow states. Due to the intrinsic multiple-input and 

multiple-output (MIMO) structures, neural networks 

intrinsically integrate spatio-temporal correlations 

between local link segments. In [23][24], spatio-

temporal correlations between local links are also 

modeled using Markov Random Field [25] and Multi-

Agent System [26]. These inspiring works concatenate 

global structural information of transportation networks 

to improve descriptive power of traffic flow models. 

However, when one tries to apply data-driven methods 

to large-scale network, high dimensionality of spatial 

network structure results in curse-of-dimensionality in 

model configuration. An interesting way of handling 

complexity and dimensionality issues is to partition the 

full network in sub-regions, with the congestion behavior 

of each area modeled by Macroscopic Fundamental 

Diagram (MFD). MFD is firstly defined by Geroliminis 

et al in [27]. It provides an approximate relation between 

space-mean flow, vehicle speed and vehicle density of 

sub-region, which serves as a macroscopic measure of its 

capacity. The first thorough empirical investigation of 

MFD for analyzing urban traffic can be found in [28]. 



Spatial partitioning of network based on MFD, as 

proposed in [29], is quite promising for designing traffic 

management strategies at city level. However, our goal is 

to unveil typical temporal congestion daily evolutions, 

rather than provide a geographical partition. 
      Classical model-driven or data-driven methods are 

proposed to estimate temporal traffic state dynamics of 

individual links, while ignoring spatio-temporal 

correlation between links and successive time intervals. 

It causes the prohibitive model complexity when they are 

applied directly to analyze traffic states of a large-scale 

network. To attack this issue, we propose to investigate 

temporal evolution of spatial co-occurrence patterns of 

congestion level in the entire network during specific 

time intervals. Such macroscopic view of traffic 

dynamics can identify bottleneck of transportation 

networks in different time slots and improve traffic 

management strategies dynamically. Drivers can use 

global traffic state information to optimize their traveling. 

The analysis result can be also used as a spatial 

consistency constraint of traffic congestion level in 

modeling the temporal variations of traffic states of 

individual links. 

      Our previous work [30] used matrix factorization to 

derive low-dimensional representation of the global 

traffic state and identify typical spatial congestion 

co-occurrence patterns of the whole network. Despite of 

the achievement, this work is not designed intrinsically 

to find out the temporal causality of congestion during 

successive time intervals. In this paper, we follow 

principles of matrix factorization and use regularized 

non-negative tensor factorization (r-NTF) to extract a 

compact representation of this temporal evolution of the 

spatial congestion pattern. K-means clustering [31] is 

then performed on the derived representation to unveil 

typical temporal evolution of the spatial congestion 

patterns. Using the proposed r-NTF, we further achieve 

long-term temporal prediction of spatial congestion 

patterns in the network. 

     Section 2 introduces the proposed r-NTF method 

employed in the analysis. Section 3 presents the 

simulated traffic data of a large-scale urban network, 

used as data source in the following analysis. In Section 

4, we illustrate detailed clustering results of typical 

spatio-temporal congestion patterns obtained through the 

NTF projection. Section 5 further performs a long-term 

prediction on temporal behaviors of spatial congestion 

configurations based on the NTF scheme. Section 6 

concludes the work.  

 

2. Spatio-temporal analysis of traffic data 

using Non-negative Tensor Factorization 

2.1. Basics about tensor 

A tensor T is formally defined as a multi-way array

, where M is the order of tensor (i.e. its 

number of ways). N i represents the dimensionality of 

the i-th order of the tensor. Through this way, a single 

entry Ti1,i2 ...iM in the tensor is localized by fixing the total 

M indices {i1,i2...,iM} . A review of tensor is provided 

in Kolda et al. [32][33]. The multi-way structure of 

tensor provides a natural way to encode the underlying 

multiple dependencies in the sequential multivariate data. 

For example, in video processing, tensors are widely 

used to represent temporal streams of multi-dimensional 

data, such as 2D images in video frames [34] and user 

product rating profiles in recommendation systems [35]. 

 

2.2. Representing spatio-temporal traffic state 

data using multi-way tensor 

The traffic state data are composed of congestion 

levels for all links in a large-scale urban transportation 

network. For each link, temporal variation of congestion 

is described by sampling each period (e.g. one day) with 

a fixed and shorter interval over which congestion level 

is estimated and averaged. Our purpose is then to 

investigate spatio-temporal dynamic patterns of traffic 

congestion in the network during the concerned period. 

To this end, we use a tensor T R
nml

 to represent 

temporal sequences of traffic state measurements. 

Integers n, m and l respectively correspond to the 

number of links in the network, the number of sampling 

steps in each time period, and the number of concerned 

periods (typically half-days or days) within total historic 

observations. Each entry Ti, j ,k  represents the traffic 

flow state of the i-th link observed at the j-th sampling 

step of the k-th time period. Each column vector T:, j,k of 

the tensor concatenates traffic states of all links at a 

specific sampling step into one n-dimensional vector. It 

encodes spatial congestion co-occurrence over entire 

network. We note it as network-level traffic state, 

inherited from our previous work [29]. Each frontal slice 

T:,:,k  stores the network-level traffic states within the 

same period k as its column vectors following their 

temporal orders. It represents temporal variations of 

network-level traffic states T:, j,k  within the concerned 

period k. We note it using spatio-temporal traffic state 

dynamics in this paper. It describes temporal dynamics 

of spatial congestion co-occurrence in the entire network. 

Tensor factorization is then used to derive compact 

representation of the spatio-temporal traffic state 

dynamics of each time period. 

 

2.3. Regularized Non-negative Tensor 

Factorization for spatio-temporal traffic data 

analysis 

      We propose Regularized Non-negative Tensor 

Factorization (r-NTF) for analyzing spatio-temporal 



 

traffic dynamics. The basic idea is to decompose one 

tensor as a canonical combination of low-order 

structures, such as vectors and matrices, with an 

additional regularization term to guarantee smoothness 

of factorization results. Components in the canonical 

combination are factors that contribute separately in 

reconstructing the tensor, corresponding to physical 

sense of each way of the tensor. For better understanding, 

we firstly review Non-negative Matrix Factorization 

(NMF) used in our previous work [29] as an example. 

NMF [36][37] is as a special case of r-NTF applied in 

matrices (2nd order tensors) as illustrated in Eq.1: 

                     argmin
U0,V0

M  (U:,i oV:,i )
i1

r


F

            (1) 

where M is a nm  matrix, U:,i and V:,i  are the i-th 

columns of the non-negative matrices U Rnr  and 

V Rmr . Operator  is the outer product of vectors. 

F
 is Frobenius norm of matrix. As presented in [29], 

successive columns of M correspond to a temporal 

sequence of network-level traffic states collected at 

different temporal sampling steps, each column of V is 

the NMF projection of the corresponding network-level 

traffic states. Integer r is the dimensionality of the NMF 

projection space spanned by columns of U. Normally, r 

is set to be much less than the row dimension of M, thus 

the column space of V forms a low-dimensional 

representation of network-level traffic states. The 

non-negativity constraint on U and V makes each 

network-level traffic state M :, j R
n

 approximated by 

an additive linear superposition of the column space of U 

of NMF [29] as in Eq.2: 

                                             (2)                                                                                                      

where M:, j and U:,i  are the j-th column of M and the 

i-th column of U respectively. Vi, j  is the element 

located at the j-th column and i-th row of V. Columns 

of U are the learned bases representing typical spatially 

structural patterns of congestion. Vi, j  represents to 

which degree the j-th network-level traffic state M:, j  is 

associated with the learned basis vector U:,i . Thus, 

through the linear projection, NMF generates a low-

dimensional signature depicting spatial characteristics of 

network-level traffic states. However, due to the two-

way structure of matrix, NMF has limited resolution in 

temporal analysis. The ranging order of columns M:, j  

mixes temporal sampling steps of different periods, thus 

NMF cannot distinguish spatio-temporal traffic 

evolutions of different time periods directly.  

    Therefore, preserving the descriptive power of NMF 

while extending the methodology to investigate spatio-

temporal traffic dynamics, we propose the r-NTF as 

follows: 

argmin
U0,V0,Q0

T  (U:,i oV:,i oQ:,i )
i1

r


L2

 Tr(QTLQ)           (3) 

                               L  D W                                   (4) 

                              Di ,i  Wi , j

j

                                (5)                                                                                                                                                                               

where T is the 3-way tensor storing the traffic data as 

described in Section 2.1. Vectors U:,i , V:,i  and Q:,i  are 

i-th columns of three non-negative matrices: U of size 

nr, V of size mr, and Q of size lr. 
L2

 denotes 

the entry-wise sum of square. Operator Tr is matrix 

trace and  is the regularization parameter. Similar to 

NMF, the column spaces of U, V and Q form the 

r-dimensional representations of respectively link-

specific, temporal sampling step specific, and time 

period specific factors in spatio-temporal dynamics of 

traffic states. According to Eq.3, by fixing U and V, we 

approximate each frontal slice of the 3-way tensor  

as a strictly additional basis expansion shown in Eq.6: 

                          T:,:,k  Qi,k (U:,iV:,i
T )

i1

r

                    (6) 

Qi,k  is the entry locating at the k-th column and i-th 

row of Q. Matrix U:,iV:,i
T

has the same size as the frontal 

slice . Considering U:,iV:,i
T

 (i=1,2,…,r) as a set of 

matrix-form bases, Eq.3 illustrates a linear projection of 

the frontal slice to the space spanned by the bases. 

{Qi,k}(i 1,2...,r)  are the r-dimensional projection 

coordinates of  with respect to the bases. Note that 

we borrow the notion of multivariate signal expansion 

and use them for the matrix-form objects. That provides 

us an intuitive understanding of tensor factorization. As 

in NMF, benefited from the non-negativity constraint, 

the linear expansion in Eq.3 is an additional 

superposition of the bases {U:,iV:,i
T} approximating 

. Thus, each matrix-form basis U:,iV:,i
T

implies an 

underlying component of the frontal slice. In our case, 

since each frontal slice  records temporal variation 

of network-level traffic states within each time period, 

the matrix-form bases {U:,iV:,i
T} correspond to 

components forming the large-scale traffic temporal 

dynamics, a.k.a. part-based representation of . 

Given this property, the column space of the projection 

{Qi,k}(i 1,2...,r)  forms r-dimensional signatures of 

spatio-temporal traffic state pattern of each concerned 

time period in .  

The second term in Eq.3 is the structural 

M :, j  U:,iVi, j
i1

r



T:,:,k

T:,:,k

T:,:,k

T:,:,k

T:,:,k

T:,:,k

T:,:,k



regularization of the factorization. In this term, L is 

called Graph Laplacian [38][39] as defined in Eq.4. In 

the matrix W, the element  located at i-th row and 

j-th column, is the pair-wise similarity measure between 

spatio-temporal traffic state dynamics of the i-th and 

j-th time period, corresponding to the i-th and j-th 

frontal slice of T. This similarity measure is either 

obtained according to empirical analysis on historic 

observations, or defined based on knowledge of experts 

in the transport domain. According to Eq.5, D is a 

diagonal matrix whose entries are column sums of W. 

Graph Laplacian originates from spectral graph theory 

[39][40]. By adding the Graph Laplacian based 

constraints, the obtained low-dimensional representation 

V is calibrated to have similar geometrical structures as 

the original data T without increasing further 

computation cost. In Eq.5, the similarity measure W 

encodes our prior knowledge about the underlying 

spatio-temporal traffic dynamics. The Graph Laplacian 

constraint in Eq.4 thus requires the derived tensor 

projection of the traffic data to be consistent with 

intrinsic data distribution information. Besides, it also 

makes the projection smooth enough to be compatible 

with data analysis algorithms, such as clustering and 

temporal prediction models. 

 

2.4. Clustering and long-term temporal 

prediction of large-scale traffic dynamics 

Through tensor factorization, each column vector 

Q:,k of Q represents a r-dimensional signature of spatio-

temporal traffic evolution of the corresponding time 

period. We propose to perform K-means clustering 

algorithm on the column space of Q. The centers of the 

clusters correspond to typical spatio-temporal traffic 

dynamics patterns. Without tensor factorization, the only 

way to achieve this goal is to perform clustering directly 

on the frontal slices of the tensor. Due to high-

dimensionality of the frontal slices, it is difficult to find 

distinct cluster structures in Euclidian space of frontal 

slices [35]. In contrast, the r-dimensional signatures 

derived from the tensor factorization form a projection 

subspace with much lower dimensionality, thus 

strengthen the underlying cluster structure of spatio-

temporal traffic dynamic patterns. As indicated in [41], 

K-means does not necessarily guarantee to find the most 

optimal assignment configuration, corresponding to the 

global objective function minimum. The algorithm is 

also significantly sensitive to the initial selected cluster 

centers. We tackle this issue by running K-means for 

multiple times with randomly initialized clustering 

configuration at each time. Finally we choose the 

clustering result that minimizes most the sum-of-square 

k-means objective function. 

Based on the clustering analysis of large-scale spatio-

temporal traffic dynamics, we further aim to achieve 

long-term temporal prediction of the spatial congestion 

co-occurrence in the entire network with the proposed 

tensor factorization framework. This work follows a 

simple principal: for two temporal sequences of 

network-level traffic states corresponding to two 

different periods, given similar tendency of spatio-

temporal traffic dynamics at the beginning sampling 

steps of the concerned time period, they are likely to 

have similar forthcoming temporal congestion evolution 

during the rest time of the period. In urban transportation 

networks, the topological structure of the network is 

stable and drivers’ behaviors are historically consistent. 

Plenty of historic data thus provide comprehensive 

information about typical spatio-temporal traffic 

dynamics within the fixed time period, such as consistent 

occurrence of morning and evening peaking hours 

during working days. As a result, we can achieve 

temporal prediction of network-level traffic state 

evolution by heuristically comparing the partially 

observed traffic dynamics and large-scale traffic 

dynamic patterns in historic data. 

To formulate this task using the proposed tensor 

factorization framework, we assume all historic 

observations of traffic states stored in a tensor structure 

 with l the total number of time 

periods involved in historic observations. Given another 

specific time period, we suppose observed only the first 

m1  time steps of network-level traffic states. The 

temporal prediction then estimates spatio-temporal 

traffic evolution from the (m1 1  )-th step until the end. 

The central idea of this work is two-folds. Firstly, 

compared with one-step ahead forecast, the prediction 

task aims to cover a dynamical process of much longer 

time period. We name it as “long-term prediction” in 

contrast with short-term estimation, such as forecast of 

5-10 minutes ahead. Furthermore, different from 

previous work focusing on estimation of precise traffic 

state (traveling time or speed) of one single link, we aim 

to estimate temporal evolution of spatial congestion co-

occurrences of the whole network. It provides an overall 

description of spatio-temporal dynamic patterns of 

congestions. For management departments of large-scale 

transportation network, the macroscopic description of 

traffic dynamics in both spatial and temporal scale is 

helpful to identify bottlenecks of the network in different 

time slots, in order to globally optimize use of traffic 

resources. 

     To achieve the long-term temporal prediction, we 

firstly perform r-NTF on Thistoric  to project the 

historical spatio-temporal traffic dynamics of the fixed 

time period to r-dimensional subspace, as seen in Eq.7: 

T historic  Ui
historic oVi

historic oQi
historic 

i1

r

               (7)                                                  

Traffic dynamics of the specific partially observed 

period is represented as a frontal slice M. It can be 

considered as a point lying in the r-dimensional smooth 

Wi , j

T historic Rnml



 

subspace spanned by the learned base

{Ui
historic oVi

historic} . Reconstruction of the missing 

entries in the frontal slice M is formalized as follows:  

q  argmin
q0

M  qi (Ui
historic oVi

historic )
i1

r


L2

2

 M sh j qQ:,h j
historic

L2

2

j1

K


  

(8) 

                                         (9)                                                              

where q is the estimated r-dimensional projection 

coordinates of M with respect to the learned bases 

{Ui
historic oVi

historic} . We select K-nearest neighbors of 

the partially-observed time period M among all time 

periods in the historical data, corresponding to the 

frontal slices { T:,:,i
historic

} (i=1,2,…,l). The K-nearest 

neighboring frontal slice is indexed by 

{h j}( j  1,2,...,K )  . sh j  is the Euclidean distance 

based similarity measure evaluated between M and the 

selected frontal slice T:,:,hj
historic

. qhj
historic

 are the 

r-dimensional signatures of the K-nearest neighboring 

frontal slices in the historic records derived from the 

tensor factorization. The first term in Eq.8 aims to 

minimize the reconstruction error between the observed 

traffic states and their corresponding estimates in , 

forcing better approximate the observed information. 

The second term performs the Graph Laplacian 

constraint on the signature q  of . By minimizing 

this regularization term, we aim to find a projection of 

the partially observed M that optimally approximate the 

observed information and preserve the topological 

relations with the projections of the nearest neighboring 

frontal slice in the historic data. The basic idea behind 

the design is the principle of temporal causality in traffic 

dynamics that we employ to achieve the long-term 

temporal prediction. The solution of Eq.8 is obtained by 

iteratively updating q  using KKT condition [42]. Each 

step of the update is formulated in Eq.10. 

qi
new 

qi
old (XYV T  M sh jqh j

historic

j1

K

 )i

(qoldVYV T  Mq
old sh j

j1

K

 )i

            (10)                                    

qi
new

and qi
old

are the i-th entry of q  after and before 

the update. Y is a nm dimensional vector that 

arranges all elements of M into a vector following a 

column-wise order. R is a vector of the same size as X, 

which is a binary mask that gives 1 to the observed 

entries in X and 0 to the missing ones. V R(nm)r  is a 

matrix with each row as the Kronecker product of 

U:, j
historic

 and V:, j
historic

. Once the optimum estimate of q  

is obtained, the missing entries of M, corresponding to 

the unobserved future traffic states, are reconstructed 

using Eq.9, and used as the prediction.  

 

3. IAURIF Traffic Database 

3.1. Metropolis traffic simulation software 

The benchmark IAURIF database used to verify the 

validity of the proposed r-NTF based method is 

generated by simulating real-traffic sequences of a large-

scale traffic network using Metropolis [43][44]. 

Metropolis is a planning software designed to model 

urban transportation systems. It allows the user to study 

impacts of transportation management policies for 

metropolitan areas and their fringes in a time-dependent 

framework. Metropolis simulates commuters’ traveling 

behaviors and congestion in urban areas. The core of the 

simulation system is a dynamic simulator that integrates 

joint commuters’ departure time and their choices of 

routes in the transportation network. During simulation 

of traffic sequences, each commuter is characterized by 

specific parameter values individually [43][44]. At any 

moment, locations of all commuters are known. Given 

the geometrical structure of network, and traffic demand 

specified by an Origin-Destination (O-D) matrix, 

commuters choose the fastest path from their origin to 

destination. Interaction between individual route choices 

is taken into account by running several iterations of the 

simulation until stabilization of all choices of itineraries 

and departure times. Metropolis does not simulate in 

details the physics of traffic, but rather estimates the 

travel time on a link as a function of density of cars and 

incoming flow. Each link is therefore modeled as a 

queue in which the car remains during estimated travel-

time. By default, the linear speed-density fundamental 

diagram is used: each link is characterized by a free-flow 

velocity Vff (typically related to speed-limit) and a 

traffic-freezing maximum density max; current average 

speed on the link is estimated as V=Vff (max-)/max, 

therefore decreasing from Vff to zero when density on 

the link increases from zero to max. This traffic model is 

relatively simplistic, firstly due to assumption of linear 

speed-density law, secondly because it supposes that all 

vehicles present on the link at a given time shall 

experience same travel-time in the link; also traffic lights 

along the link are not explicitly taken into account. 

However, in our present work, what we need is only 

simulations that are realistic enough to provide a good 

testing benchmark for our traffic evolution analysis, 

clustering and prediction framework. An interesting 

feature of Metropolis from this point of view is that by 

modulating amplitude and geometry of the O-D matrix, 

we can easily generate varying spatio-temporal 

congestion patterns. 

 

 
 

M  qi (U:, j
historic oV:, j

historic )
i1

r



M

M

M



 

Figure 1. Visualization, in 3D PCA space, of three typical trajectories corresponding each to one half-day 

simulation for one of the three settings of traffic demands 

 
 

3.2. Settings of IAURIF database 

   The network used in IAURIF database contains totally 

13627 links of Paris and its suburb region, as displayed 

in Figure 2. There are totally 146 simulated traffic 

sequences in the data set. Each simulated traffic 

sequence covers 8 hours of traffic data observations, 

involving congestion in peak time. Total 48 time 

sampling steps within each simulation divide the whole 8 

hours into 10-minute bins over which the network traffic 

flows are aggregated. The typical temporal evolutions 

are shown on Figure 1, plotted in 3D PCA space. To 

represent local traffic state of each link, we use traffic 

index [43][44] defined as ratio between the minimum 

traveling time of vehicles on this link given the upper 

limit of speed and the observed average traveling time 

on the link during each time interval. The traffic index 

belongs to ]0,1]: if the index value equals to 1, it means 

the vehicles run at their full speed on the link, indicating 

the link is free-flowing; as the traffic index decreases, 

the corresponding link becomes more congested. We 

store all traffic index values into a three-way tensor 

T R1362748146  following descriptions in Section 2.  

 

The simulated traffic sequences involve three different 

configurations of O-D matrix of all 3000 commuters in 

the network. They start their travel from outskirts of 

Paris into the central area within 8 hours in each 

simulation. With this setting, we aim to describe traffic 

behaviors during the morning peak hour of the Paris 

transportation network. Different configurations of O-D 

matrix result in variations of global congestion level and 

different spatial distribution of congestion during peak 

hour. In the first setting, traffic demands are distributed 

relatively evenly in the outskirt area near the central 

Paris, leading to light isotropic congestion inside and 

around the central Paris. For the second case, we set 

more travel plans from the northern outskirt area to the 

central Paris, which produces local congestion patterns 

in both the northern outskirt and central region. 

Furthermore, we add random variance to the total 

amount of travel plans contained in the O-D matrix, 

covering both globally light and heavy congestion that 

share the same specific spatial congestion patterns in the 

network. In the third case, we increase travel paths inside 

the central and northern area to cause extremely heavy 

traffic burden in the corresponding areas. As a result, the 

derived sequences of traffic flow states present global 

congestion ever since the beginning of simulation. They 

are used to simulate occurrence of unexpected extreme 

incidents in the network. We name the three settings as 

“Isotropic Traffic Demand” (ITD), “Anisotropic Traffic 

Demand” (ATD) and “Extreme Traffic Demand” (ETD).  

 



 

 
(a) 

 
(b) 

 
(c) 

Figure 2. (a) typical spatial congestion patterns of the 

ITD setting; (b) typical spatial congestion patterns of 

the ATD setting; (c) typical spatial congestion 

patterns of the ETD setting 

      

 

 To understand the traffic demand settings intuitively, 

Figures 2(a) and 2(b) illustrates the typical spatial 

congestion patterns in the network corresponding to the 

first two traffic demand settings during the peaking hour 

(from the 15th to the 25th time sampling steps). For the 

third setting, Figure 2(c) shows typical congestion 

patterns corresponding during the peak hours, indicating 

the occurrence of utterly heavy congestion over the 

network. To visualize the distribution of congestion in 

the network, we use a fixed threshold to identify the 

occurrence of congestion in each link. Links with traffic 

index less than 0.4 are illustrated as congested links, 

indicated by red legends. Otherwise, they are shown as 

free-flowing links, labeled by green legends. The 

threshold is chosen according to the quintile of all traffic 

indexes in the simulation. 

    Following the three settings, we generate 37, 91, 18 

simulations respectively. In the ATD setting, due to the 

inserted random variances of traffic demands, we 

generate 39 simulations among all 91 simulations 

containing light global congestion level. The rest 52 

correspond to the occurrence heavy global congestion 

level. To visualize distribution of the network-level 

traffic states and its temporal evolution, we project all 

13627 dimensional network-level traffic state vector into 

3-dimensional PCA space [45]. In the figures illustrating 

data distribution and clustering results in the PCA 

projection space, saying Figures 1, 4 and 5, the three 

axes of the plot correspond to the top three principal 

components in PCA projections that keep most variances 

of the original network-level traffic states. The labels 

‘PC1’, ‘PC2’ and ‘PC3’ are used to denote the first, the 

second and the third principle components respectively 

in the figures. The principal components are derived 

from eigen-decomposition of the empirical covariance 

matrix of network-level traffic states. Thus they are 

dimensionless quantities and have unit of 1. The 

observations of the global free flowing states are 

distributed within a small region compactly. In contrast, 

those of medium or severe congestion are distributed 

sparsely and biased from the region of the free flowing 

state. Spatial configurations of local traffic states keep 

the same if the whole network is global free flowing. On 

the contrary, congestion occurred at different parts of the 

network changes the spatial configurations in different 

ways, increasing variations of global traffic patterns. In 

Figure 1, we link network-level traffic states of the same 

simulated sequences following their temporal orders in 

the PCA projection space. The resultant trajectory 

represents temporal evolution of the network-level traffic 

states, producing an intuitive view of the spatio-temporal 

traffic state dynamics. Different markers on trajectories 

are used to indicate different traffic demand settings. In 

each trajectory, color legends are used to indicate 

successive time intervals. The typical trajectories of the 

ITD and ATD setting have different orientations in the 

PCA space, consistent with difference of spatial patterns 



of congestion. All trajectories start from global free 

flowing state, as we initialize all simulations with global 

free flowing state. Trajectories of the ITD and ATD 

settings converge to the free flowing state, indicating the 

network restores its fluidity after peak hour. In contrast, 

the ETD setting leads to very severe congestion in the 

network, with some links congested even at the end of 

simulations. Thus the corresponding trajectory is 

different from the other two, and converges to the area 

far from the free flowing state. In Section 4, we perform 

clustering on temporal sequences of the network-level 

traffic states in order to verify capacity of the tensor 

factorization in unveiling the underlined large-scale 

traffic dynamics. Section 5 presents long-term temporal 

prediction results of large-scale traffic dynamics. 
 

4. Experimental Results  

As shown in Eq.3 and Eq.7, the dimensionality r of 

tensor projections needs to be fixed manually. To choose 

a proper value for r, we compute element-wise sum-of-

square reconstruction error (shown in the first term of 

Eq.3) with different r from 5 to 45, as illustrated in 

Figure 3. The reconstruction error declines much slower 

when r is larger than 35, indicating 35 dimensional 

tensor projection is competent for describing underlying 

temporal dynamics of network-level congestion patterns. 

Therefore, we set r to be 35. To benefit from the 

regularization term in Eq.3 and Eq.7, we set the 

regularization parameters  and M  to be 100. 

Empirically it is enough to enforce the constraint.  

 

Figure 3. Reconstruction errors corresponding to 

different dimensionality settings for NTF projection 

4.1. Clustering of temporal sequences of 

network-level traffic states 

As described in Section 3, there are generally three 

settings (ITD, ATD and ETD) in simulations of traffic 

flow dynamics, leading to different spatial congestion 

patterns during peak hours. Correspondingly, we set the 

number of clusters in K-means to be 3. Given this 

configuration, we aim to find out whether the clustering 

results are consistent with the different demand settings 

we used in our set of simulations, which would illustrate 

the validity of the proposed tensor factorization method. 

Furthermore, since ATD simulation setting includes both 

globally light and heavy congestion level due to 

variances of traffic demands injected to the O-D matrix, 

we increase the number of clusters from 3 to 4 in order 

to verify whether the proposed clustering scheme can 

find out such detailed differences of global congestion 

level within the same setting of spatial congestion 

patterns. Besides, by increasing the number of the 

derived clusters, we aim to investigate the stability of the 

clustering results. For fair comparison, we involve 

clustering of spatial-temporal dynamics by performing 

the same K-means algorithm on the frontal slices of the 

tensor structured data, named as “Basic Clustering 

Scheme”. In this scheme, each frontal slice of the tensor, 

corresponding to each temporal sequence of the 

network-level traffic state, is firstly unfolded to a 

(1362748)-dimension vector in column-wise order. The 

resultant high-dimensional vectors are projected to a 

PCA subspace with the same dimensionality as the 

proposed tensor projection space, in order to avoid 

curse-of-dimensionality of K-means algorithm. The PCA 

projections of the frontal slices are then fed to K-means 

engine to get clustering memberships of the temporal 

sequences. 

Figure 4 illustrates the cluster structures of temporal 

sequences illustrated in the 3D-PCA space. Figure 4(a) 

illustrates clustering results when the number of clusters 

equals to 3. The cluster labeled by blue legends consists 

of all 37 traffic sequences of the ITD setting. The red-

labeled cluster consists of total 16 trajectories of the 

ETD setting. The left 2 of all 18 ETD simulations are 

grouped into the green-labeled cluster. 91 of total 93 

trajectories in the green-labeled cluster correspond to the 

simulated sequences generated following the ATD 

setting. As we can see, the obtained three clusters of 

temporal sequences of network-level traffic states 

categorize trajectories of different traffic demand 

settings accurately. We name them henceforth by 

“Isotropic Congestion Trajectory” (ICT) and 

“Anisotropic Congestion Trajectory” (ACT) and “Heavy 

Congestion Trajectory” (HCT) respectively. By 

increasing the number of clusters from 3 to 4, we can 

find the ACT cluster is divided further into two sub-

clusters, corresponding to different general congestion 

level during peak hour, named as “Light Anisotropic 

Congestion Trajectory” (LACT) and “Heavy Anisotropic 

Congestion Trajectory” (HACT). Figure 4(b) shows the 

further sub-division of the ACT cluster. The cluster 

LACT consists of total 41 temporal sequences, among 

which 39 sequences correspond to the ATD setting with 

low traffic demands, leading to globally low congestion 

level. The remaining 2 sequences correspond to the same 

setting with relatively high traffic demands in the O-D 

matrix. Among total 52 sequences in the HACT cluster, 

50 sequences correspond to the setting with high traffic 

demands, leading to globally heavy congestion level. 

The minor overlapping between these two clusters 

(2 sequences) is caused by the smooth transition between 

the low and high traffic demands in the O-D matrix of 



 

the ACT setting. As we can see in Figure 4(b), by 

increasing the number of clusters, our clustering scheme 

not only preserves the clustering structure that separates 

different simulation settings of traffic demands 

accurately, but also unveils variations of global 

congestion level of the same simulation setting. 

 
(a) 

 
(b) 

 
(c) 

Figure 4. (a) Clustering of temporal sequences of 

network-level traffic states when the number of 

clusters is 3; (b) Clustering of temporal sequences of 

network-level traffic states when the number of 

clusters is 5; (c) Comparison of average temporal 

patterns of the 4 trajectory clusters. 

 

      For each time sampling step, we consider mean 

traffic index value (average traffic index value of all 

13627 links in the network) as a crude measure of global 

congestion level at the each specific time period, the 

sequence of totally 48 mean index values in one 

simulation form a general evaluation of large-scale 

traffic dynamics of the simulation. We further calculate 

average of all the 48-D sequences of mean traffic index 

values in each cluster. The resultant 48-D average 

sequence represents general temporal patterns of 

network-level traffic states in the corresponding cluster. 

Figure 4(c) illustrates those average sequences of mean 

index values corresponding to each trajectory cluster. 

The cluster ICT and LACT have similar variation mode 

of global congestion level during the peak hour. In HCT, 

the network starts to suffer from congestion since the 

beginning of simulations, which is much different from 

the others and consistent with the ETD simulation setting. 

The cluster HACT contains an intermediate level of 

congestion level, compared with the cluster ICT/LACT 

and HCT. The proposed clustering analysis provides a 

divide-and-conquer solution to unveil underlined large-

scale traffic dynamic patterns. Network-level traffic state 

sequences in the same cluster share common spatio-

temporal dynamic characteristics. By analyzing the 

typical dynamic process of each cluster, we can improve 

controllability of the large-scale traffic dynamic process.  
 

Figure 5 illustrates clustering results using Basic 

Clustering Scheme and compares them with those 

obtained using the proposed tensor factorization. The 

number of derived clusters is 3 for comparison. As 

shown in the figure, total 89 sequences in the green-

labeled cluster are composed by all 39 sequences of the 

ITD setting, 39 sequences of the ATD setting with low 

traffic demands and 11 sequences of the ATD setting 

with similar level of traffic demands. Although they 

differ in the spatial settings of the traffic demands, they 

share similar global congestion level during the peak 

hours. Therefore, this cluster is noted as “Light 

Congestion Cluster”. The blue-labeled cluster consists of 

all 41 sequences corresponding to the ATD setting with 

high traffic demands and 4 sequences generated by the 

ETD setting, which present intermediate level of global 

congestion in the network, named as “Intermediate 

Congestion Cluster” in the figure. The red-labeled 

cluster is composed by all left 14 sequences of the ETD 

setting containing utterly heavy congestion during the 

peaking hours, named as “Heavy Congestion Cluster”. 

This clustering result only identifies variations of global 

congestion level over the whole network, but fails to 

identify spatial differences of traffic congestion between 

different simulation settings. Since Basic Clustering 

Scheme and the proposed r-NTF based method both use 

K-means as the final clustering toolkit, the comparison 

between their corresponding clustering results highlights 

merits of the proposed r-NTF in extracting spatio-



temporal congestion pattern. In Basic Clustering Scheme, 

unfolding sequences of network-level traffic states data 

into causes destruction of spatio-temporal correlation 

structures of traffic states in the network. PCA 

performed on the unfolded vectors only reduces their 

dimensions, thus cannot detect typical temporal 

evolution patterns of spatial congestion occurrences. In 

contrast, the 3-way tensor structure preserves spatio-

temporal data structure and the proposed r-NTF scheme 

is designed to unveil spatial-temporal traffic state 

variation patterns directly. In this sense, the proposed 

r-NTF is not only a dimension reduction tool, but also a 

feature extraction procedure to construct a compact 

representation of spatial-temporal traffic state patterns. 

Figure 5. Clustering of temporal sequences of 

network-level traffic states using Basic Clustering 

Scheme 

 

5. Long-term temporal prediction 

In the IAURIF database, about 1/3 of the whole 

13627 links in the network rarely suffer from congestion 

during the simulation process. They are thus out of the 

scope for the prediction task. To focus on the local 

regions that are likely to have fluctuations of traffic flow 

states, we select only the 3415 most congested links 

during the peak hours of the simulation as our prediction 

target. Furthermore, in temporal scale, the first 10 and 

last 5 sampling timesteps are the periods during which 

the network stays to be globally free-flowing. Therefore 

we turn to focus on the time period starting from the 

11th steps to the 43rd steps in prediction. In these 33 

sampling timesteps, we choose the first 5 as the observed 

part in the simulation, which covers the starting of the 

peak hour in each simulation. Temporal evolution during 

the remaining 28 timesteps are then considered as 

unobserved ones and used for prediction. With this 

setting, the prediction task can be formulated as a long-

term forecast of large-scale traffic dynamics for the 

selected 3415 links. 

We select randomly 120 of the whole 146 simulated 

scenes as the historic data set. The left 26 form the 

testing set. Both sets are rearranged into 3-way tensor 

structure  and 

 . Each test simulation sequence 

corresponds to the frontal slice of  , with the first 5 

columns observed and left 28 columns for prediction. 

Prediction is then performed following the proposed 

scheme in Section 2.4. To evaluate prediction 

performance, we calculate the average of entry-wise 

Euclidean distances between the reconstructed columns 

in each test sequence and their ground truths. Smaller 

average values indicates less prediction error, thus better 

accuracy in estimating the large-scale dynamics. Both 

mean and variance of all the 26 average Euclidean 

distance measures are used to evaluate the general 

prediction performances over the whole testing set, 

named as “Average Prediction Error” and “Variance of 

Prediction Error” in this work. 

 
Table 1. Prediction accuracies with different settings 

of nearest neighbors  

The number 
of nearest 
neighbors 

Average 
Prediction 

Error 

Variance of  
Prediction Error 

1 0.0489 0.0011 

3 0.0337 0.0009 

5 0.0595 0.0011 

7 0.0673 0.0013 

9 0.0811 0.0014 

 

We illustrate prediction performances of different 

settings of nearest neighbors in Table 1. In the testing set 

of the IAURIF database, 3-nearest-neighbors is the best 

choice for predicting the unobserved traffic dynamics. 

By increasing the number of nearest neighbors used from 

1 to 3, the average of prediction error reduces 

monotonically while the variance stays relatively stable. 

Further increase of the number of nearest neighbors 

leads to decline of the prediction accuracy, larger 

average prediction error and slightly larger variance, as 

shown in Table 1. On one hand, more nearest neighbors 

provide more heuristic information about the tendancy of 

unobserved temporal evolution. On the other hand, we 

should notice that more nearest neighbors do not ensure 

better prediction. The historic sequences at the end of the 

nearest neighboring list contains much more difference 

in traffic dynamics than those at the head of the list, 

which introduces noise into reconstruction and causes 

the declination. 

 
 

T historic R3415*33*120

T test R3415*33*26

T test



 

Table 2. General Prediction Error of the three 

methods 

The prediction 
schemes 

Average 
Prediction 

Error 

Variance of 
Prediction 

Error 

Historic-
Average 

0.0492 0.0014 

Historic-NN 0.0368 0.0011 

The proposed 
NTF based 
prediction 

0.0337 0.0009 

 
To verify validity of the proposed prediction scheme, we 

compare the prediction performances of the proposed 

method with the other two baseline methods. The first 

one calculates average traffic index for each of 3415 

links at each of the 28 time sampling steps involved in 

the test with respect to the corresponding time sampling 

step in the historic data, generating a matrix 

 as the estimates of the unobserved 

traffic states. It is then used as the prediction results 

directly, named as “Historic-Average”. In the second 

scheme, we follow a similar way to generate the 

estimates. Instead of calculating the average value with 

respect to all historic data, we generate it heuristically by 

calculating the average traffic index for each link only 

with respect to the nearest neighbors of the test sequence 

in the historic data, labeled by “Historic-NN”. The 

number of nearest neighbors is set to be the same value 

as used in the tensor based prediction scheme. The 

comparison of prediction performances is listed in 

Table 2.  

 

Figure 6. Comparisons of the prediction 

performances 
 

Figure 6 illustrates the mean traffic index value of the 

total 28 time sampling steps involved in prediction in 

one testing time period (ranging from the 16th time 

sampling step to the 43rd step in the whole 48 steps). 

The mean traffic index values are derived from the 

ground-truth and the prediction results of the three 

methods respectively. As expected given large demand 

variability in the historic, Historic-NN outperforms 

Historic-Average to a large extent. The Historic-Average 

does not use any heuristic information about temporal 

evolution of traffic states. Purely average operation with 

respect to all historic data ignores the difference between 

traffic state variation patterns of different time periods. 

Compared with Historic-NN, the proposed non-negative 

tensor factorization based method detects the nearest 

neighbors more accurately in the compact tensor 

projection space than in the original high dimensional 

space. Thus, it improves further prediction performance. 

 

6. Conclusions  

In this work, we apply a tensor-factorization-based 

spatio-temporal data analysis scheme to investigate 

large-scale traffic dynamics in a urban transportation 

network. Our work contributes in the following aspects. 

Firstly, we propose to use 3-way tensor as the basic 

representation of temporal evolution of traffic states over 

the whole network. Based on the 3-way tensor structure, 

we use tensor factorization to generate compact 

signatures of spatio-temporal traffic state evolution 

patterns within each concerned time period. Benefited 

from the work in data representation level, we achieve to 

find out typical temporal evolutions of the global traffic 

states using clustering analysis. Finally, we inject K-NN 

based heuristic information into the tensor factorization 

model using a unified optimization framework. Through 

it, we can predict variation patterns of global traffic state 

configurations accurately. Although we only focus on 

long-term prediction of traffic dynamics, the proposed 

tensor reconstruction can also be easily extended to 

estimate missing observations of traffic states due to 

faults of sensors and noise in the GPS signals.  
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